首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surfactant nanoemulsions are water in oil preparations that proved to have a broad spectrum biocidal activity against a variety of microorganisms including Gram-positive and Gram-negative bacteria, spores and enveloped viruses. These preparations are non-toxic to the skin, mucous membrane and gastrointestinal tissues at biocidal concentrations. In this study, 0.1% of the nanoemulsion designated X8W60PC has shown fungicidal activity against yeast including Candida albicans and C. tropicalis in 15 minutes. C. tropicalis was more sensitive than C. albicans, which required a longer time or a higher concentration of the nanoemulsion to achieve killing. Neutral to slightly alkaline pH was more effective in killing the yeast cells than acidic pH. Using the minimum inhibitory concentration assay, 0.08% of the nanoemulsion was inhibitory to C. albicans, and parapsilosis and filamentous fungi including Microsporum gypseum, Trichophyton mentagrophytes, Trichophyton rubrum, Aspergillus fumigatus and Fusarium oxysporum. None of the individual ingredients was as effective a fungicidal as the nanoemulsion at equivalent concentration. This shows that the nanoemulsion structure is an important factor in the anti-fungal activity. The X8W60PC has great potential as a topical anti-fungal agent and further investigation into the mechanism of fungicidal action is warranted.  相似文献   

2.
The search for new antimicrobial compounds and the optimization of production methods turn the use of antimicrobial susceptibility tests a routine. The most frequently used methods are based on agar diffusion assays or on dilution in agar or broth. For filamentous fungi, the most common antimicrobial activity detection methods comprise the co-culture of two filamentous fungal strains or the use of fungal extracts to test against single-cell microorganisms. Here we report a rapid, effective and reproducible assay to detect fungal antimicrobial activity against single-cell microorganisms. This method allows an easy way of performing a fast antimicrobial screening of actively growing fungi directly against yeast. Because it makes use of an actively growing mycelium, this bioassay also provides a way for studying the production dynamics of antimicrobial compounds by filamentous fungi. The proposed assay is less time consuming and introduces the innovation of allowing the direct detection of fungal antimicrobial properties against single cell microorganisms without the prior isolation of the active substance(s). This is particularly useful when performing large screenings for fungal antimicrobial activity. With this bioassay, antimicrobial activity of Hypholoma fasciculare against yeast species was observed for the first time.  相似文献   

3.
4.
By employing 4-methylumbelliferyl-beta-D-NN',N"-triacetylchitotriose substrate in a semi quantitative assay, chitinolytic activity in viable spores of Encephalitozoon cuniculi and E. intestinalis was detected and dependence on reaction time, spore concentration, concentration of substrate and temperature were demonstrated. It was possible to block the chitinolytic activity by chitin hydrolysate. By incubation at 80 degrees C for 10 min or at 55 degrees C for 20 min the spores were loosing the chitinolytic activity. Incubation of the spores in trypsin reduced the chitinolytic activity. Cellulase activity could not be detected.  相似文献   

5.
Pyrococcus furiosus is a strictly anaerobic hyperthermophilic archaebacterium with an optimal growth temperature of about 100 degrees C. When this organism was grown in the presence of certain complex carbohydrates, the production of several amylolytic enzymes was noted. These enzymes included an alpha-glucosidase that was located in the cell cytoplasm. This alpha-glucosidase has been purified 310-fold and corresponded to a protein band of 125 kilodaltons as resolved by 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme exhibited optimum activity at pH 5.0 to 6.0 and over a temperature range of 105 to 115 degrees C. Kinetic analysis conducted at 108 degrees C revealed hydrolysis of the substrates p-nitrophenyl-alpha-D-glucopyranoside (PNPG), methyl-alpha-D-glucopyranoside, maltose, and isomaltose. Trace activity was detected towards p-nitrophenyl-beta-D-glucopyranoside, and no activity could be detected towards starch or sucrose. Inhibition studies conducted at 108 degrees C with PNPG as the substrate and maltose as the inhibitor yielded a Ki for maltose of 14.3 mM. Preincubation for 30 min at 98 degrees C in 100 mM dithiothreitol and 1.0 M urea had little effect on enzyme activity, whereas preincubation in 1.0% sodium dodecyl sulfate and 1.0 M guanidine hydrochloride resulted in significant loss of enzyme activity. Purified alpha-glucosidase from P. furiosus exhibited remarkable thermostability; incubation of the enzyme at 98 degrees C resulted in a half life of nearly 48 h.  相似文献   

6.
A phage lytic enzyme was isolated from lysates of Bacillus stearothermophilus (NCA 1503-4R). The enzyme was purified 1,998-fold with a 27% recovery of enzyme activity. By use of polyacrylamide gel electrophoresis and sucrose gradient centrifugation the enzyme was judged free from protein contaminants. The lytic enzyme was active over a pH range of 6.0 to 7.0, with a maximum at 6.3, and it was stable between pH 7.0 and 8.0 and at 5.0 and unstable between pH 5.5 and 6.5. The temperature coefficient (Q(10)) was 2.27 between 35 and 45 C, 2.01 between 45 and 55 C, and 2.00 between 50 and 60 C. Lytic enzyme in 0.1 m sodium phosphate was not inactivated after a 1-hr exposure to temperatures below 65.5 C, whereas a 1% inactivation was observed at 70.6 C. A 2-hr exposure at 60.1, 65.5, and 70.6 C resulted in an inactivation of 1.2, 9.6, and 12.0%, respectively. A sodium phosphate concentration of at least 0.1 m was necessary for the prolonged exposure of lytic enzyme at 55 C (pH 6.3), whereas 0.005 m was required for maximal lytic activity. Lytic activity was stimulated 169, 165, and 160% by 10(-4)m Mg(++), Ca(++), and Mn(++), respectively. Lytic activity was inhibited 75% by 10(-4)m ethylenediaminetetraacetic acid (EDTA). The EDTA inhibition could be reversed by the addition of excess Mg(++), Ca(++), or Mn(++). Lytic activity was not affected by NaCl, KCl, or NH(4)Cl. Lytic activity was inhibited 100, 91, 25, 61, and 56% by 10(-4)m Hg(++), Cu(++), Zn(++), p-chloromercuribenzoate, and p-hydroxymercuribenzoate, respectively. Cysteine or 2-mercaptoethanol did not stimulate lytic activity, nor were these sulfhydryl compounds required for maintenance of enzyme activity during handling or storage. Cell walls were rapidly solubilized when incubated with lytic enzyme. Lytic action was complete after 1.5 min, with a 70% reduction in optical density (OD). Cell walls without lytic enzyme showed no reduction in OD during this period. The solubilization of N-terminal amino groups paralleled the reduction in OD and reached a level of 0.3 mumole/mg of cell wall after 4 min of incubation. Cell walls with and without lytic enzyme treatment showed a 3- and a 1.3-fold increase, respectively, in N-terminal amino groups after 3 hr of incubation. There was no release of reducing power in either the untreated cell wall suspensions or those treated with lytic enzyme. Electron micrographs of treated and untreated cell walls showed that the enzyme partially degrades the cell wall with the release of small wall fragments.  相似文献   

7.
A procedure for isolation of yeast spores and preparation of yeast spheroplasts with the use of the bacterial lytic enzyme, Zymolyase, is described. The high lytic activity of Zymolyase, allows isolation of the yeast spores in a rapid and simple manner. The resulting spores are not contaminated with vegetative cells and retain their full activity in germination. Moreover, the enzyme appears to be very efficient in preparation of yeast lysates, actively synthesizing proteins. The use of Zymolyase for other purposes is suggested.  相似文献   

8.
Myc  Andrzej  Vanhecke  Thomas  Landers  Jeffrey J.  Hamouda  Tarek  Baker  James R. 《Mycopathologia》2003,155(4):195-201
Surfactant nanoemulsions are water in oil preparations that proved to have a broad spectrum biocidal activity against a variety of microorganisms including Gram-positive and Gram-negative bacteria, spores and enveloped viruses. These preparations are non-toxic to the skin, mucous membrane and gastrointestinal tissues at biocidal concentrations. In this study, 0.1% of the nanoemulsion designated X8W60PC has shown fungicidal activity against yeast including Candida albicans and C. tropicalis in 15 minutes. C. tropicalis was more sensitive than C. albicans, which required a longer time or a higher concentration of the nanoemulsion to achieve killing. Neutral to slightly alkaline pH was more effective in killing the yeast cells than acidic pH. Using the minimum inhibitory concentration assay, 0.08% of the nanoemulsion was inhibitory to C. albicans, and parapsilosis and filamentous fungi including Microsporum gypseum,Trichophyton mentagrophytes,Trichophyton rubrum,Aspergillus fumigatus andFusarium oxysporum.None of the individual ingredients was as effective a fungicidal as the nanoemulsion at equivalent concentration. This shows that the nanoemulsion structure is an important factor in the anti-fungal activity. The X8W60PC has great potential as a topical anti-fungal agent and further investigation into the mechanism of fungicidal action is warranted.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
A lytic enzyme active against viable, intact staphylococci is released into culture fluids upon lysis of bacteriophage-infected Staphylococcus aureus PS53 cells. This enzyme, staphylococcal phage-associated lysin (PAL), was partially purified by ammonium sulfate precipitation and gel filtration through Sephadex G-200. PAL is optimally active at pH 6.5 and 30 C, and lytic activity is greatly enhanced by the addition of reducing agents. Lytic activity was observed against all strains of staphylococci tested and against purified staphylococcal cell walls, but no activity was noted against other bacterial species. PAL possesses peptidase activity and results in the production of spheroplasts which can be osmotically stabilized for extended periods by the addition of 7.5% polyethylene glycol 4000.  相似文献   

10.
Motile actinomycetes capable of degrading walls of viable yeast cells were isolated from soil and identified as Oerskovia xanthineolytica. A lytic assay based on susceptibility of enzyme-treated cells to osmotic shock was developed, and 10 of 15 strains of O. xanthineolytica, Oerskovia turbata, and nonmotile Oerskovia- like organisms from other collections were found to possess yeast lytic activities. All lytic strains produced laminaranase and alpha-mannanase, but the amounts, determined by reducing group assays, were not proportional to the observed lytic activities. The Oerskovia isolates demonstrated chemotactic, predatory activity against various yeast strains and killed yeasts in mixed cultures. Of 15 carbon sources tested for production of lytic enzyme, purified yeast cell walls elicited the highest activity. Glucose repressed enzyme production and caused cells to remain in the microfilamentous and motile rod stages of the Oerskovia cell cycle. Crude lytic activity was optimal at pH 5.6 to 7.0 and inactivated by heating for 6 min at 50 degrees C. Partial purification by isoelectric focusing showed that all lytic activity was associated with four beta-(1-->3)-glucanases. The absence of protein disulfide reductase, N-acetyl-beta-d-hexosaminidase, and phosphomannanase in crude preparations indicated that the principal enzyme responsible for yeast wall lysis was a beta-(1-->3)-glucanase that produced relatively little reducing sugar from yeast glucan.  相似文献   

11.
The sterol and fatty acid content of mycelium from germinating basidiospores of Cronartium fusiforme was determined. The mycelium contained stigmast-7-enol, fungisterol, and possibly stigmasta-5,7-dienol. No ergosterol was detected. The mycelium contained the expected fatty acids and low relative proportions of 9,10-epoxyoctadecanoic acid. The absence of ergosterol, and presence of the epoxy C18 acid and sterols typical of certain rust spores may be used for a relatively rapid confirmation of rust fungi in culture. Based on these chemical criteria, yeast-like cells isolated from the cultures of germinating basidiospores appear not to be C. fusiforme.  相似文献   

12.
粉纹夜蛾离体细胞抗菌肽的抗菌谱测定   总被引:8,自引:0,他引:8  
用热灭活的大肠杆菌DHSQ诱导粉纹夜蛾(Trichoplusia ni)离体细胞产生抗菌肽,用三氯乙酸沉淀法提取出该活性物质,采用琼脂糖孔穴扩散法和生长抑制测定法测定其抗菌谱,发现该抗菌物质具有较广的抗微生物活性,其中特别是对革兰氏阴性菌中的沙门氏茵和大肠杆茵,酵母菌中的白色念珠菌,植物病源真茵中的花生白绢病茵和小麦赤霉病茵具有较强的抑菌活性,从而表明该物质是一种既抗细菌,又抗真菌的抗微生物肽。  相似文献   

13.
古银杏内生真菌的分离及其抑菌活性   总被引:4,自引:0,他引:4  
采用组织分离法从古银杏健康组织中分离得到55株内生真菌, 其中28个分离菌株在PDA培养基上不产孢子, 占总分离菌株的50.9%, 其它菌株根据其在PDA培养基上的培养特征, 10株被鉴定为青霉、6株为曲霉、4株为交链孢霉、3株为简梗孢霉, 另外酵母、毛霉、小单头孢霉、镰孢霉各1株。考察内生真菌培养上清对7种受试指示菌的抑制作用, 共筛选得到23株至少对一种指示菌的生长有抑制作用的菌株, 其中11株为不产孢真菌, 占活性菌株的47.83%。对活性最强的一株菌进行形态学和分子生物学鉴定, 将其确定为Xyla  相似文献   

14.
The production of the enzymes of Candida albicans cell-wall lytic system by S. thermodiastaticus was found to be affected by some growth conditions and nutritional factors. The highest lytic activity was obtained after 18 h of incubation at pH 5.5 and an incubation temperature of 50 degrees C. The carbon source influenced the production of the enzymes of the yeast cell wall lytic system. Maximum lytic activity was obtained when Candida albicans cell-wall (1 g/100 ml) was used as the sole carbon source. NaNO3 at 0.1 g/100 ml level was the best nitrogen source for the biosynthesis of the enzymes of the yeast lytic system. From all phosphor sources, microelements, and growth factors tested, KH2PO4 (1 g/l), ZnSO4 (1 mg/l) and Tween 80 (0.1%), respectively were found to favour highest enzymes production of the lytic system. The Candida albicans cell-wall lytic system produced by S. thermodiastaticus mainly contained chitinolytic and proteolytic activities.  相似文献   

15.
Susceptibility to UV irradiation of B. cereus BIS-59 spores undergoing germination at various stages-dormant spores to vegetative cell stage and their ability to recover from radiation damage were studied. For a given dose of radiation, the number of spore photoproducts (SPP) formed in the DNA of dormant spores was about 5-times greater than that of thymine dimers (TT) formed in the DNA of vegetative cells. At intermediate stages of the germination cycle, there was a rapid decline in the UV radiation-induced SPP formed in DNA with a concomitant increase in the UV radiation-induced TT formed in DNA. Bacterial spores undergoing germination (up to 3 hr) in the low nutrient medium (0.3% yeast extract) displayed much higher resistance to UV radiation than those germinating in the rich nutrient medium, even though there was no discernible difference under the two incubation conditions in respect of the extent of germination and the time at which the outgrowth stage appeared (3 hr). This was due to the formation TT in the DNA of spores germinating in the low nutrient as compared to that of spores germinating in the rich-nutrient medium. In UV-irradiated dormant spores, SPP formed in the spore DNA did not disappear even after prolonged incubation in the non-germinating medium. However, when the UV-irradiated dormant spores were germinated in low or rich nutrient medium, a significant proportion of SPP in DNA was eliminated. The dormant spores incubated in either of the germinating media for 15 min and then UV-irradiated were capable of eliminating SPP (presumably by monomerization) even by incubation in a non-germinating medium and in the complete absence of protein synthesis (buffer holding recovery), thereby implying that spore-repair enzymes were activated in response to initial's germination. The acquisition of photo-reactivation ability appeared in spores subjected to germination only in the rich-nutrient medium at the outgrowth stage and required de novo synthesis of the required enzymes.  相似文献   

16.
Four compounds named L-BTrpPA, L-Trp-o-PA, L-Trp-m-PA and L-Trp-p-PA, pseudopeptides constructed from pyridine and tryptophan units, were synthesized and tested against the Gram-positive, Gram-negative strains of bacteria and human pathogenic fungi. L-Trp-o-PA proved to be a broad-spectrum antimicrobial agent, showing a significant inhibition of the growth of Gram-positive bacteria (Staphylococcus aureus, methicillin-resistant S. aureus, Bacillus subtilis, Micrococcus luteus), and pathogenic fungi (Candida spp., Cryptococcus neoformans, Rhodotorula glutinis, Saccharomyces cerevisiae, Aspergillus spp., Rhizopus nigricans) tested and activity against Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa and Proteus vulgaris, Enterobacter aerogenes) tested. The in vitro cell cytotoxicity of L-Trp-o-PA was evaluated using haemolytic assay, in which the compound was found to have low lytic property, even up to the concentration of 4000 microg/mL, it only lysed 6-7% of erythrocytes, which was 100-fold greater than the MICs (minimum inhibitory concentration).  相似文献   

17.
Lipids are the major form of carbon storage in arbuscular-mycorrhizal fungi. We studied fatty acid synthesis by Glomus intraradices and Gigaspora rosea. [(14)C]Acetate and [(14)C]sucrose were incorporated into a synthetic culture medium to test fatty acid synthetic ability in germinating spores (G. intraradices and G. rosea), mycorrhized carrot roots, and extraradical fungal mycelium (G. intraradices). Germinating spores and extraradical hyphae could not synthesize 16-carbon fatty acids but could elongate and desaturate fatty acids already present. The growth stimulation of germinating spores by root exudates did not stimulate fatty acid synthesis. 16-Carbon fatty acids (16:0 and 16:1) were synthesized only by the fungi in the mycorrhized roots. Our data strongly suggest that the fatty acid synthase activity of arbuscular-mycorrhizal fungi is expressed exclusively in the intraradical mycelium and indicate that fatty acid metabolism may play a major role in the obligate biotrophism of arbuscular-mycorrhizal fungi.  相似文献   

18.
《Journal of Asia》2019,22(1):175-182
Major royal jelly proteins (MRJPs) are important protein components of bee royal jelly (RJ) and exhibit various biological and pharmacological activities. The antimicrobial activities of the royalisin and the jelleines contained within MRJP 1 and MRJP 2 in RJ have been elucidated. However, the antimicrobial effects of other MRJPs remain largely unknown. In this study, we demonstrated the antimicrobial activity of the Asiatic honeybee (Apis cerana) MRJP 4 (AcMRJP4). Recombinant AcMRJP4 was expressed as a 63-kDa protein in baculovirus-infected insect cells. We examined the antimicrobial activity of recombinant AcMRJP4 against bacteria, fungi, and yeast. The mechanisms underlying the antimicrobial activity of AcMRJP4 were assessed using western blot analysis, immunofluorescence staining, and scanning electron microscopy. Recombinant AcMRJP4 bound to the cell walls of bacteria, fungi, and yeast and induced structural damage in the microbial cell walls. AcMRJP4 has an antimicrobial role and exhibits a broad spectrum of antimicrobial activities against bacteria, fungi, and yeast. We demonstrated that AcMRJP4 functions as an antimicrobial agent with activity against bacteria, fungi, and yeast. Together, our data identified a novel function of MRJP 4 as an antimicrobial agent.  相似文献   

19.
Squalamine and three aminosterol analogs have been shown to inhibit bacterial cell growth and induce lysis of large unilamellar phospholipid vesicles. The analogs differ in the identity of the polyamine attached at C3 of the sterol, and the stereochemistry of a hydroxyl substituent at C7. Analogs with a tetraammonium spermine polyamine are somewhat more active than analogs with a shorter trisammonium spermidine polyamine, and analogs with an axial (α) hydroxyl substituent at C7 are more active than analogs with the corresponding equatorial (β) hydroxyl group. There is some variability noted; the 7β-OH spermine analog is the most active compound against Escherichia coli, but the least effective against Pseudomonas aeruginosa. Lytic activity correlates well with antimicrobial activity of the compounds, but the lytic activity varies with the phospholipid composition of the vesicles.  相似文献   

20.
Two yeasts, Candida oleophila (strain O) and Pichia anomala (strain K), were previously selected for their antagonistic activity against postharvest diseases on apples and pears. The objective of the study was to determine the efficacy of both antagonistic yeast's against wound postharvest pathogens of citrus fruits. The efficacy of both strains (applied at 10(5), 10(6) and 10(8) CFU/ml) was assessed against Penicillium digitatum and P. italicum inoculated after one hour (at a concentration of 10(5), 10(6) and 10(7) spores/ml) on citrus varieties 'clementine' and 'valencia-late'. Fruits were incubated for one week at 24 degrees C before measurement of lesion diameter. The protective levels were positively correlated with high concentration of antagonist and low concentration of pathogen. Highest protective levels (from 73 to 100%) were detected with the application of strain O or strain K at 10(8) CFU/ml whatever the pathogen (applied at 10(5) spores/ml) and the citrus variety. The antagonistic activity of both strains was also dependent on the incubation period before pathogen Inoculation. The protective level increased with time between application of the antagonist and inoculation of fungal spores. Whatever the yeast strain (10(8) CFU/ml). the protective level exceed 70% when wounded oranges were inoculated with P. digitatum or P. italicum (both at 10(6) spores/ml) 12 hours after yeast treatment. These protective levels reached 100% when the incubation period separating the antagonist application and the pathogenic inoculation was 24 hours. On the other hand, high protective levels (< 80%) were also observed against the sour rot decay on citrus variety 'clementine' caused by Geotrichum candidum inoculated at concentration of 10(6) spores/ml when strain O or strain K were applied at 10(8) CFU/ml 24 hours before pathogen. All these results support the potential practical application of both strains against major postharvest pathogens on citrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号