首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The direct involvement of manganese peroxidase (MnP) in the mineralization of natural and xenobiotic compounds was evaluated. A broad spectrum of aromatic substances were partially mineralized by the MnP system of the white rot fungus Nematoloma frowardii. The cell-free MnP system partially converted several aromatic compounds, including [U-14C]pentachlorophenol ([U-14C]PCP), [U-14C]catechol, [U-14C]tyrosine, [U-14C]tryptophan, [4,5,9,10-14C]pyrene, and [ring U-14C]2-amino-4,6-dinitrotoluene ([14C]2-AmDNT), to 14CO2. Mineralization was dependent on the ratio of MnP activity to concentration of reduced glutathione (thiol-mediated oxidation), a finding which was demonstrated by using [14C]2-AmDNT as an example. At [14C]2-AmDNT concentrations ranging from 2 to 120 μM, the amount of released 14CO2 was directly proportional to the concentration of [14C]2-AmDNT. The formation of highly polar products was also observed with [14C]2-AmDNT and [U-14C]PCP; these products were probably low-molecular-weight carboxylic acids. Among the aliphatic compounds tested, glyoxalate was mineralized to the greatest extent. Eighty-six percent of the 14COOH-glyoxalate and 9% of the 14CHO-glyoxalate were converted to 14CO2, indicating that decarboxylation reactions may be the final step in MnP-catalyzed mineralization. The extracellular enzymatic combustion catalyzed by MnP could represent an important pathway for the formation of carbon dioxide from recalcitrant xenobiotic compounds and may also have general significance in the overall biodegradation of resistant natural macromolecules, such as lignins and humic substances.  相似文献   

2.
The uptake and degradation of nanomolar levels of [methyl-14C]choline in estuarine water samples and in seawater filtrate cultures composed mainly of natural free-living bacteria was studied. Uptake of [14C]choline exhibited Michaelis-Menten kinetics, with Kt + Sn values of 1.7 to 2.9 nM in filtrate cultures and 1.7 to 4.1 nM in estuarine-water samples. Vmax values ranged from 0.5 to 3.3 nM · h−1. The uptake system for choline in natural microbial assemblages therefore displays very high affinity and appears able to scavenge this compound at the concentrations expected in seawater. Uptake of choline was inhibited by some natural structural analogs and p-chloromercuribenzoate, indicating that the transporter may be multifunctional and may involve a thiol binding site. When 11 nM [14C]choline was added to water samples, a significant fraction (>50%) of the methyl carbon was respired to CO2 in incubations lasting 10 to 53 h. Cells taking up [14C]choline produced [14C]glycine betaine ([14C]GBT), and up to 80% of the radioactivity retained by cells was in the form of GBT, a well-known osmolyte. Alteration of the salinity in filtrate cultures affected the relative proportion of [14C]choline degraded or converted to [14C]GBT, without substantially affecting the total metabolism of choline. Increasing the salinity from 14 to 25 or 35 ppt caused more [14C]GBT to be produced from choline but less 14CO2 to be produced than in the controls. Lowering the salinity to 7 ppt decreased [14C]GBT production and increased 14CO2 production slightly. Intracellular accumulations of [14C]GBT in the salt-stressed cultures were osmotically significant (34 mM). Choline may be used as an energy substrate by estuarine bacteria and may also serve as a precursor of the osmoprotectant GBT, particularly as bacteria are mixed into higher-salinity waters.  相似文献   

3.
Penetration of 3H-labeled water (3H2O) and the 14C-labeled organic acids benzoic acid ([14C]BA), salicylic acid ([14C]SA), and 2,4-dichlorophenoxyacetic acid ([14C]2,4-D) were measured simultaneously in isolated cuticular membranes of Prunus laurocerasus L., Ginkgo biloba L., and Juglans regia L. For each of the three pairs of compounds (3H2O/[14C]BA, 3H2O/[14C]SA, and 3H2O/[14C]2,4-D) rates of cuticular water penetration were highly correlated with the rates of penetration of the organic acids. Therefore, water and organic acids penetrated the cuticles by the same routes. With the combination 3H2O/[14C]BA, co-permeability was measured with isolated cuticles of nine other plant species. Permeances of 3H2O of all 12 investigated species were highly correlated with the permeances of [14C]BA (r2 = 0.95). Thus, cuticular transpiration can be predicted from BA permeance. The application of this experimental method, together with the established prediction equation, offers the opportunity to answer several important questions about cuticular transport physiology in future investigations.  相似文献   

4.
Degradation of glucose has been implicated in acetate production in rice field soil, but the abundance of glucose, the temporal change of glucose turnover, and the relationship between glucose and acetate catabolism are not well understood. We therefore measured the pool sizes of glucose and acetate in rice field soil and investigated the turnover of [U-14C]glucose and [2-14C]acetate. Acetate accumulated up to about 2 mM during days 5 to 10 after flooding of the soil. Subsequently, methanogenesis started and the acetate concentration decreased to about 100 to 200 μM. Glucose always made up >50% of the total monosaccharides detected. Glucose concentrations decreased during the first 10 days from 90 μM initially to about 3 μM after 40 days of incubation. With the exception at day 0 when glucose consumption was slow, the glucose turnover time was in the range of minutes, while the acetate turnover time was in the range of hours. Anaerobic degradation of [U-14C]glucose released [14C]acetate and 14CO2 as the main products, with [14C]acetate being released faster than 14CO2. The products of [2-14C]acetate metabolism, on the other hand, were 14CO2 during the reduction phase of soil incubation (days 0 to 15) and 14CH4 during the methanogenic phase (after day 15). Except during the accumulation period of acetate (days 5 to 10), approximately 50 to 80% of the acetate consumed was produced from glucose catabolism. However, during the accumulation period of acetate, the rate of acetate production from glucose greatly exceeded that of acetate consumption. Under steady-state conditions, up to 67% of the CH4 was produced from acetate, of which up to 56% was produced from glucose degradation.  相似文献   

5.
The metabolism of phthalic acid (PA) and di-(2-ethylhexyl)phthalate (DEHP) in sludge-amended agricultural soil was studied with radiotracer techniques. The initial rates of metabolism of PA and DEHP (4.1 nmol/g [dry weight]) were estimated to be 731.8 and 25.6 pmol/g (dry weight) per day, respectively. Indigenous microorganisms assimilated 28 and 17% of the carbon in [14C]PA and [14C]DEHP, respectively, into microbial biomass. The rates of DEHP metabolism were much greater in sludge assays without soil than in assays with sludge-amended soil. Mineralization of [14C]DEHP to 14CO2 increased fourfold after inoculation of sludge and soil samples with DEHP-degrading strain SDE 2. The elevated mineralization potential was maintained for more than 27 days. Experiments performed with strain SDE 2 suggested that the bioavailability and mineralization of DEHP decreased substantially in the presence of soil and sludge components. The microorganisms metabolizing PA and DEHP in sludge and sludge-amended soil were characterized by substrate-specific radiolabelling, followed by analysis of 14C-labelled phospholipid ester-linked fatty acids (14C-PLFAs). This assay provided a radioactive fingerprint of the organisms actively metabolizing [14C]PA and [14C]DEHP. The 14C-PLFA fingerprints showed that organisms with different PLFA compositions metabolized PA and DEHP in sludge-amended soil. In contrast, microorganisms with comparable 14C-PLFA fingerprints were found to dominate DEHP metabolism in sludge and sludge-amended soil. Our results suggested that indigenous sludge microorganisms dominated DEHP degradation in sludge-amended soil. Mineralization of DEHP and PA followed complex kinetics that could not be described by simple first-order equations. The initial mineralization activity was described by an exponential function; this was followed by a second phase that was described best by a fractional power function. In the initial phase, the half times for PA and DEHP in sludge-amended soil were 2 and 58 days, respectively. In the late phase of incubation, the apparent half times for PA and DEHP increased to 15 and 147 days, respectively. In the second phase (after more than 28 days), the half time for DEHP was 2.9 times longer in sludge-amended soil assays than in sludge assays without soil. Experiments with radiolabelled DEHP degraders suggested that a significant fraction of the 14CO2 produced in long-term degradation assays may have originated from turnover of labelled microbial biomass rather than mineralization of [14C]PA or [14C]DEHP. It was estimated that a significant amount of DEHP with poor biodegradability and extractability remains in sludge-amended soil for extended periods of time despite the presence of microorganisms capable of degrading the compound (e.g., more than 40% of the DEHP added is not mineralized after 1 year).  相似文献   

6.
(R,S)-[1-14C]3-Hydroxy eicosanoyl-coenzyme A (CoA) has been chemically synthesized to study the 3-hydroxy acyl-CoA dehydratase involved in the acyl-CoA elongase of etiolated leek (Allium porrum L.) seedling microsomes. 3-Hydroxy eicosanoyl-CoA (3-OH C20:0-CoA) dehydration led to the formation of (E)-2,3 eicosanoyl-CoA, which has been characterized. Our kinetic studies have determined the optimal conditions of the dehydration and also resolved the stereospecificity requirement of the dehydratase for (R)-3-OH C20:0-CoA. Isotopic dilution experiments showed that 3-hydroxy acyl-CoA dehydratase had a marked preference for (R)-3-OH C20:0-CoA. Moreover, the very-long-chain synthesis using (R)-3-OH C20:0-CoA isomer and [2-14C]malonyl-CoA was higher than that using the (S) isomer, whatever the malonyl-CoA and the 3-OH C20:0-CoA concentrations. We have also used [1-14C]3-OH C20:0-CoA to investigate the reductant requirement of the enoyl-CoA reductase of the acyl-CoA elongase complex. In the presence of NADPH, [1-14C]3-OH C20:0-CoA conversion was stimulated. Aside from the product of dehydration, i.e. (E)-2,3 eicosanoyl-CoA, we detected eicosanoyl-CoA resulting from the reduction of (E)-2,3 eicosanoyl-CoA. When we replaced NADPH with NADH, the eicosanoyl-CoA was 8- to 10-fold less abundant. Finally, in the presence of malonyl-CoA and NADPH or NADH, [1-14C]3-OH C20:0-CoA led to the synthesis of very-long-chain fatty acids. This synthesis was measured using [1-14C]3-OH C20:0-CoA and malonyl-CoA or (E)-2,3 eicosanoyl-CoA and [2-14C]malonyl-CoA. In both conditions and in the presence of NADPH, the acyl-CoA elongation activity was about 60 nmol mg−1 h−1, which is the highest ever reported for a plant system.  相似文献   

7.
Anaerobic oxidation of [1,2-14C]vinyl chloride and [1,2-14C]dichloroethene to 14CO2 under humic acid-reducing conditions was demonstrated. The results indicate that waterborne contaminants can be oxidized by using humic acid compounds as electron acceptors and suggest that natural aquatic systems have a much larger capacity for contaminant oxidation than previously thought.  相似文献   

8.
The enzymatic synthesis of indole-3-acetic acid (IAA) from indole by an in vitro preparation from maize (Zea mays L.) that does not use tryptophan (Trp) as an intermediate is described. Light-grown seedlings of normal maize and the maize mutant orange pericarp were shown to contain the necessary enzymes to convert [14C]indole to IAA. The reaction was not inhibited by unlabeled Trp and neither [14C]Trp nor [14C]serine substituted for [14C]indole in this in vitro system. The reaction had a pH optimum greater than 8.0, required a reducing environment, and had an oxidation potential near that of ascorbate. The results obtained with this in vitro enzyme preparation provide strong, additional evidence for the presence of a Trp-independent IAA biosynthesis pathway in plants.  相似文献   

9.
Michael Zook 《Plant physiology》1998,118(4):1389-1393
Camalexin (3-thiazol-2′-yl-indole) is the principal phytoalexin that accumulates in Arabidopsis after infection by fungi or bacteria. Camalexin accumulation was detectable in Arabidopsis cell-suspension cultures 3 to 5 h after inoculation with Cochliobolus carbonum (Race 1), and then increased rapidly from 7 to 24 h after inoculation. Levels of radioactivity incorporated into camalexin during a 1.5-h pulse labeling with [14C]anthranilate also increased with time after fungal inoculation. The levels of radioactive incorporation into camalexin increased rapidly between 7 and 18 h after inoculation, and then decreased along with camalexin accumulation. Relatively low levels of radioactivity from [14C]anthranilate incorporated into camalexin in the noninoculated controls. Autoradiographic analysis of the accumulation of chloroform-extractable metabolites labeled with [14C]anthranilate revealed a transient increase in the incorporation of radioactivity into indole in fungus-inoculated Arabidopsis cell cultures. The time-course measurement of radioactive incorporation into camalexin during a 1.5-h pulse labeling with [14C]indole was similar to that with [14C]anthranilate. These data suggest that indole destined for camalexin synthesis is produced by a separate enzymatic reaction that does not involve tryptophan synthase.  相似文献   

10.
Carbon partitioning and residue formation during microbial degradation of polycyclic aromatic hydrocarbons (PAH) in soil and soil-compost mixtures were examined by using [14C]anthracenes labeled at different positions. In native soil 43.8% of [9-14C]anthracene was mineralized by the autochthonous microflora and 45.4% was transformed into bound residues within 176 days. Addition of compost increased the metabolism (67.2% of the anthracene was mineralized) and decreased the residue formation (20.7% of the anthracene was transformed). Thus, the higher organic carbon content after compost was added did not increase the level of residue formation. [14C]anthracene labeled at position 1,2,3,4,4a,5a was metabolized more rapidly and resulted in formation of higher levels of residues (28.5%) by the soil-compost mixture than [14C]anthracene radiolabeled at position C-9 (20.7%). Two phases of residue formation were observed in the experiments. In the first phase the original compound was sequestered in the soil, as indicated by its limited extractability. In the second phase metabolites were incorporated into humic substances after microbial degradation of the PAH (biogenic residue formation). PAH metabolites undergo oxidative coupling to phenolic compounds to form nonhydrolyzable humic substance-like macromolecules. We found indications that monomeric educts are coupled by C-C- or either bonds. Hydrolyzable ester bonds or sorption of the parent compounds plays a minor role in residue formation. Moreover, experiments performed with 14CO2 revealed that residues may arise from CO2 in the soil in amounts typical for anthracene biodegradation. The extent of residue formation depends on the metabolic capacity of the soil microflora and the characteristics of the soil. The position of the 14C label is another important factor which controls mineralization and residue formation from metabolized compounds.  相似文献   

11.
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 μM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [14C]formaldehyde to 14CO2 but had only a small capacity for oxidation of [14C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [14C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent Ks values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO2. The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.  相似文献   

12.
In both animal and plant acyl elongation systems, it has been proposed that fatty acids are first activated to acyl-coenzyme A (CoA) before their elongation, and that the ATP dependence of fatty acid elongation is evidence of acyl-CoA synthetase involvement. However, because CoA is not supplied in standard fatty acid elongation assays, it is not clear if CoA-dependent acyl-CoA synthetase activity can provide levels of acyl-CoAs necessary to support typical rates of fatty acid elongation. Therefore, we examined the role of acyl-CoA synthetase in providing the primer for acyl elongation in leek (Allium porrum L.) epidermal microsomes and Brassica napus L. cv Reston oil bodies. As presented here, fatty acid elongation was independent of CoA and proceeded at maximum rates with CoA-free preparations of malonyl-CoA. We also showed that stearic acid ([1-14C]18:0)-CoA was synthesized from [1-14C]18:0 in the presence of CoA-free malonyl-CoA or acetyl-CoA, and that [1-14C]18:0-CoA synthesis under these conditions was ATP dependent. Furthermore, the appearance of [1-14C]18:0 in the acyl-CoA fraction was simultaneous with its appearance in phosphatidylcholine. These data, together with the s of a previous study (A. Hlousek-Radojcic, H. Imai, J.G. Jaworski [1995] Plant J 8: 803–809) showing that exogenous [14C]acyl-CoAs are diluted by a relatively large endogenous pool before they are elongated, strongly indicated that acyl-CoA synthetase did not play a direct role in fatty acid elongation, and that phosphatidylcholine or another glycerolipid was a more likely source of elongation primers than acyl-CoAs.  相似文献   

13.
We recently showed that maize (Zea mays L.) leaves contain appreciable amounts of phosphoenolpyruvate carboxykinase (PEPCK; R.P. Walker, R.M. Acheson, L.I. Técsi, R.C. Leegood [1997] Aust J Plant Physiol 24: 459–468). In the present study, we investigated the role of PEPCK in C4 photosynthesis in maize. PEPCK activity and protein were enriched in extracts from bundle-sheath (BS) strands compared with whole-leaf extracts. Decarboxylation of [4-14C]aspartate (Asp) by BS strands was dependent on the presence of 2-oxoglutarate and Mn2+, was stimulated by ATP, was inhibited by the PEPCK-specific inhibitor 3-mercaptopicolinic acid, and was independent of illumination. The principal product of Asp metabolism was phosphoenolpyruvate, whereas pyruvate was a minor product. Decarboxylation of [4-14C]malate was stimulated severalfold by Asp and 3-phosphoglycerate, was only slightly reduced in the absence of Mn2+ or in the presence of 3-mercaptopicolinic acid, and was light dependent. Our data show that decarboxylation of Asp and malate in BS cells of maize occurs via two different pathways: Whereas malate is mainly decarboxylated by NADP-malic enzyme, decarboxylation of Asp is dependent on the activity of PEPCK.  相似文献   

14.
The metabolisms of arginine (Arg), ornithine (Orn), and putrescine were compared in a nontransgenic and a transgenic cell line of carrot (Daucus carota L.) expressing a mouse Orn decarboxylase cDNA. [14C]Arg, [14C]Orn, and [14C]putrescine were fed to cells and their rates of decarboxylation, uptake, metabolism into polyamines, and incorporation into acid-insoluble material were determined. Transgenic cells showed higher decarboxylation rates for labeled Orn than the nontransgenic cells. This was correlated positively with higher amounts of labeled putrescine production from labeled Orn. With labeled Arg, both the transgenic and the nontransgenic cells exhibited similar rates of decarboxylation and conversion into labeled putrescine. When [14C]putrescine was fed, higher rates of degradation were observed in transgenic cells as compared with the nontransgenic cells. It is concluded that (a) increased production of putrescine via the Orn decarboxylase pathway has no compensatory effects on the Arg decarboxylase pathway, and (b) higher rates of putrescine production in the transgenic cells are accompanied by higher rates of putrescine conversion into spermidine and spermine as well as the catabolism of putrescine.  相似文献   

15.
White rot fungi can oxidize high-molecular-weight polycyclic aromatic hydrocarbons (PAH) rapidly to polar metabolites, but only limited mineralization takes place. The objectives of this study were to determine if the polar metabolites can be readily mineralized by indigenous microflora from several inoculum sources, such as activated sludge, forest soils, and PAH-adapted sediment sludge, and to determine if such metabolites have decreased mutagenicity compared to the mutagenicity of the parent PAH. 14C-radiolabeled benzo[a]pyrene was subjected to oxidation by the white rot fungus Bjerkandera sp. strain BOS55. After 15 days, up to 8.5% of the [14C]benzo[a]pyrene was recovered as 14CO2 in fungal cultures, up to 73% was recovered as water-soluble metabolites, and only 4% remained soluble in dibutyl ether. Thin-layer chromatography analysis revealed that many polar fluorescent metabolites accumulated. Addition of indigenous microflora to fungal cultures with oxidized benzo[a]pyrene on day 15 resulted in an initially rapid increase in the level of 14CO2 recovery to a maximal value of 34% by the end of the experiments (>150 days), and the level of water-soluble label decreased to 16% of the initial level. In fungal cultures not inoculated with microflora, the level of 14CO2 recovery increased to 13.5%, while the level of recovery of water-soluble metabolites remained as high as 61%. No large differences in 14CO2 production were observed with several inocula, showing that some polar metabolites of fungal benzo[a]pyrene oxidation were readily degraded by indigenous microorganisms, while other metabolites were not. Of the inocula tested, only PAH-adapted sediment sludge was capable of directly mineralizing intact benzo[a]pyrene, albeit at a lower rate and to a lesser extent than the mineralization observed after combined treatment with white rot fungi and indigenous microflora. Fungal oxidation of benzo[a]pyrene resulted in rapid and almost complete elimination of its high mutagenic potential, as observed in the Salmonella typhimurium revertant test performed with strains TA100 and TA98. Moreover, no direct mutagenic metabolite could be detected during fungal oxidation. The remaining weak mutagenic activity of fungal cultures containing benzo[a]pyrene metabolites towards strain TA98 was further decreased by subsequent incubations with indigenous microflora.  相似文献   

16.
The prevailing hypothesis on the biosynthesis of erucic acid in developing seeds is that oleic acid, produced in the plastid, is activated to oleoyl-coenzyme A (CoA) for malonyl-CoA-dependent elongation to erucic acid in the cytosol. Several in vivo-labeling experiments designed to probe and extend this hypothesis are reported here. To examine whether newly synthesized oleic acid is directly elongated to erucic acid in developing seeds of Brassica rapa L., embryos were labeled with [14C]acetate, and the ratio of radioactivity of carbon atoms C-5 to C-22 (de novo fatty acid synthesis portion) to carbon atoms C-1 to C-4 (elongated portion) of erucic acid was monitored with time. If newly synthesized 18:1 (oleate) immediately becomes a substrate for elongation to erucic acid, this ratio would be expected to remain constant with incubation time. However, if erucic acid is produced from a pool of preexisting oleic acid, the ratio of 14C in the 4 elongation carbons to 14C in the methyl-terminal 18 carbons would be expected to decrease with time. This labeling ratio decreased with time and, therefore, suggests the existence of an intermediate pool of 18:1, which contributes at least part of the oleoyl precursor for the production of erucic acid. The addition of 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy] propanoic acid, which inhibits the homodimeric acetyl-CoA carboxylase, severely inhibited the synthesis of [14C]erucic acid, indicating that essentially all malonyl-CoA for elongation of 18:1 to erucate was produced by homodimeric acetyl-CoA carboxylase. Both light and 2-[{3-chloro-5-(trifluromethyl)-2-pyridinyl}oxyphenoxy]-propanoic acid increased the accumulation of [14C]18:1 and the parallel accumulation of [14C]phosphatidylcholine. Taken together, these results show an additional level of complexity in the biosynthesis of erucic acid.  相似文献   

17.
Anaerobic oxidation of [1,2-14C]dichloroethene to 14CO2 under Mn(IV)-reducing conditions was demonstrated. The results indicate that oxidative degradation of partially chlorinated solvents like dichloroethene can be significant even under anoxic conditions and demonstrate the potential importance of Mn(IV) reduction for remediation of chlorinated groundwater contaminants.  相似文献   

18.
The pathway of propionate conversion in a syntrophic coculture of Smithella propionica and Methanospirillum hungatei JF1 was investigated by 13C-NMR spectroscopy. Cocultures produced acetate and butyrate from propionate. [3-13C]propionate was converted to [2-13C]acetate, with no [1-13C]acetate formed. Butyrate from [3-13C]propionate was labeled at the C2 and C4 positions in a ratio of about 1:1.5. Double-labeled propionate (2,3-13C) yielded not only double-labeled acetate but also single-labeled acetate at the C1 or C2 position. Most butyrate formed from [2,3-13C]propionate was also double labeled in either the C1 and C2 atoms or the C3 and C4 atoms in a ratio of about 1:1.5. Smaller amounts of single-labeled butyrate and other combinations were also produced. 1-13C-labeled propionate yielded both [1-13C]acetate and [2-13C]acetate. When 13C-labeled bicarbonate was present, label was not incorporated into acetate, propionate, or butyrate. In each of the incubations described above, 13C was never recovered in bicarbonate or methane. These results indicate that S. propionica does not degrade propionate via the methyl-malonyl-coenzyme A (CoA) pathway or any other of the known pathways, such as the acryloyl-CoA pathway or the reductive carboxylation pathway. Our results strongly suggest that propionate is dismutated to acetate and butyrate via a six-carbon intermediate.  相似文献   

19.
Rhodococcus sp. strain DN22 can convert hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to nitrite, but information on degradation products or the fate of carbon is not known. The present study describes aerobic biodegradation of RDX (175 μM) when used as an N source for strain DN22. RDX was converted to nitrite (NO2) (30%), nitrous oxide (N2O) (3.2%), ammonia (10%), and formaldehyde (HCHO) (27%), which later converted to carbon dioxide. In experiments with ring-labeled [15N]-RDX, gas chromatographic/mass spectrophotometric (GC/MS) analysis revealed N2O with two molecular mass ions: one at 44 Da, corresponding to 14N14NO, and the second at 45 Da, corresponding to 15N14NO. The nonlabeled N2O could be formed only from -NO2, whereas the 15N-labeled one was presumed to originate from a nitramine group (15N-14NO2) in RDX. Liquid chromatographic (LC)-MS electrospray analyses indicated the formation of a dead end product with a deprotonated molecular mass ion [M-H] at 118 Da. High-resolution MS indicated a molecular formula of C2H5N3O3. When the experiment was repeated with ring-labeled [15N]-RDX, the [M-H] appeared at 120 Da, indicating that two of the three N atoms in the metabolite originated from the ring in RDX. When [U-14C]-RDX was used in the experiment, 64% of the original radioactivity in RDX incorporated into the metabolite with a molecular weight (MW) of 119 (high-pressure LC/radioactivity) and 30% in 14CO2 (mineralization) after 4 days of incubation, suggesting that one of the carbon atoms in RDX was converted to CO2 and the other two were incorporated in the ring cleavage product with an MW of 119. Based on the above stoichiometry, we propose a degradation pathway for RDX based on initial denitration followed by ring cleavage to formaldehyde and the dead end product with an MW of 119.  相似文献   

20.
Eukaryotic elongation factor 1α (eEF-1A) is a multifunctional protein. There are three known posttranslational modifications of eEF-1A that could potentially affect its function. Except for phosphorylation, the other posttranslational modifications have not been demonstrated in plants. Using matrix-assisted laser desorption/ionization-mass spectrometry and peptide mass mapping, we show that carrot (Daucus carota L.) eEF-1A contains a phosphoglycerylethanolamine (PGE) posttranslational modification. eEF-1A was the only protein labeled with [14C]ethanolamine in carrot cells and was the predominant ethanolamine-labeled protein in Arabidopsis seedlings and tobacco (Nicotiana tabacum L.) cell cultures. In vivo-labeling studies using [3H]glycerol, [32P]Pi, [14C]myristic acid, and [14C]linoleic acid indicated that the entire phospholipid phosphatidylethanolamine is covalently attached to the protein. The PGE lipid modification did not affect the partitioning of eEF-1A in Triton X-114 or its actin-binding activity in in vitro assays. Our in vitro data indicate that this newly characterized posttranslational modification alone does not affect the function of eEF-1A. Therefore, the PGE lipid modification may work in combination with other posttranslational modifications to affect the distribution and the function of eEF-1A within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号