首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The beta-subunit of the mitochondrial F1-ATPase is synthesized as a precursor in the cytoplasm which is delivered through two bilayers bounding the mitochondria prior to its assembly with other proteins into a functional complex. In order to determine the role of the amino-terminal 50 residues of the precursor on its localization, maturation, and assembly, a set of deletions within this region of the ATP2 gene encoding the beta-subunit has been analyzed. These studies reveal that deletions between residue 10 of the F1 beta-presequence and residue 36 can still direct in vivo mitochondrial import and assembly of the mutant subunit into a functional complex. Deletions within ATP2 which contain less than the first 10 residues of the precursor are not imported. Thus, the extreme amino terminus (about half of the transient presequence) of the F1 beta-subunit can direct its mitochondrial import. The wild-type F1 beta-subunit precursor is matured by the matrix-located metalloprotease at Lys19-Gln20; however, small in-frame deletions up to 17 residues distal to this site fail to be matured either in vitro or in vivo. This nonmatured F1 beta-subunit is also assembled into a functional enzyme and supports growth of its host on a nonfermentable carbon source. These data indicate that maturation of the F1 beta-subunit precursor is dependent on a protein sequence located distal to the proteolytic maturation site which is distinct from the mitochondrial targeting sequence.  相似文献   

2.
S Ohta  G Schatz 《The EMBO journal》1984,3(3):651-657
The beta-subunit of mitochondrial ATPase is coded by a nuclear gene, synthesized outside the mitochondria as a larger precursor and imported into mitochondria. The beta-subunit precursor was purified from yeast, both as a homogeneous, unlabeled polypeptide and in radiochemically pure form. Both precursor preparations were cleaved to the mature beta-subunit by partially purified processing protease from the mitochondrial matrix. However, import of the radiochemically pure precursor into isolated yeast mitochondria required a cytosolic fraction from yeast or reticulocytes. The cytosolic factor was non-dialyzable and trypsin-sensitive; its apparent mol. wt. was approximately 40 000 as judged by gel filtration. Import of some proteins into mitochondria thus requires proteins of the 'soluble' cytoplasm.  相似文献   

3.
The transport of the F1-ATPase beta-subunit precursor into mitochondria is dependent upon a presequence at its amino terminus. Within the mitochondrial membrane translocation site the potential amphiphilic character of the presequence region may be necessary to stabilize binding to the mitochondrial inner membrane. To better understand its role in protein import, the interaction of the F1 beta-presequence with lipid membranes was measured using circular dichroism and surface tensiometry. These studies reveal that a 20-residue peptide containing the F1 beta-presequence binds to phospholipid vesicles (Kd = 4.5-6.0 x 10(-8)M and adopts a predominantly alpha-helical structure. Although the presequence peptide binds avidly to lipids, it does not appear to penetrate deeply into the bilayer to perturb a reporter probe in the membrane interior. Compared with the effect of the peptides with demonstrated membrane insertion and lytic properties, the F1-beta-presequence appears to displace phospholipid head groups but not insert deeply into the bilayer. High concentrations (greater than 50 microM) of presequence peptides are required to noticibly perturb import of the full length F1 alpha- or F1 beta-subunit precursors. Thus, the F1 beta-presequence alone is not sufficient to efficiently compete for import but may require a protein context or a minimal length to assist insertion into the transport site. These observations are discussed in light of the different requirements for import of various presequence containing precursors into mitochondria.  相似文献   

4.
In order to examine the influence of protein structure on the post-translational import of a protein into mitochondria, the carboxyl-terminal 129 residues of F1-ATPase beta-subunit precursor (511aa) have been replaced with 61 residues of yeast copper metallothionein. Import of the F1 beta-copper metallothionein (beta CuMT) hybrid into mitochondria was as efficient as that of the F1 beta precursor in the absence of copper. Addition of copper to mitochondrial import reactions, which had no significant effect on import of the F1 beta-subunit precursor, blocked import of the beta CuMT protein. This copper-dependent transport block for the beta CuMT precursor occurred after the precursor was bound to mitochondria. Expression of the beta CuMT protein in vivo revealed that beta CuMT would bind copper and allow growth of a copper-sensitive yeast host on an otherwise inhibitory level of the cation as long as it was localized in the cytoplasm. These data indicate that the binding of copper by beta CuMT renders it refractile for partial unfolding which is necessary for its translocation into mitochondria. These observations provide an alternative scheme for the selection of mutants defective in mitochondrial import.  相似文献   

5.
Studies with a synthetic presequence peptide, F1 beta 1-20, corresponding to the NH2-terminal 20 amino acids of the F1-ATPase beta-subunit precursor (pF1 beta) show that although this peptide binds avidly to phospholipid bi-layers it does not efficiently compete for import of full-length precursor into mitochondria, Ki approximately 100 microM (Hoyt, D.W., Cyr, D.M., Gierasch, L.M., and Douglas, M.G. (1991) J. Biol. Chem. 266, 21693-21699). Herein we report that longer F1 beta presequence peptides F1 beta 1-32 + 2, F1 beta 1-32SQ + 2, and F1 beta 21-51 + 3 compete for mitochondrial import at 1000-, 250-, and 25-fold lower concentrations, respectively, than F1 beta 1-20. A longer peptide, F1 beta 1-51 + 3, was no more effective as an import competitor than F1 beta 1-32 + 2. Both minimal length and amphiphilic character appear required in order for F1 beta peptides to block mitochondrial import. Import competition by longer F1 beta peptides seems to occur at a step common to all precursors since they blocked import of precursors to F1-ATPase alpha- and beta-subunits and the ADP/ATP carrier protein. Dissipation of membrane potential (delta psi) across the inner mitochondrial membrane is observed in the presence of F1 beta-peptides, but this mechanism alone does not account for the observed import inhibition. F1 beta 1-32 + 2 and 21-51 + 3 block import of pF1 beta 100% at peptide concentrations which dissipate delta psi less than 25%. In contrast, experiments with valinomycin demonstrate that when mitochondrial delta psi is reduced 25% import of pF1 beta is inhibited only 25%. Therefore, at least 75% of maximal import inhibition observed in the presence of F1 beta 1-32 + 2 and F1 beta 21-51 + 3 does not result from dissipation of delta psi. Import inhibition by F1 beta-peptides is reversible and can be overcome by increasing the amount of full-length precursor in import reactions. F1 beta presequence peptides and full-length precursor are therefore likely to compete for a common import step. Presequence dependent binding of pF1 beta to trypsin-sensitive elements on the outer mitochondrial membrane is insensitive to inhibitory concentrations of F1 beta presequence peptide. We conclude that import inhibition by F1 beta presequence peptides is competitive and occurs at a site beyond initial interaction of precursor proteins with mitochondria.  相似文献   

6.
Intracellular delivery of the mitochondrial F1-ATPase beta-subunit precursor from the cytoplasm into the matrix of mitochondria is prevented by deletion of its mitochondrial import signal, a basic amphipathic alpha-helix at its amino terminus. Using a complementation assay, we have selected spontaneous mutations which restore the correct in vivo localization of the protein containing the import signal deletion. Analysis of these mutations revealed that different functional surrogate mitochondrial targeting signals formed within a narrow region of the extreme amino terminus of the import signal deleted beta-subunit. These modifications specifically replace different acidic residues with neutral or basic residues to generate a less acidic amphipathic helix within a region of the protein which is accessible for interaction with the membrane surface. The observations of this study confirm the requirement for amphipathicity as part of the mitochondrial import signal and suggest how mitochondrial targeting signals may have evolved within the extreme amino terminus of mitochondrial proteins.  相似文献   

7.
The requirements for protein import into mitochondria was investigated by using the targeting signal of the F(A)d subunit of soybean mitochondrial ATP synthase attached to two different passenger proteins, its native passenger and soybean alternative oxidase. Both passenger proteins are soybean mitochondrial proteins. Changing hydrophobic residues at positions -24:25 (Phe:Leu), -18:19 (Ile:Leu) and -12:13 (Leu:Ile) of the 31 amino acid cleavable presequence gave more than 50% inhibition of import with both passenger proteins. Some other residues in the targeting signal played a more significant role in targeting of one passenger protein compared to another. Notably changing positive residues (Arg, Lys) had a greater inhibitory affect on import with the native passenger protein, i.e. greater inhibition of import with F(A)d mature protein was observed compared to when alternative oxidase was the mature protein. When using chimeric passenger proteins it was shown that the nature of the mature protein can greatly affect the targeting properties of the presequence. In vivo investigations of the targeting presequence indicated that the presequence of 31 amino acids could not support import of GFP as a passenger protein. However, fusion of the full-length F(A)d coding sequence to GFP did result in mitochondrial localisation of GFP. Using the latter fusion we confirmed the critical role of hydrophobic residues at positions -24:25 and -18:19. These results support the proposal that core mitochondrial targeting features exist in all presequences, but that additional features exist. These features may not be evident with all passenger proteins.  相似文献   

8.
The yeast nuclear gene ATP2 encodes a F1-ATPase beta-subunit protein of 509 amino acids with a predicted mass of 54,575 daltons. In contrast to the ATPase beta-subunit proteins determined previously from Escherichia coli and various plant sources, the yeast mitochondrial precursor peptide contains a unique cysteine residue within its immediate amino terminus. Expression of an in-frame deletion in ATP2 between residues 28 and 34 to eliminate this single cysteine residue located near the processing site of the matrix protease does not prevent the in vivo delivery of the subunit to mitochondria or its assembly into a functional ATPase complex. Thus, the import F1 beta-subunit into mitochondria does not require a covalent modification of the type utilized for the secretion of the major lipoprotein from E. coli. In addition, analysis of the level of the major F1-ATPase subunits in mitochondria prepared from an atp2- disruption mutant demonstrates that the in vivo import of these catalytic subunits is not dependent on each other. These data and additional studies, therefore, suggest that the determinants for mitochondrial delivery reside within the amino terminus of the individual precursors.  相似文献   

9.
Previous studies on mitochondrial targeting presequences have indicated that formation of an amphiphillic helix may be required for efficient targeting of the precursor protein into mitochondria, but the structural details are not well understood. We have used CD and NMR spectroscopy to characterize in detail the structure of a synthetic peptide corresponding to the presequence for the beta-subunit of F1-ATPase, a mitochondrial matrix protein. Although this peptide is essentially unstructured in water, alpha-helix formation is induced when the peptide is placed in structure-promoting environments, such as SDS micelles or aqueous trifluoroethanol (TFE). In 50% TFE (by volume), the peptide is in dynamic equilibrium between random coil and alpha-helical conformations, with a significant population of alpha-helix throughout the entire peptide. The helix is somewhat more stable in the N-terminal part of the presequence (residues 4-10), and this result is consistent with the structure proposed previously for the presequence of another mitochondrial matrix protein, yeast cytochrome oxidase subunit IV. Addition of increasing amounts of TFE causes the alpha-helical content to increase even further, and the TFE titration data for the presequence peptide of the F1-ATPase beta-subunit are not consistent with a single, cooperative transition from random coil to alpha-helix. There is evidence that helix formation is initiated in two different regions of the peptide. This result helps to explain the redundancy of the targeting information contained in the presequence for the F1-ATPase beta-subunit.  相似文献   

10.
To analyze the role of cytosolic cofactors in mitochondrial protein targeting, we prepared a chemically pure mitochondrial preprotein. When diluted out of 7 M urea, this precursor protein was efficiently imported into mitochondria without the addition of cytosolic cofactors. Extensive prewashing of mitochondria (up to 2 M KCl) did not reduce its import. Import of the purified precursor showed the characteristics of authentic mitochondrial import including use of the receptor MOM19, requirement for a membrane potential, and proteolytic processing. When the precursor was preincubated at a low concentration of urea, cytosolic cofactors were needed to preserve its import competence. We conclude that targeting of this preprotein via the mitochondrial master receptor MOM19 does not require a cytosolic signal recognition factor; cytosolic cofactors apparently have chaperone-like functions in mitochondrial protein uptake. Moreover, we found that a cleavable presequence was sufficient to direct protein import via MOM19. Together with the cofactor-independent function of MOM19, it is thus conceivable that MOM19 functions as mitochondrial presequence receptor.  相似文献   

11.
A protein having a molecular mass of 52 kDa was purified to homogeneity from solubilized mitochondrial membrane proteins by affinity column chromatography using the synthetic presequence of ornithine aminotransferase (OAT) as the ligand. This 52 kDa protein was specifically bound to the affinity column and eluted with 1 mM OAT-presequence, indicating that it recognized the presequence and bound to it specifically. Anti-52 kDa protein Fab fragments specifically inhibited the import of OAT-precursor into mitochondria, showing that the 52 kDa protein plays an essential role in this process. These results suggest that 52 kDa protein is a component of the import machinery of the mitochondrial protein-precursor in the mitochondrial membrane.  相似文献   

12.
The mitochondrial import and assembly of the F1ATPase subunits requires, respectively, the participation of the molecular chaperones hsp70SSA1 and hsp70SSC1 and other components operating on opposite sides of the mitochondrial membrane. In previous studies, both the homology and the assembly properties of the F1ATPase alpha-subunit (ATP1p) compared to the groEL homologue, hsp60, have led to the proposal that this subunit could exhibit chaperone-like activity. In this report the extent to which this subunit participates in protein transport has been determined by comparing import into mitochondria that lack the F1ATPase alpha-subunit (delta ATP1) versus mitochondria that lack the other major catalytic subunit, the F1ATPase beta-subunit (delta ATP2). Yeast mutants lacking the alpha-subunit but not the beta-subunit grow much more slowly than expected on fermentable carbon sources and exhibit delayed kinetics of protein import for several mitochondrial precursors such as the F1 beta subunit, hsp60MIF4 and subunits 4 and 5 of the cytochrome oxidase. In vitro and in vivo the F1 beta-subunit precursor accumulates as a translocation intermediate in absence of the F1 alpha-subunit. In the absence of both the ATPase subunits yeast grows at the same rate as a strain lacking only the beta-subunit, and import of mitochondrial precursors is restored to that of wild type. These data indicate that the F1 alpha-subunit likely functions as an "assembly partner" to influence protein import rather than functioning directly as a chaperone. These data are discussed in light of the relationship between the import and assembly of proteins in mitochondria.  相似文献   

13.
A deletion and mutagenesis study was performed on the mitochondrial presequence of the beta-subunit of the F(1)-ATP synthase from Nicotiana plumbaginifolia linked to the green fluorescent protein (GFP). The various constructs were tested in vivo by transient expression in tobacco protoplasts. GFP distribution in transformed cells was analysed in situ by confocal microscopy, and in vitro in subcellular fractions by Western blotting. Despite its being highly conserved in different species, deletion of the C-terminal region (residues 48-54) of the presequence did not affect mitochondrial import. Deletion of the conserved residues 40-47 and the less conserved intermediate region (residues 18-39) resulted in 60% reduction in GFP import, whereas mutation of conserved residues within these regions had little effect. Further shortening of the presequence progressively reduced import, with the construct retaining the predicted N-terminal amphiphilic alpha-helix (residues 1-12) being unable to mediate mitochondrial import. However, point mutation showed that this last region plays an important role through its basic residues and amphiphilicity, but also through its hydrophobic residues. Replacing Arg4 and Arg5 by alanine residues and shifting the Arg5 and Leu6 (in order to disturb amphiphilicity) resulted in reduction of the presequence import efficiency. The most dramatic effects were seen with single or double mutations of the four Leu residues (positions 5, 6, 10 and 11), which resulted in marked reduction or abolition of GFP import, respectively. We conclude that the N-terminal helical structure of the presequence is necessary but not sufficient for efficient mitochondrial import, and that its hydrophobic residues play an essential role in in vivo mitochondrial targeting.  相似文献   

14.
Mitochondrial ATP synthase (F1Fo-ATPase) catalyzes the terminal step of oxidative phosphorylation. In this paper, we demonstrate the functional expression of the hexahistidine-tagged beta-subunit of yeast ATP synthase and the purification of the F1-ATPase from yeast cells. A gene encoding the beta-subunit from Saccharomyces cerevisiae was modified to encode a protein of which the original N-terminus import signal sequence was replaced by a sequence containing the import signal sequence of a mitochondrial ATPase inhibitor, its processing site, and six consecutive histidines. Expression of the modified gene generated a functional F1Fo complex in host yeast cells lacking a functional copy of the endogenous ATP2 gene, as judged by growth of rescued cells on lactate medium. F1 was extracted from the yeast mitochondria by chloroform treatment and purified by immobilized metal affinity chromatography and gel filtration chromatography. The specific activity of the purified F1 was comparable to that of the wild-type enzyme, and the F1 contained all of the 5 known subunits (alpha, beta, gamma, delta, and epsilon). Moreover, the activity of the F1 was completely inhibited by the specific ATPase inhibitor protein, IF1. These results indicate that F1 containing the tagged beta-subunit is fully assembled and active. The application of this novel procedure simplifies the number of steps required for the isolation of F1 used for studying the molecular mechanism of catalysis and regulation of the enzyme.  相似文献   

15.
Many nuclear-coded mitochondrial proteins are synthesized as larger precursor polypeptides that are proteolytically processed during import into the mitochondrion. This processing appears to be catalyzed by a soluble, metal-dependent protease localized in the mitochondrial matrix. In this report we employ an in vitro system to investigate the role of processing in protein import. Intact Neurospora crassa mitochondria were incubated with radiolabeled precursors in the presence of the chelator o-phenanthroline. Under these conditions, the processing of the precursors of the beta-subunit of F1-ATPase (F1 beta) and subunit 9 of the F0F1-ATPase was strongly inhibited. Protease-mapping studies indicated that import of the precursor proteins into the mitochondria continued in the absence of processing. Upon readdition of divalent metal to the treated mitochondria, the imported precursors were quantitatively converted to their mature forms. This processing of imported precursors occurred in the absence of a mitochondrial membrane potential and was extremely rapid even at 0 degrees C. This suggests that all or part of the polypeptide chain of the imported precursors had been translocated into the matrix location of the processing enzyme. Localization experiments suggested that the precursor to F1 beta is peripherally associated with the mitochondrial membrane while the precursor to subunit 9 appeared to be tightly bound to the membrane. We conclude that proteolytic processing is not necessary for the translocation of precursor proteins across mitochondrial membranes, but rather occurs subsequent to this event. On the basis of these and other results, a hypothetical pathway for the import of F1 beta and subunit 9 is proposed.  相似文献   

16.
Post-translational import of the F1-ATPase beta-subunit precursor into isolated mitochondria requires both an energized inner membrane and nucleoside triphosphate hydrolysis on the organelle surface. Nested internal deletions of the F1 beta-precursor which progressively move a 128-residue carboxyl-terminal domain of the protein closer to the amino terminus reveal an abrupt transition between residues 122 and 144 to a form of the protein which is imported in the absence of added ATP. This transition region of the F1 beta-precursor is the same sequence which we have defined in earlier studies is required for formation of a tetramer following in vitro translation of the F1 beta-precursor. These data indicate that part of the requirement for ATP in the import of mitochondrial precursors may be involved in the reorganization of oligomeric species on the membrane surface which are formed following their translation.  相似文献   

17.
The receptor protein for the mitochondrial protein precursor synthesized in the cytosol was extensively purified from the mitochondrial membrane fraction by affinity column chromatography using a synthetic peptide containing the extrapeptide of ornithine aminotransferase as a ligand. The purified fraction contained two major proteins with molecular masses of 52 and 29 kDa. Of these proteins, only the 29 kDa protein bound to the extrapeptide of ornithine aminotransferase. Furthermore, anti-29 kDa protein Fab fragments inhibited the import of pre-ornithine aminotransferase into mitochondria, suggesting that the 29 kDa protein plays an essential role in the process of import of the mitochondrial protein precursor.  相似文献   

18.
The NH2 terminus of the yeast F1-ATPase beta subunit precursor directs the import of this protein into mitochondria. To define the functionally important components of this import signal, oligonucleotide-directed mutagenesis was used to introduce a series of deletion and missense mutations into the gene encoding the F1-beta subunit precursor. Among these mutations were three nonoverlapping deletions, two within the 19-amino-acid presequence (delta 5-12 and delta 16-19) and one within the mature protein (delta 28-34). Characterization of the mitochondrial import properties of various mutant F1-beta subunit proteins containing different combinations of these deletions showed that import was blocked only when all three deletions were combined. Mutant proteins containing all possible single and pairwise combinations of these deletions were found to retain the ability to direct mitochondrial import of the F1-beta subunit. These data suggest that the F1-beta subunit contains redundant import information at its NH2 terminus. In fact, we found that deletion of the entire F1-beta subunit presequence did not prevent import, indicating that a functional mitochondrial import signal is present near the NH2 terminus of the mature protein. Furthermore, by analyzing mitochondrial import of the various mutant proteins in [rho-] yeast, we obtained evidence that different segments of the F1-beta subunit import signal may act in an additive or cooperative manner to optimize the import properties of this protein.  相似文献   

19.
Mitochondrial import of the human chaperonin (HSP60) protein   总被引:5,自引:0,他引:5  
The mitochondrial import of a member of the "chaperonin" group of proteins which play an essential role in the import of protein into organelles and their subsequent proper folding has been examined. The cDNA for human hsp60 (synonyms: GroEL homolog, P1) was transcribed and translated in vitro and its import into isolated rat heart mitochondria examined. The protein was converted into a mature form of lower molecular mass (= 58 kDa) which was resistant to trypsin treatment. The import of human hsp60 into mitochondria was inhibited in the presence of an uncoupler and also no import occurred when the N-terminal presequence was lacking. These results indicate that the chaperonin protein(s) are transported into mitochondria by a process similar to other imported mitochondrial proteins. Our results also indicate that although the P1 protein precursor was efficiently imported into mitochondria, in comparison to precursors of other mitochondrial proteins (viz. ornithine carbamoyltransferase and uncoupling protein) much less binding of pre P1 to mitochondria was observed. The significance of this latter observation at present is unclear.  相似文献   

20.
We have isolated a cDNA clone encoding the precursor of the beta-subunit of the bovine heart mitochondrial F1-ATPase. Two probes were used to isolate this precursor from a bovine heart cDNA library. One probe was a mixed-sequence oligonucleotide directed against a portion of the amino acid sequence of the mature protein, and the other probe was the F1-ATPase beta-subunit gene from Saccharomyces cerevisiae. Determination of the nucleotide sequence of this cDNA reveals that it contains a 1584-nucleotide-long open reading frame that encodes the complete mature beta-subunit protein and a 48 amino acid long NH2-terminal extension. This amino-terminal presequence contains four basic arginine residues, one acidic glutamic acid residue, four polar uncharged serine residues, and five proline residues. Southern blot hybridization analyses suggest that the bovine F1-ATPase beta-subunit precursor is encoded by a single genetic locus. RNA blot hybridization analyses reveal a single mRNA species of approximately 1.9 kilobases from both bovine liver and heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号