首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 584 毫秒
1.
Structure-activity relationships for the A-region in a series of N-4-t-butylbenzyl 2-(4-methylsulfonylaminophenyl) propanamides as TRPV1 antagonists have been investigated. Among them, the 3-fluoro analogue 54 showed high binding affinity and potent antagonism for both rTRPV1 and hTRPV1 in CHO cells. Its stereospecific activity was demonstrated with marked selectivity for the (S)-configuration (54S versus 54R). A docking study of 54S with our hTRPV1 homology model highlighted crucial hydrogen bonds between the ligand and the receptor contributing to its potency.  相似文献   

2.
The TRPV1 ion channel serves as an integrator of noxious stimuli with its activation linked to pain and neurogenic inflammation. Cholesterol, a major component of cell membranes, modifies the function of several types of ion channels. Here, using measurements of capsaicin-activated currents in excised patches from TRPV1-expressing HEK cells, we show that enrichment with cholesterol, but not its diastereoisomer epicholesterol, markedly decreased wild-type rat TRPV1 currents. Substitutions in the S5 helix, rTRPV1-R579D, and rTRPV1-F582Q, decreased this cholesterol response and rTRPV1-L585I was insensitive to cholesterol addition. Two human TRPV1 variants, with different amino acids at position 585, had different responses to cholesterol with hTRPV1-Ile(585) being insensitive to this molecule. However, hTRPV1-I585L was inhibited by cholesterol addition similar to rTRPV1 with the same S5 sequence. In the absence of capsaicin, cholesterol enrichment also inhibited TRPV1 currents induced by elevated temperature and voltage. These data suggest that there is a cholesterol-binding site in TRPV1 and that the functions of TRPV1 depend on the genetic variant and membrane cholesterol content.  相似文献   

3.
The vanilloid receptor 1 (VR1 or TRPV1) ion channel is activated by noxious heat, low pH and by a variety of vanilloid-related compounds. The antagonist, capsazepine is more effective at inhibiting the human TRPV1 response to pH 5.5 than the rat TRPV1 response to this stimulus. Mutation of rat TRPV1 at three positions in the S3 to S4 region, to the corresponding human amino acid residues I514M, V518L, and M547L decreased the IC(50) values for capsazepine inhibition of the pH 5.5 response from >10,000 nm to 924 +/- 241 nm in [Ca(2+)](i) assays and increased capsazepine inhibition of the capsaicin response to levels seen for human TRPV1. We have previously noted that phorbol 12-phenylacetate 13-acetate 20-homovanillate (PPAHV) is a strong agonist of rat TRPV1 but not human TRPV1 in [Ca(2+)](i) assays (1). Mutation of methionine 547 in S4 of rat TRPV1 to leucine, found in human TRPV1 (M547L), reduced the ability of PPAHV to activate TRPV1 by approximately 20-fold. The reciprocal mutation of human TRPV1 (L547M) enabled the human receptor to respond to PPAHV. These mutations did not significantly affect the agonist activity of capsaicin, resiniferatoxin (RTX) or olvanil in [Ca(2+)](i) assays. Introducing the equivalent mutation into guinea pig TRPV1 (L549M) increased the agonist potency of PPAHV by > 10-fold in the [Ca(2+)](i) assay and increased the amplitude of the evoked current. The rat M547L mutation reduced the affinity of RTX binding. Thus, amino acids within the S2-S4 region are important sites of agonist and antagonist interaction with TRPV1.  相似文献   

4.
Vanilloid receptor 1 (TRPV1), a membrane-associated cation channel, is activated by the pungent vanilloid from chili peppers, capsaicin, and the ultra potent vanilloid from Euphorbia resinifera, resiniferatoxin (RTX), as well as by physical stimuli (heat and protons) and proposed endogenous ligands (anandamide, N-arachidonyldopamine, N-oleoyldopamine, and products of lipoxygenase). Only limited information is available in TRPV1 on the residues that contribute to vanilloid activation. Interestingly, rabbits have been suggested to be insensitive to capsaicin and have been shown to lack detectable [(3)H]RTX binding in membranes prepared from their dorsal root ganglia. We have cloned rabbit TRPV1 (oTRPV1) and report that it exhibits high homology to rat and human TRPV1. Like its mammalian orthologs, oTRPV1 is selectively expressed in sensory neurons and is sensitive to protons and heat activation but is 100-fold less sensitive to vanilloid activation than either rat or human. Here we identify key residues (Met(547) and Thr(550)) in transmembrane regions 3 and 4 (TM3/4) of rat and human TRPV1 that confer vanilloid sensitivity, [(3)H]RTX binding and competitive antagonist binding to rabbit TRPV1. We also show that these residues differentially affect ligand recognition as well as the assays of functional response versus ligand binding. Furthermore, these residues account for the reported pharmacological differences of RTX, PPAHV (phorbol 12-phenyl-acetate 13-acetate 20-homovanillate) and capsazepine between human and rat TRPV1. Based on our data we propose a model of the TM3/4 region of TRPV1 bound to capsaicin or RTX that may aid in the development of potent TRPV1 antagonists with utility in the treatment of sensory disorders.  相似文献   

5.
The transient receptor potential (TRP) vanilloid receptor subtype 1 (TRPV1) is a ligand-gated, Ca(2+)-permeable ion channel in the TRP superfamily of channels. We report the establishment of the first neuronal model expressing recombinant human TRPV1 (SH-SY5Y(hTRPV1)). SH-SY5Y human neuroblastoma cells were stably transfected with hTRPV1 using the Amaxa Biosystem (hTRPV1 in pIREShyg2 with hygromycin selection). Capsaicin, olvanil, resiniferatoxin and the endocannabinoid anandamide increased [Ca(2+)](i) with potency (EC(50)) values of 2.9 nmol/L, 34.7 nmol/L, 0.9 nmol/L and 4.6 micromol/L, respectively. The putative endovanilloid N-arachidonoyl-dopamine increased [Ca(2+)](i) but this response did not reach a maximum. Capsaicin, anandamide, resiniferatoxin and olvanil mediated increases in [Ca(2+)](i) were inhibited by the TRPV1 antagonists capsazepine and iodo-resiniferatoxin with potencies (K(B)) of approximately 70 nmol/L and 2 nmol/L, respectively. Capsaicin stimulated the release of pre-labelled [(3)H]noradrenaline from monolayers of SH-SY5Y(hTRPV1) cells with an EC(50) of 0.6 nmol/L indicating amplification between [Ca(2+)](i) and release. In a perfusion system, we simultaneously measured [(3)H]noradrenaline release and [Ca(2+)](i) and observed that increased [Ca(2+)](i) preceded transmitter release. Capsaicin treatment also produced a cytotoxic response (EC(50) 155 nmol/L) that was antagonist-sensitive and mirrored the [Ca(2+)](I) response. This model displays pharmacology consistent with TRPV1 heterologously expressed in standard non-neuronal cells and native neuronal cultures. The advantage of SH-SY5Y(hTRPV1) is the ability of hTRPV1 to couple to neuronal biochemical machinery and produce large quantities of cells.  相似文献   

6.
The structure-activity relationships of N-(3-acyloxy-2-benzylpropyl)-N'-4-[(methylsulfonylamino)benzyl] thioureas, which represent simplified RTX-based vanilloids, were investigated by varying the distances between the four principal pharmacophores and assessing binding and antagonistic activity on rTRPV1. The analysis indicated that a 3-pivaloyloxy-2-benzylpropyl C-region conferred the best potency in binding affinity and antagonism. The molecular modeling of this best template with the tetrameric homology model of rTRPV1 was performed to identify its binding interactions with the receptor.  相似文献   

7.
The present study examined the expression of transient receptor potential vanilloid subtype 1 (TRPV1) in microglia, and its association with microglial cell death. In vitro cell cultures, RT-PCR, Western blot analysis, and immunocytochemical staining experiments revealed that rat microglia and a human microglia cell line (HMO6) showed TRPV1 expression. Furthermore, exposure of these cells to TRPV1 agonists, capsaicin (CAP) and resiniferatoxin (RTX), triggered cell death. This effect was ameliorated by the TRPV1 antagonists, capsazepine and iodo-resiniferatoxin (I-RTX), suggesting that TRPV1 is directly involved. Further examinations revealed that TRPV1-induced toxicity was accompanied by increases in intracellular Ca(2+), and mitochondrial damage; these effects were inhibited by capsazepine, I-RTX, and the intracellular Ca(2+) chelator BAPTA-AM. Treatment of cells with CAP or RTX led to increased mitochondrial cytochrome c release and enhanced immunoreactivity to cleaved caspase-3. In contrast, the caspase-3 inhibitor z-DEVD-fmk protected microglia from CAP- or RTX-induced toxicity. In vivo, we also found that intranigral injection of CAP or 12-hydroperoxyeicosatetraenoic acid, an endogenous agonist of TRPV1, into the rat brain produced microglial damage via TRPV1 in the substantia nigra, as visualized by immunocytochemistry. To our knowledge, this study is the first to demonstrate that microglia express TRPV1, and that activation of this receptor may contribute to microglial damage via Ca(2+) signaling and mitochondrial disruption.  相似文献   

8.
After short preincubations with N-[(3)H]methylscopolamine ([(3)H]NMS) or R(-)-[(3)H]quinuclidinyl benzilate ([(3)H]QNB), radioligand dissociation from muscarinic M(1) receptors in Chinese hamster ovary cell membranes was fast, monoexponential, and independent of the concentration of unlabeled NMS or QNB added to reveal dissociation. After long preincubations, the dissociation was slow, not monoexponential, and inversely related to the concentration of the unlabeled ligand. Apparently, the unlabeled ligand becomes able to associate with the receptor simultaneously with the already bound radioligand if the preincubation lasts for a long period, and to hinder radioligand dissociation. When the membranes were preincubated with [(3)H]NMS and then exposed to benzilylcholine mustard (covalently binding specific ligand), [(3)H]NMS dissociation was blocked in wild-type receptors, but not in mutated (D99N) M(1) receptors. Covalently binding [(3)H]propylbenzilylcholine mustard detected substantially more binding sites than [(3)H]NMS. The observations support a model in which the receptor binding domain has two tandemly arranged subsites for classical ligands, a peripheral one and a central one. Ligands bind to the peripheral subsite first (binding with lower affinity) and translocate to the central subsite (binding with higher affinity). The peripheral subsite of M(1) receptors may include Asp-99. Experimental data on [(3)H]NMS and [(3)H]QNB association and dissociation perfectly agree with the predictions of the tandem two-site model.  相似文献   

9.
Clathrin-coated vesicles purified from bovine brain express adenosine A1 receptor binding activity. N6-Cyclohexyl[3H]adenosine [( 3H]CHA), an agonist for the A1 receptor, binds specifically to coated vesicles. High and low agonist affinity states of the receptor for the radioligand [3H]CHA with KD values of 0.18 and 4.4 nM, respectively, were detected. The high purity of coated vesicles was established by assays for biochemical markers and by electron microscopy. Binding competition experiments using agonists (N6CHA, N-cyclopentyladenosine, 5'-(N-ethylcarboxamido)adenosine, and N6-[(R)- and N6-[(S)-phenylisopropyl]adenosine) and antagonists (theophylline, 3-isobutyl-1-methylxanthine, and caffeine) confirmed the typical adenosine A1 nature of the binding site. This binding site presents stereospecificity for N6-phenylisopropyladenosine, showing 33 times more affinity for N6-[(R)- than for N6-[(S)-phenylisopropyl]adenosine. The specific binding of [3H]CHA in coated vesicles is regulated by guanine nucleotides. [3H]CHA specific binding was decreased by 70% in the presence of the hydrolysis-resistant GTP analogue guanyl-5-yl-imidodiphosphate. Bovine brain coated vesicles present adenylate cyclase activity. This activity was modulated by forskolin and CHA. The results of this study support the evidence that adenosine A1 receptors present in coated vesicles are coupled to adenylate cyclase activity through a Gi protein.  相似文献   

10.
To identify binding domains in a ligand-gated ion channel for etomidate, an intravenous general anesthetic, we photolabeled nicotinic acetylcholine receptor (nAChR)-rich membranes from Torpedo electric organ with a photoactivatable analog, [(3)H]azietomidate. Based upon the inhibition of binding of the noncompetitive antagonist [(3)H]phencyclidine, azietomidate and etomidate bind with 10-fold higher affinity to nAChRs in the desensitized state (IC(50) = 70 microm) than in the closed channel state. In addition, both drugs between 0.1 and 1 mm produced a concentration-dependent enhancement of [(3)H]ACh equilibrium binding affinity, but they inhibited binding at higher concentrations. UV irradiation resulted in preferential [(3)H]azietomidate photoincorporation into the nAChR alpha and delta subunits. Photolabeled amino acids in both subunits were identified in the ion channel domain and in the ACh binding sites by Edman degradation. Within the nAChR ion channel in the desensitized state, there was labeling of alphaGlu-262 and deltaGln-276 at the extracellular end and deltaSer-258 and deltaSer-262 toward the cytoplasmic end. Within the acetylcholine binding sites, [(3)H]azietomidate photolabeled alphaTyr-93, alphaTyr-190, and alphaTyr-198 in the site at the alpha-gamma interface and deltaAsp-59 (but not the homologous position, gammaGlu-57). Increasing [(3)H]azietomidate concentration from 1.8 to 150 microm increased the efficiency of incorporation into amino acids within the ion channel by 10-fold and in the ACh sites by 100-fold, consistent with higher affinity binding within the ion channel. The state dependence and subunit selectivity of [(3)H]azietomidate photolabeling are discussed in terms of the structures of the nAChR transmembrane and extracellular domains.  相似文献   

11.
In order to assess the individual effects of each of the 3-methyl groups in residue 2 of [D-Pen2, D-Pen5]enkephalin on binding affinity to mu and delta opioid receptors, (2S,3S)methylcysteine ((3S)Me-D-Cys) and (2S,3R)methylcysteine ((3R)Me-D-Cys) were synthesized and incorporated into the analogs, [(3S)Me-D-Cys2, D-Pen5] enkephalin and [(3R)Me-D-Cys2, D-Pen5]enkephalin. Of these analogs, [(3S)Me-D-Cys2, D-Pen5]enkephalin appears from 1H n.m.r. spectra to assume a conformation similar to those of [D-Pen2, D-Pen5]enkephalin and the less delta receptor-selective, but more potent, [D-Cys2, D-Pen5]enkephalin. Assessment of binding affinity to mu and delta receptors revealed that [(3S)Me-D-Cys2, D-Pen5]enkephalin exhibits delta receptor affinity intermediate between [D-Pen2, D-Pen5]enkephalin and [D-Cys2, D-Pen5]enkephalin while its mu receptor affinity is similar to that of [D-Cys2, D-Pen5]enkephalin. These results suggest that, for [D-Pen2, D-Pen5]enkephalin, adverse steric interactions between the D-Pen2 pro-R methyl group and the mu receptor binding site lead to the low mu receptor binding affinity observed for this analog. By contrast, both the pro-R and pro-S D-Pen2 methyl groups lead to minor steric interactions which contribute to the somewhat lower delta receptor affinity of this compound.  相似文献   

12.
[(3)H](2S,4R)-4-Methylglutamate ([(3)H]4MG), used previously as a ligand for low-affinity kainate receptors, was employed to establish a binding assay for glutamate transporters (GluTs), as 4MG has also been shown to have affinity for the glial GluTs, GLT1 and GLAST. In rat brain membrane homogenates in the presence of Na(+) ions at 4 degrees C, specific binding of [(3)H]4MG was rapid and saturable (t(1/2) approximately 15 min), representing > 90% of total binding. Dissociation of [(3)H]4MG occurred in a biphasic manner, however, saturation studies and Scatchard analysis indicated a single site of binding (n(H) = 0.85) and a K(d) of 6.2 +/- 0.8 microM with a B(max) of 111.8 +/- 23.8 pmol/mg protein. Specific binding of [(3)H]4MG was Na(+)-dependent and inhibited by K(+) and HCO(3-). Pharmacological inhibition with compounds acting at GluTs revealed that Glu, D- and L-aspartate, L-serine-O-sulfate and Ltrans-pyrrolidine-2,4-dicarboxylate fully displaced specific binding. Drugs having preferential affinity for GLT1, kainate, dihydrokainate and Lthreo-3-methylglutamate, all inhibited approximately 40% of specific binding. The inhibition pattern of L-serine-O-sulfate in the presence of a saturating concentration of dihydrokainate was suggestive of [(3)H]4MG also labelling GLAST. 6-Cyano-7-nitroquinoxaline, a kainate receptor antagonist, and a range of Glu receptor agonists and antagonists failed to significantly inhibit [(3)H]4MG binding. The pharmacological profile of binding of [(3)H]4MG resembled that found for [(3)H]D-aspartate, a ligand specific for GluTs, reinforcing the hypothesis that [(3)H]4MG was labelling GluTs in this assay. Together, these data illustrate the development of an efficient, economic binding assay that is suitable for the characterization of different subtypes of GLuTs.  相似文献   

13.
The gamma-aminobutyric acid type A receptor (GABA(A)R) carries both high (K(D) = 10-30 nm) and low (K(D) = 0.1-1.0 microm) affinity binding sites for agonists. We have used site-directed mutagenesis to identify a specific residue in the rat beta2 subunit that is involved in high affinity agonist binding. Tyrosine residues at positions 62 and 74 were mutated to either phenylalanine or serine and the effects on ligand binding and ion channel activation were investigated after the expression of mutant subunits with wild-type alpha1 and gamma2 subunits in tsA201 cells or in Xenopus oocytes. None of the mutations affected [(3)H]Ro15-4513 binding or impaired allosteric interactions between the low affinity GABA and benzodiazepine sites. Although mutations at position 74 had little effect on [(3)H]muscimol binding, the Y62F mutation decreased the affinity of the high affinity [(3)H]muscimol binding sites by approximately 6-fold, and the Y62S mutation led to a loss of detectable high affinity binding sites. After expression in oocytes, the EC(50) values for both muscimol and GABA-induced activation of Y62F and Y62S receptors were increased by 2- and 6-fold compared with the wild-type. We conclude that Tyr-62 of the beta subunit is an important determinant for high affinity agonist binding to the GABA(A) receptor.  相似文献   

14.
The endogenous C18 N-acylethanolamines (NAEs) N-linolenoylethanolamine (18:3 NAE), N-linoleoylethanolamine (18:2 NAE), N-oleoylethanolamine (18:1 NAE), and N-stearoylethanolamine (18:0 NAE) are structurally related to the endocannabinoid anandamide (20:4 NAE), but these lipids are poor ligands at cannabinoid CB(1) receptors. Anandamide is also an activator of the transient receptor potential (TRP) vanilloid 1 (TRPV(1)) on primary sensory neurons. Here we show that C18 NAEs are present in rat sensory ganglia and vascular tissue. With the exception of 18:3 NAE in rat sensory ganglia, the levels of C18 NAEs are equal to or substantially exceed those of anandamide. At submicromolar concentrations, 18:3 NAE, 18:2 NAE, and 18:1 NAE, but not 18:0 NAE and oleic acid, activate native rTRPV(1) on perivascular sensory nerves. 18:1 NAE does not activate these nerves in TRPV(1) gene knock-out mice. Only the unsaturated C18 NAEs elicit whole cell currents and fluorometric calcium responses in HEK293 cells expressing hTRPV(1). Molecular modeling revealed a low energy cluster of U-shaped unsaturated NAE conformers, sharing several pharmacophoric elements with capsaicin. Furthermore, one of the two major low energy conformational families of anandamide also overlaps with the cannabinoid CB(1) receptor ligand HU210, which is in line with anandamide being a dual activator of TRPV(1) and the cannabinoid CB(1) receptor. This study shows that several endogenous non-cannabinoid NAEs, many of which are more abundant than anandamide in rat tissues, activate TRPV(1) and thus may play a role as endogenous TRPV(1) modulators.  相似文献   

15.
On the basis of the previous lead N-4-t-butylbenzyl 2-(3-fluoro-4-methylsulfonylaminophenyl) propanamide (3) as a potent TRPV1 antagonist, structure-activity relationships for the B (propanamide part) and C-region (4-t-butylbenzyl part) have been investigated for rTRPV1 in CHO cells. The B-region was modified with dimethyl, cyclopropyl and reverse amides and then the C-region was replaced with 4-substituted phenyl, aryl alkyl and diaryl alkyl derivatives. Among them, compound 50 showed high binding affinity with K(i)=21.5nM, which was twofold more potent than 3 and compound 54 exhibited potent antagonism with K(i(ant))=8.0nM comparable to 3.  相似文献   

16.
Transient receptor potential vanilloid subtype I (TRPV1) is a thermosensory ion channel that is also gated by chemical substances such as vanilloids. Adjacent to the channel gate, this polymodal thermoTRP channel displays a TRP domain, referred to as AD1, that plays a role in subunit association and channel gating. Previous studies have shown that swapping the AD1 in TRPV1 with the cognate from the TRPV2 channel (AD2) reduces protein expression and produces a nonfunctional chimeric channel (TRPV1-AD2). Here, we used a stepwise, sequential, cumulative site-directed mutagenesis approach, based on rebuilding the AD1 domain in the TRPV1-AD2 chimera, to unveil the minimum number of amino acids needed to restore protein expression and polymodal channel activity. Unexpectedly, we found that virtually full restitution of the AD1 sequence is required to reinstate channel expression and responses to capsaicin, temperature, and voltage. This strategy identified E692, R701, and T704 in the TRP domain as important for TRPV1 activity. Even conservative mutagenesis at these sites (E692D/R701K/T704S) impaired channel expression and abolished TRPV1 activity. However, the sole mutation of these positions in the TRPV1-AD2 chimera (D692E/K701R/S704T) was not sufficient to rescue channel gating, implying that other residues in the TRP domain are necessary to endow activity to TRPV1-AD2. A biophysical analysis of a functional chimera suggested that mutations in the TRP domain raised the energetics of channel gating by altering the coupling of stimuli sensing and pore opening. These findings indicate that inter- and/or intrasubunit interactions in the TRP domain are essential for correct TRPV1 gating.  相似文献   

17.
TRPV5 and TRPV6 are two major calcium transport pathways in the human body maintaining calcium homeostasis. TRPV5 is mainly expressed in the distal convoluted and connecting tubule where it is the major, regulated pathway for calcium reabsorption. TRPV6 serves as an important calcium entry pathway in the duodenum and the placenta. Previously, we showed that human TRPV6 (hTRPV6) transports several heavy metals. In this study we tested whether human TRPV5 (hTRPV5) also transports cadmium and zinc, and whether hTRPV5 together with hTRPV6 are involved in cadmium and zinc toxicity. The hTRPV5 mRNA and protein were expressed in HEK293 cells transiently transfected with pTagRFP-C1-hTRPV5. The overexpression of the hTRPV5 protein at the plasma membrane was revealed by cell surface biotinylation and immunofluorescence techniques. We observed that both cadmium and zinc permeate hTRPV5 in ion imaging experiments using Fura-2 or Newport Green DCF. Our results were further confirmed using whole-cell patch clamp technique. Transient overexpression of hTRPV5 or hTRPV6 sensitized cells to cadmium and zinc. Toxicity curves of cadmium and zinc were also shifted in hTRPV6 expressing HEK293 cells clones. Our results suggest that TRPV5 and TRPV6 are crucial gates controlling cadmium and zinc levels in the human body especially under low calcium dietary conditions, when these channels are maximally upregulated.  相似文献   

18.
Opioid binding properties of Tyr-D-Ser-Gly-Phe-Leu-Thr-NH-NH-Gly-Mal (DSLET-Mal), a novel enkephalin-framed affinity label, was determined in rat brain membranes. In competition studies the ligand showed high affinity for the delta opioid sites, labelled by [(3)H][Ile(5,6)]deltorphin II (K(i) = 8 nM), whereas its binding to the mu ([(3)H]DAMGO) and kappa ([(3)H]EKC) sites was weaker. Preincubation of the rat brain membranes with DSLET-Mal at micromolar concentrations resulted in a wash-resistant and dose-dependent inhibition of the [(3)H][Ile(5,6)]deltorphin II binding sites (96% blocking at 10 microM concentration). Intracerebroventricular (ICV) administration of DSLET-Mal reduced the density of delta opioid receptors and had no effect on mu and kappa receptors, as determined by saturation binding studies. [Ile(5, 6)]deltorphin II-stimulated [(35)S]GTPgammaS binding was determined in membrane preparations of different brain areas of the ICV-treated animals. In both frontal cortex and hippocampus DSLET-Mal significantly decreased G protein activation by the delta agonist, having no effect on DAMGO stimulated [(35)S]GTPgammaS binding. DSLET-Mal had qualitatively similar effects on both receptor binding and G protein activation. These characteristics of the compound studied suggest that DSLET-Mal can serve as an affinity label for further studies of the delta-opioid receptors.  相似文献   

19.
We have performed [(3)H]ifenprodil binding experiments under NMDA receptor-specific assay conditions to provide the first detailed characterisation of the pharmacology of the ifenprodil site on NMDA NR1/NR2B receptors, using recombinant human NR1a/NR2B receptors stably expressed in L(tk-) cells, in comparison with rat cortex/hippocampus membranes. [(3)H]Ifenprodil bound to a single, saturable site on both human recombinant NR1a/NR2B receptors and native rat receptors with B:(max) values of 1.83 and 2.45 pmol/mg of protein, respectively, and K:(D) values of 33.5 and 24.8 nM:, respectively. The affinity of various ifenprodil site ligands-eliprodil, (R:(*), R:(*))-4-hydroxy-alpha-(4-hydroxyphenyl)-beta-methyl-4-pehnyl-1-pi per idineethanol [(+/-)-CP-101,606], cis-3-[4-(4-fluorophenyl)-4-hydroxy-1-piperidinyl]-3, 4-dihydro-2H:-1-benzopyran-4,7-diol [(+/-)-CP-283,097], and (R:(*), S:(*))-alpha-(4-hydroxyphenyl)-beta-methyl-4-(phenylmethyl)-1-piperid inepropanol [(+/-)-Ro 25-6981] was very similar for inhibition of [(3)H]ifenprodil binding to recombinant human NR1a/NR2B and native rat receptors, whereas allosteric inhibition of [(3)H]ifenprodil binding by polyamine site ligands (spermine, spermidine, and arcaine) showed approximately twofold lower affinity for recombinant receptors compared with native receptors. Glutamate site ligands were less effective at modulating [(3)H]ifenprodil binding to recombinant NR1a/NR2B receptors compared with native rat receptors. The NMDA receptor-specific [(3)H]ifenprodil binding conditions described were also applied to ex vivo experiments to determine the receptor occupancy of ifenprodil site ligands [ifenprodil, (+/-)-CP-101,606, (+/-)-CP-283,097, and (+/-)-Ro 25-6981] given systemically.  相似文献   

20.
The binding profile of [(3)H]BHDP ([(3)H]N-benzyl-N'-(2-hydroxy-3,4-dimethoxybenzyl)-piperazine) was evaluated. [(3)H]BHDP labelled a single class of binding sites with high affinity (K(d)=2-3 nM) in rat liver mitochondria and synaptic membranes. The pharmacological characterization of these sites using sigma reference compounds revealed that these sites are sigma receptors and, more particularly, sigma1 receptors. Indeed, BHDP inhibited [(3)H]pentazocine binding, a marker for sigma1 receptors, with high affinity in a competitive manner. BHDP is selective for sigma1 receptors since it did not show any relevant affinity for most of the other receptors, ion channels or transporters tested. Moreover, in an in vitro model of cellular hypoxia, BHDP prevented the fall in adenosine triphosphate (ATP) levels caused by 24 h hypoxia in cultured astrocytes. Taken together, these results demonstrate that [(3)H]BHDP is a potent and selective ligand for sigma1 receptors showing cytoprotective effects in astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号