共查询到20条相似文献,搜索用时 0 毫秒
1.
Franca-Koh J Yeo M Fraser E Young N Dale TC 《The Journal of biological chemistry》2002,277(46):43844-43848
Previous studies have shown that nuclear levels of glycogen synthase kinase-3 (GSK-3) are dynamically regulated and may affect access of GSK-3 to its substrates. In this study we show that the GSK-3-binding protein Frat/GBP regulates the nuclear export of GSK-3. We show that Frat/GBP contains a nuclear export sequence that promotes its own nuclear export and that of associated GSK-3. Treating cells with leptomycin B increased nuclear levels of endogenous GSK-3 suggesting that an endogenous process targets GSK-3 for nuclear export. To investigate this further, we used two approaches to disrupt the interaction between GSK-3 and endogenous Frat. First we isolated mutants of GSK-3 that selectively interfered with Frat binding and found that these mutants were poorly exported. Second we expressed a peptide that competes with Frat for GSK-3 binding and found that it caused endogenous GSK-3 to accumulate in the nucleus. Together these data suggest that Frat may be the endogenous factor that targets GSK-3 for nuclear export. The dynamic expression patterns of Frat mRNAs together with the role of Frat in mediating GSK-3 nuclear export have important implications for the control of the substrate access of GSK-3 in several signaling pathways. 相似文献
2.
Glycogen synthase kinase-3 was isolated from rabbit skeletal muscle by an improved procedure. The purification was estimated to be 67000-fold and 0.2 mg of enzyme was isolated from 5000 g muscle, corresponding to an overall yield of 7%. The preparation was homogeneous by ultracentrifugal and electrophoretic criteria. The enzyme had a relative molecular mass of 47 kDa by sedimentation equilibrium centrifugation and 51 kDa by SDS-polyacrylamide gel electrophoresis. These values demonstrate that glycogen synthase kinase-3 is monomeric. The Stokes radius of 37 nm suggests the molecule to be asymmetric. The activating factor of the Mg-ATP dependent form of protein phosphatase-1 coeluted with glycogen synthase kinase-3 activity at the final step, establishing that these two activities reside in the same protein. Glycogen synthase kinase-3 phosphorylates glycogen synthase at sites-3, while casein kinase-II phosphorylates site-5, just C-terminal to sites-3 (Picton, C., Aitken, A., Bilham, T. and Cohen, P. (1982) Eur. J. Biochem. 124, 37-45). The basis for the substrate specificities of these protein kinases was investigated using chymotryptic peptides that contain the sites phosphorylated by each enzyme. These studies showed that efficient phosphorylation of sites-3, required the presence of phosphate in site-5 and a region of polypeptide more than 20 residues C-terminal to site-5. In contrast, efficient phosphorylation by casein kinase-II does not require this C-terminal region, and the results are consistent with the view that the enzyme recognises acidic residues immediately C-terminal to site-5. 相似文献
3.
Glycogen synthase kinase-3 beta (GSK-3) is a key downstream target of Wnt signaling and is regulated by its interactions with activating and inhibitory proteins. We and others have shown that GSK-3 activity toward non-primed substrates is regulated in part through a competition between its activating (Axin) and inhibitory (GBP/FRAT) binding partners. Here we use a reverse two-hybrid screen to identify mutations in GSK-3 that alter binding to GBP and Axin. We find that these mutations overlap and propose that GBP and Axin compete for binding to the same region of GSK-3. We use these mutations to examine the ability of GSK-3 to block eye development in Xenopus embryos and suggest that GSK-3 regulates eye development through a non-Wnt pathway. 相似文献
4.
多功能的蛋白:糖原合成酶激酶-3 总被引:8,自引:0,他引:8
糖原合成酶激酶-3(GSK-3)是一个多功能的丝氨酸/苏氨酸类激酶,在真核生物中普遍存在。在哺乳动物中包括两个亚型,即GSK-3a和GSK-3β。GSK-3至少在三条细胞通路上有作用:Wnt/wingless,P13-kinase以及Hedgehog信号通路,该酶的作用主要包括调节糖原的合成代谢,参与细胞的分化与增殖等。研究发现,GSK-3在某些疾病,如阿尔茨海默病和非胰岛素依赖型糖尿病(NIDDM)中,其活性会异常升高。现已发现了几种针对该酶的抑制剂,如aloisine,paullones和马来酰胺类化合物等。这些抑制剂的确在分子水平特异性地抑制GSK-3的活性,而对其他激酶几乎没有作用。关于这些抑制剂的研究工作也已经在细胞水平和动物模型上开展起来,为开发以GSK-3为靶点的新的治疗药物创造了良好的基础。 相似文献
5.
The glamour and gloom of glycogen synthase kinase-3 总被引:42,自引:0,他引:42
Glycogen synthase kinase-3 (GSK3) is now recognized as a key component of a surprisingly large number of cellular processes and diseases. Several mechanisms play a part in controlling the actions of GSK3, including phosphorylation, protein complex formation, and subcellular distribution. These are used to control and direct the far-reaching influences of GSK3 on cellular structure, growth, motility and apoptosis. Dysregulation of GSK3 is linked to several prevalent pathological conditions, such as diabetes and/or insulin resistance, and Alzheimer's disease. Therefore, much effort is currently directed towards understanding the functions and control of GSK3, and identifying methods capable of diminishing the deleterious impact of GSK3 in pathological conditions. 相似文献
6.
7.
8.
9.
Kim HS Skurk C Thomas SR Bialik A Suhara T Kureishi Y Birnbaum M Keaney JF Walsh K 《The Journal of biological chemistry》2002,277(44):41888-41896
Glycogen synthase kinase-3beta (GSK3beta) plays important roles in metabolism, embryonic development, and tumorigenesis. Here we investigated the role of GSK3beta signaling in vascular biology by examining its function in endothelial cells (ECs). In EC, the regulatory phosphorylation of GSK3beta was found to be under the control of phosphoinositide 3-kinase-, MAPK-, and protein kinase A-dependent signaling pathways. The transduction of a nonphosphorylatable constitutively active mutant of GSKbeta promoted apoptosis under the conditions of prolonged serum deprivation or the disruption of cell-matrix attachments. Conversely, the transduction of catalytically inactive GSK3beta promoted EC survival under the conditions of cellular stress. Under normal cell culture conditions, the activation of GSK3beta signaling inhibited the migration of EC to vascular endothelial growth factor or basic fibroblast growth factor. Angiogenesis was inhibited by GSK3beta activation in an in vivo Matrigel plug assay, whereas the inhibition of GSK3beta signaling enhanced capillary formation. These data suggest that GSK3beta functions at the nodal point of converging signaling pathways in EC to regulate vessel growth through its control of vascular cell migration and survival. 相似文献
10.
Glycogen synthase kinase 3beta (GSK3beta) is an essential protein kinase that regulates numerous functions within the cell. One critically important substrate of GSK3beta is the microtubule-associated protein tau. Phosphorylation of tau by GSK3beta decreases tau-microtubule interactions. In addition to phosphorylating tau, GSK3beta is a downstream regulator of the wnt signaling pathway, which maintains the levels of beta-catenin. Axin plays a central role in regulating beta-catenin levels by bringing together GSK3beta and beta-catenin and facilitating the phosphorylation of beta-catenin, targeting it for ubiquitination and degradation by the proteasome. Although axin clearly facilitates the phosphorylation of beta-catenin, its effects on the phosphorylation of other GSK3beta substrates are unclear. Therefore in this study the effects of axin on GSK3beta-mediated tau phosphorylation were examined. The results clearly demonstrate that axin is a negative regulator of tau phosphorylation by GSK3beta. This negative regulation of GSK3beta-mediated tau phosphorylation is due to the fact that axin efficiently binds GSK3beta but not tau and thus sequesters GSK3beta away from tau, as an axin mutant that does not bind GSK3beta did not inhibit tau phosphorylation by GSK3beta. This is the first demonstration that axin negatively affects the phosphorylation of a GSK3beta substrate, and provides a novel mechanism by which tau phosphorylation and function can be regulated within the cell. 相似文献
11.
Molecular cloning and expression of glycogen synthase kinase-3/factor A. 总被引:43,自引:5,他引:43 下载免费PDF全文
J R Woodgett 《The EMBO journal》1990,9(8):2431-2438
12.
Serotonin modulates brain physiology and behavior and has major roles in brain diseases involving abnormal mood and cognition. Enhancing brain serotonin has been found to regulate glycogen synthase Kinase-3 (GSK3), but the signaling mechanism and functional significance of this regulation remain to be determined. In this study, we tested the signaling mechanism mediating 5-HT1A receptor-regulated GSK3 in the hippocampus. Using mutant GSK3 knock-in mice, we also tested the role of GSK3 in the behavioral effects of 5-HT1A receptors and the serotonin reuptake inhibitor fluoxetine. The results showed that activation of 5-HT1A receptors by 8-hydroxy-N,N-dipropyl-2-aminotetralin (8-OH-DPAT) increased phosphorylation of the N-terminal serine of both GSK3α and GSK3β in several areas of the hippocampus. The effect of 8-OH-DPAT was accompanied by an increase in the active phosphorylation of Akt, and was blocked by LY294002, an inhibitor of phosphoinositide 3-kinases (PI3K). Phosphorylation of GSK3β, but not GSK3α, was necessary for 5-HT1A receptors to suppress the hippocampus-associated contextual fear learning. Furthermore, acute fluoxetine treatment up-regulated both phospho-Ser21-GSK3α and phospho-Ser9-GSK3β in the hippocampus. Blocking phosphorylation of GSK3α and GSK3β diminished the anti-immobility effect of fluoxetine treatment in the forced swim test, wherein the effect of GSK3β was more prominent. These results together suggest that PI3K/Akt is a signaling mechanism mediating the GSK3-regulating effect of 5-HT1A receptors in the hippocampus, and regulation of GSK3 is an important intermediate signaling process in the behavioral functions of 5-HT1A receptors and fluoxetine. 相似文献
13.
CREB DNA binding activity is inhibited by glycogen synthase kinase-3 beta and facilitated by lithium 总被引:1,自引:0,他引:1
The regulatory influences of glycogen synthase kinase-3 beta (GSK3 beta) and lithium on the activity of cyclic AMP response element binding protein (CREB) were examined in human neuroblastoma SH-SY5Y cells. Activation of Akt (protein kinase B) with serum-increased phospho-serine-9-GSK3 beta (the inactive form of the enzyme), inhibited GSK3 beta activity, and increased CREB DNA binding activity. Inhibition of GSK3 beta by another paradigm, treatment with the selective inhibitor lithium, also increased CREB DNA binding activity. The inhibitory regulation of CREB DNA binding activity by GSK3 beta also was evident in differentiated SH-SY5Y cells, indicating that this regulatory interaction is maintained in non-proliferating cells. These results demonstrate that inhibition of GSK3 beta by serine-9 phosphorylation or directly by lithium increases CREB activation. Conversely, overexpression of active GSK3 beta to 3.5-fold the normal levels completely blocked increases in CREB DNA binding activity induced by epidermal growth factor, insulin-like growth factor-1, forskolin, and cyclic AMP. The inhibitory effects due to overexpressed GSK3 beta were reversed by treatment with lithium and with another GSK 3beta inhibitor, sodium valproate. Overall, these results demonstrate that GSK3 beta inhibits, and lithium enhances, CREB activation. 相似文献
14.
Lithium inhibits glycogen synthase kinase-3 by competition for magnesium 总被引:16,自引:0,他引:16
The mechanism by which lithium (Li(+)) inhibits the protein kinase glycogen synthase kinase-3 (GSK-3) is unknown. Here, we demonstrate that Li(+) is a competitive inhibitor of GSK-3 with respect to magnesium (Mg(2+)), but not to substrate or ATP. This mode of inhibition is conserved between mammalian and Dictyostelium GSK-3 isoforms, and is not experienced with other group I metal ions. As a consequence, the potency of Li(+) inhibition is dependent on Mg(2+) concentration. We also found that GSK-3 is sensitive to chelation of free Mg(2+) by ATP and is progressively inhibited when ATP concentrations exceed that of Mg(2+). Given the cellular concentrations of ATP and Mg(2+), our results indicate that Li(+) will have a greater effect on GSK-3 activity in vivo than expected from in vitro studies and this may be a factor relevant to its use in the treatment of depression. 相似文献
15.
Ilouz R Pietrokovski S Eisenstein M Eldar-Finkelman H 《Journal of molecular biology》2008,383(5):999-1007
It has been suggested that phosphorylation at serine 9 near the N-terminus of glycogen synthase kinase-3β (GSK-3β) mimics the prephosphorylation of its substrate and, therefore, the N-terminus functions as a pseudosubstrate. The molecular basis for the pseudosubstrate's binding to the catalytic core and autoinhibition has not been fully defined. Here, we combined biochemical and computational analyses to identify the potential residues within the N-terminus and the catalytic core engaged in autoinhibition of GSK-3β. Bioinformatic analysis found Arg4, Arg6, and Ser9 in the pseudosubstrate sequence to be extremely conserved through evolution. Mutations at Arg4 and Arg6 to alanine enhanced GSK-3β kinase activity and impaired its ability to autophosphorylate at Ser9. In addition, and unlike wild-type GSK-3β, these mutants were unable to undergo autoinhibition by phosphorylated Ser9. We further show that Gln89 and Asn95, located within the catalytic core, interact with the pseudosubstrate. Mutation at these sites prevented inhibition by phosphorylated Ser9. Furthermore, the respective mutants were not inhibited by a phosphorylated pseudosubstrate peptide inhibitor. Finally, computational docking of the pseudosubstrate into the catalytic active site of the kinase suggested specific interactions between Arg6 and Asn95 and of Arg4 to Asp181 (apart from the interaction of phosphorylated serine 9 with the “phosphate binding pocket”). Altogether, our study supports a model of GSK-3-pseudosubstrate autoregulation that involves phosphorylated Ser9, Arg4, and Arg6 within the N-terminus and identified the specific contact sites within the catalytic core. 相似文献
16.
The mood-stabilizing agent valproate inhibits the activity of glycogen synthase kinase-3 总被引:12,自引:0,他引:12
Valproic acid (VPA) is a potent broad-spectrum anti-epileptic with demonstrated efficacy in the treatment of bipolar affective disorder. It has previously been demonstrated that both VPA and lithium increase activator protein-1 (AP-1) DNA binding activity, but the mechanisms underlying these effects have not been elucidated. However, it is known that phosphorylation of c-jun by glycogen synthase kinase (GSK)-3beta inhibits AP-1 DNA binding activity, and lithium has recently been demonstrated to inhibit GSK-3beta. These results suggest that lithium may increase AP-1 DNA binding activity by inhibiting GSK-3beta. In the present study, we sought to determine if VPA, like lithium, regulates GSK-3. We have found that VPA concentration-dependently inhibits both GSK-3alpha and -3beta, with significant effects observed at concentrations of VPA similar to those attained clinically. Incubation of intact human neuroblastoma SH-SY5Y cells with VPA results in an increase in the subsequent in vitro recombinant GSK-3beta-mediated 32P incorporation into two putative GSK-3 substrates (approximately 85 and 200 kDa), compatible with inhibition of endogenous GSK-3beta by VPA. Consistent with GSK-3beta inhibition, incubation of SH-SY5Y cells with VPA results in a significant time-dependent increase in both cytosolic and nuclear beta-catenin levels. GSK-3beta plays a critical role in the CNS by regulating various cytoskeletal processes as well as long-term nuclear events and is a common target for both lithium and VPA; inhibition of GSK-3beta in the CNS may thus underlie some of the long-term therapeutic effects of mood-stabilizing agents. 相似文献
17.
Glycogen synthase kinase-3 (GSK-3) is a serine/threonine kinase consisting of two isoforms, alpha and beta. The activities of GSK-3 are regulated negatively by serine phosphorylation but positively by tyrosine phosphorylation. GSK-3 inactivation has been proposed as a mechanism to promote neuronal survival. We used GSK-3 isoform-specific small interfering RNAs, dominant-negative mutants, or pharmacological inhibitors to search for functions of the two GSK-3 isoforms in regulating neuronal survival in cultured cortical neurons in response to glutamate insult or during neuronal maturation/aging. Surprisingly, RNA interference-induced depletion of either isoform was sufficient to block glutamate-induced excitotoxicity, and the resulting neuroprotection was associated with enhanced N-terminal serine phosphorylation in both GSK-3 isoforms. However, GSK-3beta depletion was more effective than GSK-3alpha depletion in suppressing spontaneous neuronal death in extended culture. This phenomenon is likely due to selective and robust inhibition of GSK-3beta activation resulting from GSK-3beta Ser9 dephosphorylation during the course of spontaneous neuronal death. GSK-3alpha silencing resulted in reduced tyrosine phosphorylation of GSK-3beta, suggesting that tyrosine phosphorylation is also a critical autoregulatory event. Interestingly, GSK-3 inhibitors caused a rapid and long-lasting increase in GSK-3alpha Ser21 phosphorylation levels, followed by a delayed increase in GSK-3beta Ser9 phosphorylation and a decrease in GSK-3alpha Tyr279 and GSK-3beta Tyr216 phosphorylation, thus implying additional levels of GSK-3 autoregulation. Taken together, our results underscore important similarities and dissimilarities of GSK-3alpha and GSK-3beta in the roles of cell survival as well as their distinct modes of regulation. The development of GSK-3 isoform-specific inhibitors seems to be warranted for treating GSK-3-mediated pathology. 相似文献
18.
Proapoptotic stimuli induce nuclear accumulation of glycogen synthase kinase-3 beta 总被引:16,自引:0,他引:16
The goal of this study was to determine whether the intracellular distribution of the proapoptotic enzyme glycogen synthase kinase-3 beta (GSK-3 beta) is dynamically regulated by conditions that activate apoptotic signaling cascades. In untreated human neuroblastoma SH-SY5Y cells, GSK-3 beta was predominantly cytosolic, although a low level was also detected in the nucleus. The nuclear level of GSK-3 beta was rapidly increased after exposure of cells to serum-free media, heat shock, or staurosporine. Although each of these conditions caused changes in the serine 9 and/or tyrosine phosphorylation of GSK-3 beta, neither of these modifications was correlated with nuclear accumulation of GSK-3 beta. Heat shock and staurosporine treatments increased nuclear GSK-3 beta prior to activation of caspase-9 and caspase-3, and this nuclear accumulation of GSK-3 beta was unaltered by pretreatment with a general caspase inhibitor. The GSK-3 beta inhibitor lithium did not alter heat shock-induced nuclear accumulation of GSK-3 beta but increased the nuclear level of cyclin D1, indicating that cyclin D1 is a substrate of nuclear GSK-3 beta. Thus, the intracellular distribution of GSK-3 beta is dynamically regulated by signaling cascades, and apoptotic stimuli cause increased nuclear levels of GSK-3 beta, which facilitates interactions with nuclear substrates. 相似文献
19.
W Zhou L Chen J Paul S Yang F Li K Sampson JR Woodgett JM Beaulieu KL Gamble X Li 《PloS one》2012,7(8):e43262
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-selective GSK3β knockout (snGSK3β-KO) mice to test if GSK3β in serotonin neurons selectively modulates 5-HT1B autoreceptor activity and function. The snGSK3β-KO mice were generated by crossbreeding GSK3β-floxed mice and ePet1-Cre mice. These mice had normal growth and physiological characteristics, similar numbers of tryptophan hydroxylase-2 (TpH2)-expressing serotonin neurons, and the same brain serotonin content as in littermate wild type mice. However, the expression of GSK3β in snGSK3β-KO mice was diminished in TpH2-expressing serotonin neurons. Compared to littermate wild type mice, snGSK3β-KO mice had a reduced response to the 5-HT1B receptor agonist anpirtoline in the regulation of serotonergic neuron firing, cAMP production, and serotonin release, whereas these animals displayed a normal response to the 5-HT1A receptor agonist 8-OH-DPAT. The effect of anpirtoline on the horizontal, center, and vertical activities in the open field test was differentially affected by GSK3β depletion in serotonin neurons, wherein vertical activity, but not horizontal activity, was significantly altered in snGSK3β-KO mice. In addition, there was an enhanced anti-immobility response to anpirtoline in the tail suspension test in snGSK3β-KO mice. Therefore, results of this study demonstrated a serotonin neuron-targeting function of GSK3β by regulating 5-HT1B autoreceptors, which impacts serotonergic neuron firing, serotonin release, and serotonin-regulated behaviors. 相似文献