首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The efficacy of the newly developed seed dressing and soil application formulations of Trichoderma viride, T. virens and T. harzianum were evaluated individually and in combinations under pot and field experiments for the management of dry root rot (Rhizoctonia bataticola) of chickpea (Cicer arientinum). In pot experiments, T. harzianum based seed dressing formulation, Pusa 5SD, and soil application formulations, Pusa Biogranule 5 (PBG 5) and Pusa Biopellet 10G (PBP 10G), were found to be effective in reducing dry root rot incidence in chickpea and increasing the seed germination, shoot and root lengths of the crop. Under field experiments, a combination of soil application of T. harzianum based PBP 10G and seed treatment with Pusa 5SD+carboxin was found to be the best by providing the highest seed germination, shoot and root lengths and grain yield and the lowest dry root rot incidence in chickpea.  相似文献   

2.
In vitro assays were undertaken to evaluate the control of two sapstain fungi, Leptographium procerum and Sphaeropsis sapinea by a combination of chitosan or chitosan oligomer and an albino strain of Trichoderma harzianum. Spore germination and hyphal growth of the test fungi were assessed on media amended with chitosan or chitosan oligomer with and without T. harzianum using either simultaneous inoculation with test fungus or inoculation 1, 2, or 3 days after pre-infection with test fungus.There was no mycelial growth of the test fungi regardless of chitosan concentrations used when either L. procerum or S. sapinea was simultaneously inoculated with T. harzianum. However, the dose–response of chitosan or chitosan oligomer on the test fungi was apparent when T. harzianum was not simultaneously inoculated with test fungus but introduced later. There was a greater growth reduction at higher concentrations (0.075–0.1% v/v) of chitosan, and overall chitosan oligomer was more effective than chitosan aqueous solution.Chitosan alone was able to restrict or delay the germination of spores but the combination of chitosan and T. harzianum inhibited spore germination and hence colony formation of test fungi regardless of time delay.  相似文献   

3.
The antagonistic activity of two yeast strains (Pichia anomala (E.C. Hansen) Kurtzman, strain K and Candida oleophila Montrocher, strain O) against the parasitic complex responsible for banana crown rot was evaluated. The strains were applied at three different concentrations (106, 107, 108 cfu/ml) and their efficacy tested in vivo on three separate fungi (Colletotrichum musae (Berk. & Curt.) Arx, Fusarium moniliforme Sheldon, and Cephalosporium sp.) and on a parasitic complex formed by association of these three fungi. At the concentrations used C. musae appeared to be the most pathogenic. The complex showed intermediate aggressiveness between C. musae and both other fungi.Statistically significant antagonistic effects were observed on C. musae, F. moniliforme, and the fungal complex. The highest protection level (54.4%) was observed with strain O added at 108 cfu/ml on crowns previously inoculated with the fungal complex. The level was lower when the fungi were inoculated separately.Furthermore, the antagonistic effect was strongly reinforced when strain O at 108 cfu/ml was applied 24 h before fungal complex inoculation (59.9%), as compared to its application 15 min (24.3%) or 3 h (27.3%) after fungal complex inoculation. Bananas showed increased susceptibility to the fungal complex from March to June, and this influenced the level of protection by yeast, which decreased over the same period. A strict negative correlation (R2 = 0.83) was highlighted between susceptibility of banana to crown rot and protection provided by yeast.  相似文献   

4.
In 2002 and 2003, a study was conducted to determine the effect of bacterial strains, Burkholdria OSU 7, Bacillus OSU 142, and Pseudomonas BA 8, on biological control of brown rot disease (Monilinia laxa Ehr.) on apricot cv. Hacıhaliloğlu in Malatya province of Turkey. Apricot orchard at full blooming stage was inoculated with conidial suspension (1 × 106 spores/ml) of M. laxa Ehr. After inoculation, two apricot trees for each application were treated with each of the three biological control agents (Burkholdria gladii OSU 7, Bacillus subtilis OSU 142, and Pseudomonas putida BA 8) by spraying (1 × 109 cfu/ml) on inoculated branches. Disease incidence was evaluated for untreated (control 1) and four different treatment groups including commercial disease management (control 2, positive control: 3% Bourdox in fall, 50% Cupper at pink flower, 30 g/100 l Corus at first blooming, and 300 g/100 l Captan at last blooming stage) and treatments including each of the three bacterial strains (OSU 7, OSU 142, and BA 8). The results showed that disease incidence for negative control (control 1) was 9.94, which was significantly higher than disease incidence for commercial application (2.57%) or bacterial treatments (2.82–5.00%) in the first year. In 2003, the lowest disease incidence observed in OSU 7 treatment (6.80%), while disease incidence rate for positive control and negative control were 9.45% and 28.46%, respectively. This result may suggest that OSU 7 has potential to be used as biopesticide for effective management of brown rot disease on apricot.  相似文献   

5.
Clonostachys rosea f. catenulata (Gliocladium catenulatum) strain J1446 (formulated as Prestop WP) suppressed Fusarium root and stem rot caused by Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) on cucumber plants grown hydroponically in rockwool medium. Sixty days following application at seeding, the biocontrol agent had proliferated through the rockwool blocks and was present on cucumber roots and the crown region of the stem at populations >1 × 105 CFU/g fresh weight. Scanning electron micrographs showed that C. rosea had rapidly colonized the root surface and was associated with root hairs and epidermal cell junctions. Following transformation of the fungus with Agrobacterium tumefaciens strain AGL-1 containing the hygromycin resistance (hph) and β-glucuronidase (uidA) genes, blue-stained mycelia could be seen growing on the surface and within epidermal and cortical cells of roots, stems and shoots 3 weeks after treatment. Quantification of GUS activity by fluorometric assays showed that fungal biomass was highest in the roots and crown area, while the extent of colonization of upper stems and true leaves was variable. Higher population levels resulted following application to rockwool blocks compared to seed treatment. Application of C. rosea preceding inoculation with Forc significantly reduced pathogen populations on roots compared to plants inoculated with Forc alone. Colonization of infection sites in the root zone reduced pathogen development and disease incidence. Densities of the biocontrol agent appeared to increase in the presence of the pathogen.  相似文献   

6.
Eight formulations of Penicillium oxalicum (FOR1 to FOR8) were obtained by the addition of various ingredients, in two separate steps of the production and drying of P. oxalicum conidia. These formulations were then evaluated against tomato wilt in three glasshouse (G1 to G3) and two field (F1 and F2) experiments. All formulations were applied to seedlings in seedbeds 7 days before transplanting at a rate of 107 spores g−1 seedbed substrate. The conidial viability of each formulation was estimated by measuring germination just after fluid bed-drying, before seedbed application and after 1 and 2 years of storage at 4 °C under vacuum. The densities of P. oxalicum were estimated in the seedbed substrate and in the rhizosphere of three plants per treatment just before transplanting. Initial conidial viability of formulations just after fluid bed-drying was approx. 80%, except for FOR1, FOR4, and FOR7 which were 60%. The initial viability was maintained up to 40–50% for 2 years of storage at 4 °C under vacuum, except for FOR1. All formulations had 50% viability at application time. Populations of P. oxalicum in the seedbed substrate just before transplanting were >106 cfu g−1 soil in G3 and F2; populations in rhizosphere were also >106 cfu g−1 fresh root, except for FOR3, FOR5, and FOR6 in G2. A range of 22–64% of disease reduction was observed with all formulations, although these reductions were not significant (p = 0.05) for FOR1, FOR4, and FOR5 in any experiment. Contrast analysis showed significant differences between biological treatments and untreated control (p = 0.05) in all experiments, but no significant differences between biological and chemical treatments. Initial conidial viability of P. oxalicum in formulations and populations of P. oxalicum in the seedbed substrate explained 78.26% of the variability in P. oxalicum populations in tomato rhizosphere before transplanting. Disease incidence in untreated plants was negatively correlated (r = −0.54) with the percentage of disease control. The relationship between the viability of formulations, the populations of P. oxalicum in seedbed and rhizosphere, and the control of tomato wilt is discussed.  相似文献   

7.
The effectiveness of using honey bees and bumble bees to vector a commercial formulation of Trichoderma harzianum 1295-22 for the control of Botrytis cinerea on strawberries was evaluated from 1994 to 1997 in 2 strawberry fields at the New York State Agricultural Experiment Station in Geneva, New York and in 10 grower fields in eight counties of New York. Commercial bumble bee colonies were used to deliver the biocontrol agent in 1994 and 1995 and five-frame nuclear honey bee hives were used in 1995–1997. Each honey bee exiting the hive carried about 1 × 105 colony-forming units of T. harzianum, with the majority found on the bees' legs (58%). Flowers collected from the bee-delivered treatment generally had half the density of T. harzianum as those from the sprayed treatment. However, during the 4 years of this study, T. harzianum delivered by bumble bees or honey bees provided better Botrytis control than that applied as a spray. In addition, the bee-delivered T. harzianum provided the same or a better level of control of Botrytis as commercial fungicides applied at bloom. Strawberries collected from the bee-visited treatments averaged 22% more seeds and weighed between 26 and 40% more than berries in nonvisited treatments. The number of seeds per berry and berry weight were reduced by 7–12% in plots treated with fungicides and visited by bees, indicating that the use of some commercial fungicides at bloom may impact pollination and yield. Bee delivery of T. harzianum 1295-22 is a viable option for strawberry growers interested in controlling Botrytis with minimal fungicide use.  相似文献   

8.
Priming is a technique used to improve seedling establishment of direct-seeded crops such as onion and carrot, resulting in a quick and uniform emergence. This work investigated the application of four selected beneficial microorganisms (Pseudomonas chlororaphis MA342, Pseudomonas fluorescens CHA0, Clonostachys rosea IK726d11 and Trichoderma harzianum T22) to onion and carrot seed during drum priming, and their subsequent survival and establishment in the rhizosphere once the seed was planted. Different application rates of fungi (7 log10 cfu g−1 dry seed) and bacteria (6 log10 cfu g−1 dry seed) were required on onion to achieve the end target of 5 log10 cfu g−1 dry seed, whereas a lower rate (5 log10 cfu g−1 dry seed for both bacteria and fungi) was successful on carrot. Microorganism-treated seed was planted in soil in the glasshouse and root and rhizosphere soil samples were taken at 2, 4 and 8 weeks post-planting. All seed-applied microorganisms were recovered throughout the experiment, although differences in the survival patterns were seen. The bacterial isolates declined in number over time, with P. fluorescens CHA0 showing better overall survival than P. chlororaphis MA342, particularly on the roots and in the rhizosphere soil of carrot. In contrast to the bacteria, the fungal isolate C. rosea IK726d11 showed good survival on both onion and carrot, and increased significantly in number throughout the 8-week period. Trichoderma harzianum T22 remained relatively constant in number throughout the experiment, but showed better survival on carrot than onion roots. Similar results were found in three different soil-types.  相似文献   

9.
As a notable biocontrol agent, Trichoderma harzianum can antagonize a diverse array of phytopathogenic fungi, including Botrytis cinerea, Rhizoctonia solani and Fusarium oxysporum. Elucidating the biocontrol mechanism of T. harzianum in response to the pathogens enables it to be exploited in the control of plant diseases. Two-dimensional gel electrophoresis (2-DE) was performed to obtain secreted protein patterns of T. harzianum ETS 323, grown in media that contained glucose, a mixture of glucose and deactivated B. cinerea mycelia, deactivated B. cinerea mycelia or deactivated T. harzianum mycelia. Selected protein spots were identified using liquid chromatography–tandem mass spectrometry (LC–MS/MS). Ninety one out of 100 excised protein spots were analyzed and some proteins were sequence identified. Of these, one l-amino acid oxidase (LAAO) and two endochitinases were uniquely induced in the media that contained deactivated B. cinerea mycelia as the sole carbon source. Activities of the cell wall-degrading enzymes (CWDEs), including β-1,3-glucanases, β-1,6-glucanases, chitinases, proteases and xylanases, were significantly higher in media with deactivated B. cinerea mycelia than in other media. This finding suggests that the cell wall of B. cinerea is indeed the primary target of T. harzianum ETS 323 in the biocontrol mechanism. The possible roles of LAAO and xylanase were also discussed.  相似文献   

10.
Wang  D.  Kurle  J.E.  Estevez de Jensen  C.  Percich  J.A. 《Plant and Soil》2004,258(1):319-331
Soybean root rot, caused primarily by Fusarium solani f. sp. phaseoli in a complex with F. oxysporum and Rhizoctonia solani, has become an increasing problem for soybeans, dry beans, and other rotation crops in central Minnesota due to soil conditions associated with reduced tillage. This study was conducted, in two field sites in central Minnesota located near Staples and Verndale, to develop methods for nondestructive assessment of root rot severity using plant radiometric properties. Soybean canopy reflectance was measured with a hand-held multi-spectral radiometer. Prior to the radiometer measurements, attempts were made to create differing root rot situations with moldboard or chisel tillage, and with or without a biological seed treatment. Root rot severity was estimated using a visual disease severity scale. Colony-forming units (CFU) were determined to estimate soil populations of pathogenic F. solani and F. oxysporum. Results from the Verndale site consistently showed significant treatment effects in the measured canopy radiometric parameters, and in the visual disease rating and yield (significant for seed treatment). Values of a simple ratio vegetation index from this site exhibited negative relationships with disease rating and F. oxysporum CFU, and a positive linear relationship with yield. Treatment effects were generally not significant at the Staples site because of low initial F. oxysporum populations. The results indicate that remote sensing is potentially a rapid, nondestructive means for assessment of root rot diseases in soybean.  相似文献   

11.
Pseudomonas fluorescensstrainPf7–14 was evaluated for biological control of rice blast in field experiments. StrainPf7–14 was formulated in methylcellulose:talc (1:4) and applied to IR50 rice (Oryza sativa) seeds as a seed treatment and as foliar sprays in seedbed and field experiments. When applied as a seed treatment followed by three foliar applications, the strain provided a 68.5% suppression of rice blast in the seedbed experiment and a 59.6% suppression in the field experiment. The persistence and migration ofPf7–14 on the rice plant was studied with the aid oflacZYgenes inserted into the bacterium. In greenhouse experiments,Pf7–14gal was detected on rice roots at 106to 105cfu/g of root tissue for 110 days, the duration of the rice crop. Migration of the strain from the seeds to the leaves occurred only until the seedlings were 16 days old. WhenPf7–14 was applied to the rice plants by foliar sprays, 104cfu of the bacterium per gram of leaf tissue was detected for the next 40 days. The limited migration of the bacterial biocontrol agent emphasizes the need for multiple foliar applications of the bacterium to sustain the bacterial population for effective suppression of rice blast.  相似文献   

12.
Formulations of a Streptomyces biological control agent for Rhizoctonia damping-off in tomato seedlings were developed for the first time from vegetative propagules obtained from actively growing, nonsporulating liquid cultures. Alginate beads, durum flour (starch) granules, and talcum powder formulation of this new actinomycetous antagonist (Streptomyces sp. Di-944) isolated from the rhizosphere of field-grown tomato (Lycopersicon esculentum) suppressed damping-off caused by Rhizoctonia solani in tomato plug transplants (cv. Bonny Best) in a peat-based, soilless potting mix under greenhouse conditions. For formulations, vegetative biomass of Streptomyces sp. Di-944 from 3-day-old liquid fermentation in yeast extract–malt extract–glucose broth was lyophilized and pulverized to obtain fragments of viable vegetative filaments. The pulverized biomass had an initial viable count of 2 × 107colony forming units/g and retained 100% viability for 2 weeks when stored at 4°C. Formulations stored at 4°C had a longer shelf life than those stored at 24°C based on viability at 2-week intervals over a 6-month storage period. In addition, dual culture tests showed declining efficacy for surviving Streptomyces propagules in formulations during this storage period. At 4°C, the powder and granular formulations were found to be the most stable and were shown to be 100% viable after 14 and 10 weeks of storage, respectively. However, at the end of 24 weeks, the number of viable propagules in the powder and granular formulations declined to 1.2 × 105 and 7 × 103 colony forming units/g, respectively. Alginate beads were the least stable in storage. Even at 4°C, 6.9 × 104 and 7.3 × 102 viable propagules/g formulation were detected at the end of 12 and 24 weeks, respectively. The talcum powder formulation delivered to tomato seeds as a seed-coating was the most effective biocontrol treatment. It suppressed damping-off in 10-day-old tomato transplants by almost 90% compared to 30 and 22% damping-off reduction when alginate beads or starch granules were delivered concomitantly with tomato seeds. Seed-coating with powder formulation of the biocontrol agent was as effective as drench application of the fungicide, oxine benzoate (No-Damp), in controlling Rhizoctonia damping-off and superior to the commercial biocontrol agent, Streptomyces griseoviridis (Mycostop), applied to tomato seeds as seed-coating.  相似文献   

13.
Field trials were carried out in upstate New York in 1990, 1992, 1993, and 1994 and in Chile in 1992–1993 and 1993–1994 in order to evaluate the ability of various strains ofTrichodermaspp. to control bunch rot of grape, to assess the compatibility and possible additive effects of selected biocontrol fungi and dicarboximide fungicides, and to determine factors affecting biocontrol efficacy. In 1990, three strains ofTrichodermaspp. were evaluated for their biocontrol ability, and all provided significant control ofBotrytis cinerea.As few as two late applications of the biocontrol fungi were nearly as effective as up to five applications throughout bloom and fruit development. Trials in New York in 1992 and in Chile in 1992–1993 indicated thatTrichoderma harzianumcould replace some applications of iprodione or vinclozolin with little reduction in efficacy. In New York in 1993, we found that applications ofT. harzianumat bloom and early fruit development followed by a tank-mix application ofT. harzianumand half rates of iprodione gave extremely effective control of bunch rot. In 1994, less effective control was obtained than in earlier years. Addition of a nutritive adhesive (Pelgel, a mixture of carboxymethyl cellulose and gum arabic) applied with the biocontrol agent tended to improve results. Thus, biological control of bunch rot of grape withT. harzianumcan be an effective method of management of this disease.  相似文献   

14.
Trichoderma harzianum, a filamentous fungus, is being widely used as a potential biopesticide. The potential of this fungus in causing skin sensitization, however, was poorly investigated as yet. The objective of this study was to monitor the occurrence of T. harzianum in the air and to explore its skin sensitizing potential. Seasonal periodicity of T. harzianum was studied for the years 2002–2004 by an Andersen air sampler. The skin sensitizing potential of T. harzianum extract was studied in 389 patients with suspected respiratory allergy by skin prick test (SPT) and specific IgE level was determined by ELISA. SDS–PAGE and immunoblotting were also performed. T. harzianum colony count varied from 3.69 to 134.88 CFU m−3 with the peak achieved in February. Relative humidity was found to be a significant (P < 0.05) factor predicting the occurrence of T. harzianum in the air. Positive skin reaction (wheal diameter ≥ 3 mm) was observed in 105 patients (26.99%). T. harzianum crude extract was resolved in 18 protein bands (12–72 kDa) on SDS–PAGE (12% gel) including two IgE-binding protein bands (21 and 32 kDa). T. harzianum can be considered an important inhalant allergen.  相似文献   

15.
Control of postharvest lemon diseases by biofumigation with the volatile-producing fungus Muscodor albus was investigated. In vitro exposure to M. albus volatile compounds for 3 days killed Penicillium digitatum and Geotrichum citri-aurantii, causes of green mold and sour rot of lemons, respectively. Lemons were wound-inoculated with P. digitatum and placed in closed 11-L plastic boxes with rye grain cultures of M. albus at ambient temperature. There was no contact between the fungus and the fruit. Biofumigation for 24–72 h controlled green mold significantly, even when treatment began 24 h after inoculation. Effectiveness was related to the amount of M. albus present. In tests conducted inside a 11.7-m3 degreening room with 5 ppm ethylene at 20 °C, green mold incidence on lemons was reduced on average from 89.8 to 26.2% after exposure to M. albus for 48 h. Ethylene accelerates color development in harvested citrus fruit. M. albus had no effect on color development. Biofumigation in small boxes immediately after inoculation controlled sour rot, but was ineffective if applied 24 h later. G. citri-aurantii may be less sensitive to the volatile compounds than P. digitatum or escapes exposure within the fruit rind. Biofumigation with M. albus could control decay effectively in storage rooms or shipping packages.  相似文献   

16.
Pythium aphanidermatum (Edson) Fitzp., causing root and crown rot in cucumber, was successfully managed by Lysobacter enzymogenes strain 3.1T8. Greenhouse experiments were performed with cucumber plants grown in rockwool blocks up to 5 weeks with a recirculated nutrient solution. Application of L. enzymogenes 3.1T8 in combination with chitosan (the deacetylated derivative of chitin) reduced the number of diseased plants by 50–100% in four independent experiments relative to the Pythium control. Application of chitosan or the bacterial inoculant alone was not effective. Washed bacterial cells plus chitosan inhibited Pythium-induced disease, but the supernatant without bacterial cells combined with chitosan was not effective. The most effective and convenient type of commercially available chitosan was selected. Chitosan disappeared from the hydroponic system within 24 h after application, which we attribute to enzyme expression of L. enzymogenes 3.1T8 induced by the exposure to chitosan. Plate counts of the nutrient solution on a general bacterial medium showed the dominance of the inoculated strain, and an increased bacterial population growing on chitin and chitosan as single carbon source. The population density of L. enzymogenes 3.1T8 on the cucumber roots was investigated with a strain specific real-time TaqMan PCR. Highest chitosan concentrations applied (0.1 and 0.03 g/plant) resulted in the highest numbers of L. enzymogenes 3.1T8 present on roots; i.e. 108–109 cells/g root. Substantially higher numbers of bacterial cells were observed by scanning electron microscopy after application of chitosan; no morphological or other qualitative differences were found. The results indicate that addition of chitosan enhanced the biocontrol efficacy of L. enzymogenes 3.1T8; either chitosan serves as C- and N-source for the antagonist, induces antagonistic gene expression, or both.  相似文献   

17.
Yedidia  Iris  Srivastva  Alok K  Kapulnik  Yoram  Chet  Ilan 《Plant and Soil》2001,235(2):235-242
The potential of the biocontrol agent Trichoderma harzianum strain T-203 to induce a growth response in cucumber plants was studied in soil and under axenic hydroponic growth conditions. When soil was amended with T. harzianum propagules, a 30% increase in seedling emergence was observed up to 8 days after sowing. On day 28, these plants exhibited a 95 and 75% increase in root area and cumulative root length, respectively, and a significant increase in dry weight (80%), shoot length (45%) and leaf area (80%). Similarly, an increase of 90 and 30% in P and Fe concentration respectively, was observed in T. harzianum inoculated plants. To better characterize the effect of T. harzianum during the early stages of root colonization, experiments were carried out in a gnotobiotic hydroponic system. An increased growth response was apparent as early as 5 days post-inoculation with T. harzianum, resulting in an increase of 25 and 40% in the dry weight of roots and shoots, respectively. Similarly a significant increase in the concentration of Cu, P, Fe, Zn, Mn and Na was observed in inoculated roots. In the shoots of these plants, the concentration of Zn, P and Mn increased by 25, 30 and 70%, respectively. Using the axenic hydroponic system, we showed that the improvement of plant nutritional level may be directly related to a general beneficial growth effect of the root system following T. harzianum inoculation. This phenomenon was evident from 5 days post-inoculation throughout the rest of the growth period, resulting in biomass accumulation in both roots and shoots.  相似文献   

18.
[背景]根腐病在青稞生产中的危害日趋严重,阻碍了青稞根腐病的有效防控及青海省青稞产业的发展。然而人们对青稞根腐病的研究甚少且病原菌不详。[目的]明确青稞根腐病发生的危害、病原及致病性,为青稞根腐病的防控提供理论依据。[方法]采用常规的组织分离法分离青稞根腐病病原,通过形态鉴定与分子鉴定结合的方法对病原进行鉴定,并采用烧杯水琼脂法测定其致病性。[结果]共分离得到4株青稞根腐病病原菌,鉴定为Clonostachys rosea,有较强的致病性且致病性差异显著,经柯赫氏法则验证为青稞根腐病病原菌,并且是一种新的青稞根腐病病原,该类根腐病也是一种新的根腐类病害,在国内外属首次发现。[结论]Clonostachys rosea可引起青稞根腐病且致病性强。  相似文献   

19.
[背景] 菌核病是北细辛根部主要病害之一,木霉菌作为目前应用最广泛的生物防治真菌,利用木霉菌防治北细辛菌核病是目前研究的热点。[目的] 通过稀释分离法对健康北细辛植株根际土壤进行菌株分离,以期筛选出有效拮抗北细辛菌核病的生防木霉菌。[方法] 以北细辛菌核病菌为靶标菌,采用平板对峙培养、挥发性与非挥发性物质抑菌的方法对分离得到的木霉菌进行筛选,采用生长速率法对筛选出的木霉菌的发酵液进行抑菌效果测定,并采用硫代巴比妥酸法测定筛选出的木霉对北细辛菌核病菌的丙二醛(Malondialdehyde,MDA)含量、紫外吸收法测定过氧化氢酶(Catalase,CAT)活性、氮蓝四唑法测定超氧化物歧化酶(Superoxide Dismutase,SOD)活性、愈创木酚法测定过氧化物酶(Peroxidase,POD)活性的影响。[结果] 从土壤中分离出木霉菌共14株,通过形态学和ITS-RPB2双基因联合构建系统发育树,鉴定其为哈茨木霉(Trichoderma harzianum)、钩状木霉(Trichoderma hamatum)、拟康氏木霉(Trichoderma koningiopsis)、深绿木霉(Trichoderma atroviride)、短密木霉(Trichoderma brevicompactum)和装絮木霉(Trichoderma tomentosum)。对峙培养试验表明,钩状木霉A26、拟康氏木霉B30、钩状木霉C6、哈茨木霉A17对北细辛菌核病菌抑制率均在90%以上,挥发性物质抑制测定结果显示钩状木霉C6抑制率最高,为53.73%±0.07%,木霉菌的非挥发性物质抑菌作用较强,哈茨木霉A17、钩状木霉A26、钩状木霉C6的非挥发性物质对细辛菌核病菌的抑制率均在75%以上,而拟康氏木霉B30抑制率可达100%。因此,筛选出的哈茨木霉A17、钩状木霉A26、拟康氏木霉B30、钩状木霉C6为拮抗效果较强的生防木霉菌,这4株木霉菌的发酵液对北细辛菌核病菌的抑制率分别为56.33%±0.12%、77.22%±0.06%、82.28%±0.03%、46.20%±0.04%。经这4株木霉菌的非挥发性物质处理7 d后,菌核病菌MDA含量显著增加,钩状木霉A26是对照组的7.7倍,最为显著;菌核病菌抗氧化酶活性均降低,与对照组相比,CAT、SOD、POD活性分别下降了19.67%-75.84%、4.71%-68.71%和3.57%-67.86%。[结论] 从北细辛健康植株根际土壤中分离的木霉菌株哈茨木霉A17、钩状木霉A26、拟康氏木霉B30、钩状木霉C6对北细辛菌核病菌均有较好的抑制效果,可用于北细辛菌核病的生物防治。  相似文献   

20.
恶劣环境下,人工海防林因面临养分胁迫而经营困难。为探讨盐、磷胁迫对主要海防林树种木麻黄和台湾相思种子萌发及生长的影响,该研究分别用不同浓度的NaCl(盐)和KH2PO4(磷)溶液处理种子和浇灌幼苗,测定种子萌发和幼苗生长指标。结果表明:(1)高盐胁迫显著抑制种子萌发,对幼苗生长有一定影响,但两种植物影响程度不同;台湾相思种子萌发耐盐性高于木麻黄,前者相对盐害率最大值为23.03%,后者为89.15%;随着盐浓度增加,木麻黄和台湾相思种子的发芽率、发芽势、发芽指数和活力指数均降低,对应最大值分别为38.70%、34.67%、18.70、0.055和76.67%、62.22%、48.46、6.11。(2)两种植物的株高和根长随盐浓度增加而降低,木麻黄和台湾相思株高分别为12.29~6.01 mm和48.27~17.33 mm,根长分别为8.57~1.45 mm和33.41~5.88 mm;台湾相思根、茎、叶生物量及根冠比均随盐浓度的增加逐渐减小,木麻黄各处理差异较小。(3)台湾相思的种子和幼苗较木麻黄更耐低磷环境,二者最适磷浓度存在差异;木麻黄种...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号