首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Frequencies and morphological and chronological distributions of enamel hypoplasias are presented by tooth type (permanent I1 to M2s), based on a sample of 30 prehistoric Amerindians with complete and unworn dentitions. There is nearly a tenfold variation in frequency of defects by tooth, ranging from 0.13 per mandibular second molar to 1.27 per maxillary central incisor. The six anterior teeth average between 0.70 and 1.27 defects/tooth, whereas the eight posterior teeth average between 0.43 and 0.13 defects/tooth. Earlier developing teeth, such as incisors, have earlier peak frequencies of defects (2.0-2.5 years), while later developing teeth, such as second molars, have subsequent peak frequencies (5.0-6.0 years). These variations are relevant when comparing hypoplasia data based on different teeth. Differences in hypoplasia frequencies among teeth are not solely due to variation in time of crown development, as is usually reported. Rather, there is evidence for biological gradients in susceptibility to ameloblastic disruption. Anterior teeth are more hypoplastic than posterior teeth. More developmentally stable "polar" teeth are more hypoplastic than surrounding teeth. Polar teeth may be more susceptible to hypoplasias because their developmental timing is less easily disrupted. In all teeth, hypoplasias are most common in the middle and cervical thirds. Crown development and morphological factors, such as enamel prism length and direction, may influence the development and expression of enamel surface defects.  相似文献   

2.
Supernumerary teeth are teeth that are present in addition to normal teeth. Although several hypotheses and some molecular signalling pathways explain the formation of supernumerary teeth, but their exact disease pathogenesis is unknown. To study the molecular mechanisms of supernumerary tooth‐related syndrome (Gardner syndrome), a deeper understanding of the aetiology of supernumerary teeth and the associated syndrome is needed, with the goal of inhibiting disease inheritance via prenatal diagnosis. We recruited a Chinese family with Gardner syndrome. Haematoxylin and eosin staining of supernumerary teeth and colonic polyp lesion biopsies revealed that these patients exhibited significant pathological characteristics. APC gene mutations were detected by PCR and direct sequencing. We revealed the pathological pathway involved in human supernumerary tooth development and the mouse tooth germ development expression profile by RNA sequencing (RNA‐seq). Sequencing analysis revealed that an APC gene mutation in exon 15, namely 4292‐4293‐Del GA, caused Gardner syndrome in this family. This mutation not only initiated the various manifestations typical of Gardner syndrome but also resulted in odontoma and supernumerary teeth in this case. Furthermore, RNA‐seq analysis of human supernumerary teeth suggests that the APC gene is the key gene involved in the development of supernumerary teeth in humans. The mouse tooth germ development expression profile shows that the APC gene plays an important role in tooth germ development. We identified a new mutation in the APC gene that results in supernumerary teeth in association with Gardner syndrome. This information may shed light on the molecular pathogenesis of supernumerary teeth. Gene‐based diagnosis and gene therapy for supernumerary teeth may become available in the future, and our study provides a high‐resolution reference for treating other syndromes associated with supernumerary teeth.  相似文献   

3.
The development and replacement of teeth in the frog Rana temporaria is analyzed by dividing the life cycle of the tooth into a number of stages. These stages are identified by the examination of alizarin whole mounts. The dentition in this species is fairly complete and the percentage of functional loci is approximately 74. The teeth in alternate loci are usually at about the same stage in development. The low percentage of non-functional loci is accounted for by the retention of functional teeth over a large fraction of the total life cycle time and the relatively rapid ankylosis of replacement teeth. It is suggested that tooth replacement is essentially a process which involves teeth in alternate loci and that the replacement waves (which connect alternate loci) run parallel to the longitudinal axis of the jaw and are of infinite length. This basic pattern is obscured by many breaks which occur in the replacement waves. The presence of such breaks may be accounted for by variations in the time intervals between the successive stimuli which initiate the Zahnreihen, or simply by the acceleration or deceleration of the development of teeth in one or more loci.  相似文献   

4.
Development of teeth on the pharyngeal bones of roach Rutilus rutilus and the effect of thyroid hormones on this development are investigated. The addition of exogenous triiodothyronine leads to accelerated development of the teeth, but the deficit of triiodothyronine (provoked by the addition of thiourea in the media) stimulates the retardation of this development. Change of developmental rate of the organism leads to change in the definitive state of the pharyngeal teeth formula. Owing to accelerated development, the number of teeth significantly decreases, and the formulas 5–5, 5–4, and 4–4 appear instead of the typical formula 6–5 in the control group and in the fish from natural populations. Retarded development of the organism leads to increased frequency of occurrence of the formula 6–6. The directed asymmetry in the numbers of pharyngeal teeth with the formula (6–5), most likely, is connected with different types of teeth development on the left and right pharyngeal bones.  相似文献   

5.
Although the importance of cell adhesion in morphogenesis is already known for quite some time, there are remarkably few studies on the distribution and function of adhesion molecules in tooth development. We have chosen the zebrafish to study the role of specific cell adhesion molecules in the development and renewal of teeth. Zebrafish lack an oral dentition but have pharyngeal teeth which are renewed throughout life. Here we focus on the expression of E (epithelial)‐cadherin during the development of the first tooth to develop in the dentition, ‘initiator tooth’ 4V1. E‐cadherin is expressed exclusively in the pharyngeal epithelium and in the enamel organ throughout all stages of development of this first‐generation tooth. Further studies are needed to compare this expression pattern with protein distribution, both in this and other first‐generation teeth as well as in replacement teeth.  相似文献   

6.
Mammalian dentitions consist of different shapes/types of teeth that are positioned in different regions of the jaw (heterodont) whereas in many fish and reptiles all teeth are of similar type (homodont). The process by which heterodont dentitions have evolved in mammals is not understood. In many teleosts teeth develop in the pharynx from endoderm (endodermal teeth), whereas mammalian teeth develop from the oral ectoderm indicating that teeth can develop (and thus possibly evolve) via different mechanisms. In this article, we compare the molecular characteristics of pharyngeal/foregut endoderm with the molecular characteristics of oral ectoderm during mouse development. The expression domains of Claudin6, Hnf3β, α‐fetoprotein, Rbm35a, and Sox2 in the embryonic endoderm have boundaries overlapping the molar tooth‐forming region, but not the incisor region in the oral ectoderm. These results suggest that molar teeth (but not incisors) develop from epithelium that shares molecular characteristics with pharyngeal endoderm. This opens the possibility that the two different theories proposed for the evolution of teeth may both be correct. Multicuspid (eg. molars) having evolved from the externalization of endodermal teeth into the oral cavity and monocuspid (eg. incisors) having evolved from internalization of ectodermal armour odontodes of ancient fishes. The two different mechanisms of tooth development may have provided the developmental and genetic diversity on which evolution has acted to produce heterodont dentitions in mammals. genesis 48:382–389, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
Development of the upper dentition in Alligator mississippiensis was investigated using a close series of accurately staged and aged embryos, hatchlings, and young juveniles up to 11 days posthatching, as well as some young and old adult specimens. Studies from scanning electron microscopy, light microscopy, acetate and computer reconstructions, radiography and macroscopy were combined to elucidate the details of embryonic dental development, tooth initiation pattern, dentitional growth, and erupted functional dentition. The results were compared with those from the lower jaw and related to the development of other craniofacial structures. Approximately 17 early teeth in each jaw half develop as surface teeth, of which 13 project for 1 to 12 days before sinking into the mesenchyme. The first three teeth initiate directly from the oral epithelium at Ferguson stages 14-15 (days 15-19 after egg laying), before there is any local trace of dental lamina formation. All other teeth develop from a dental prolamina or lamina; and with progressive lamina development, submerged teeth initiate from the aboral end leading to the formation of replacement teeth. All teeth form dentin matrix, but 12 early teeth do not form enamel. Approximately 20 embryonic teeth are resorbed, 6 are transitional, and 42 function for longer periods after hatching. The embryonic tooth initiation pattern (illustrated by defining a tooth position formula) does not support the previous models of Odontostichi, Zahnreihen, and Tooth Families, each of which postulates perfect regularity. Up to three interstitial tooth positions develop between sites of primary tooth initiation, and families with up to five generations at hatching are at first arbitrarily defined.  相似文献   

10.
The development of pharyngeal dentition was observed in the big head,Aristichthys nobilis, which is one of the hypophthalmichthyines of the cyprinids. This fish has the C-type larval dentition, in which no teeth ever occur at the position An3, and in which the first tooth at the position An2 is on the third replacement wave. So the positions Pol, Ce0, Ani and An2 in the larval dentition correspond to the positions A4, A3, A2 and A1 in the adult dentition, respectively. The initial tooth at each position is a conical one. The conical teeth are then changed to ones bearing a narrow grinding surface with a hook at the tip and some denticles on the margins. These teeth are of theLeuciscus stage. Tn the following teeth, the grinding surface is expanded, and the denticles are increased in number and distributed on not only the margins but also the whole grinding surface. These teeth bearing a very broad grinding surface characterize the hypophthalmichthyines. At the positions A2 to A4, the teeth become the hypophthalmichthyine type in the larval period. But the tooth at the position A1 becomes the hypophthalmichthyine type in the juvenile period. The morphological change of teeth in this species is simple although their teeth are highly specialized. We think that this phenomenon gives a hint on their phylogeny.  相似文献   

11.
Elasmobranchs exhibit two distinct arrangements of mineralized tissues in the teeth that are known as orthodont and osteodont histotypes. Traditionally, it has been said that orthodont teeth maintain a pulp cavity throughout tooth development whereas osteodont teeth are filled with osteodentine and lack a pulp cavity when fully developed. We used light microscopy, scanning electron microscopy, and high‐resolution micro‐computed tomography to compare the structure and development of elasmobranch teeth representing the two histotypes. As an example of the orthodont histotype, we studied teeth of the blue shark, Prionace glauca (Carcharhiniformes: Carcharhinidae). For the osteodont histotype, we studied teeth of the great white shark, Carcharodon carcharias (Lamniformes: Lamnidae). We document similarities and differences in tooth development and the microstructure of tissues in these two species and review the history of definitions and interpretations of elasmobranch tooth histotypes. We discuss a possible correlation between tooth histotype and tooth replacement and review the history of histotype differentiation in sharks. We find that contrary to a long held misconception, there is no orthodentine in the osteodont teeth of C. carcharias. J. Morphol. 276:797–817, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

12.
13.
The accuracy of information obtained from such a simple procedure as looking in the mouth as a measure of child development led to this review. The relationship between dental and physical development has been known for many years. Methods of assessing maturity by counting erupted teeth are described. Measurements taken on two boys illustrated this hypothesis, and from these the close correlation between height and weight, bone age and dental age is shown. It is suggested that physicians and dentists should record the number of erupted teeth on interval examinations, since the pattern of eruption and calcification of teeth may present the first indication of developmental retardation.  相似文献   

14.
The histology of premaxillary teeth of Colossoma sp. from the Solimöes Formation of Northern Brazil is described, in comparison with Recent material. Analysis by light and scanning electron microscopy shows that they share with those of the serrasalminids, histological (though not anatomical) features of carnivorous fishes. The enameloid in both groups displays surface-parallel images of calcified fibres along the periphery of the teeth while internally, these images present a random distribution. Such similarities suggest that both the serrasalminids and myleinids may have evolved from carnivorous ancestors. The serrasalminids remain carnivorous, while the herbivorous habit of the myleinids may have been acquired secondarily. This change of diet is probably related to changes in the shape of the teeth which are used for crushing fruits, seeds and leaves. The teeth in adult Colossoma are unicuspid, though not conical. The molar or incisive form of these teeth may have evolved independently from the conical-shaped primitive dentition of the characoids, without passing through any stage of fusion of dental papillae, which is observed in the ontogenetic development of other characoids.  相似文献   

15.
The egg tooth of squamates evolved to facilitate hatching from mineralized eggshells. Squamate reptiles can assist their hatching with a single unpaired egg tooth (unidentates) or double egg teeth (geckos and dibamids). Egg tooth ontogeny in two gekkotan species, the leopard gecko Eublepharis macularius and the mourning gecko Lepidodactylus lugubris, was compared using microtomography, scanning electron microscopy, and light microscopy. Investigated species are characterized by different hardnesses of their eggshells. Leopard geckos eggs have a relatively soft and flexible parchment (leathery) shell, while eggshells of mourning geckos are hard and rigid. Embryos of both species, like other Gekkota, have double egg teeth, but the morphology of these structures differs between the investigated species. These differences in shape, localization, and spatial orientation were present from the earliest stages of embryonic development. In mourning gecko, anlagen of differentiating egg teeth change their position on the palate during embryonic development. Initially they are separated by condensed mesenchyme, but later in development, their enamel organs are connected. In leopard geckos, the localization of egg tooth germs does not change, but their spatial orientation does. Egg teeth of this species shift from inward to outward orientation. This is likely related to differences in structure and mechanical properties of eggshells in the studied species. In investigated species, two hatching mechanisms are possible during emergence of young individuals. We speculate that mourning geckos break the eggshell through puncturing action with egg teeth, similar to the pipping phase of chick and turtles embryos. Egg teeth of leopard geckos cut egg membranes similarly to most squamates. Our results also revealed differences in egg tooth implantation between Gekkota and Unidentata: gekkotan egg teeth are subthecodont (in shallow sockets), while those in unidentates are acrodont (attached to the top of the alveolar ridge). © 2020 Wiley Periodicals LLC  相似文献   

16.
Morphogenetic causes of the origin of true hypsodonty and transformation of bunodont teeth pattern to lophodont one in the rodent evolution are discussed. Wide distribution of these processes in different rodent groups and many other mammals can be explained by the universality of morphogenetic mechanisms of teeth development and by scantiness of their possible transformation pathways.  相似文献   

17.
牙齿发育的过程,是一个连续并且复杂的过程。牙齿发育的分子机制可总结为:通过外胚层来源的上皮和其下方的间充质相互作用,来调节牙齿的形态学发生。成纤维细胞生长因子(Fibroblast Growth Factor,FGF)是一类肽类分子,它们通过与细胞膜上特异性受体的结合来发挥作用,以此来调节细胞生长。并且具有多种生物活性,是胚胎生长发育和成体组织创伤修复中最具有重要功能的细胞因子。通过众多科学研究,牙齿发育与FGF信号通路的关系已经研究的比较透彻,在牙齿的生长发育过程中,FGF发挥了关键性作用。  相似文献   

18.
Teeth develop as ectodermal appendages from epithelial and mesenchymal tissues. Tooth organogenesis is regulated by an intricate network of cell-cell signaling during all steps of development. The dental hard tissues, dentin, enamel, and cementum, are formed by unique cell types whose differentiation is intimately linked with morphogenesis. During evolution the capacity for tooth replacement has been reduced in mammals, whereas teeth have acquired more complex shapes. Mammalian teeth contain stem cells but they may not provide a source for bioengineering of human teeth. Therefore it is likely that nondental cells will have to be reprogrammed for the purpose of clinical tooth regeneration. Obviously this will require understanding of the mechanisms of normal development. The signaling networks mediating the epithelial-mesenchymal interactions during morphogenesis are well characterized but the molecular signatures of the odontogenic tissues remain to be uncovered.  相似文献   

19.
20.
The Japanese Ayu, Plecoglossus altivelis Temminck & Schlegel is the sole representative of the salmoniform family Plecoglossidae. The Ayu is remarkable for its dentition which in adults comprises groups of diagonally arranged comb-like teeth in the outer tissue of the jaws. In juveniles (below 63 mm SL) the teeth are attached normally to the jaws. The transition of tooth form is correlated with a switch from zooplanktivory to algal or aufwuchs grazing. The present study follows the development of the teeth, jaws, oral cavity ethmoid and suspensorial elements in specimens ranging in size from 41–70 mm SL. The possible mode of function of the adult dentition is discussed. Comparisons are made with the jaws of other salmoniform fishes and a suite of supposed apomorphic characters are identified which are also shared with certain genera of the family Osmeridae, thus supporting the ideas of others that the Osmeridae is a paraphyletic assemblage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号