首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have reported previously that squalene is the major radiolabeled nonsaponifiable lipid product derived from [3H]acetate in short term incubations of frog retinas (Keller, R. K., Fliesler, S. J., and Nellis, S. W. (1988) J. Biol. Chem. 263, 2250-2254). In the present study, we demonstrate that newly synthesized squalene is incorporated into rod outer segments under similar in vitro conditions. We show further that squalene is an endogenous constituent of frog rod outer segment membranes; its concentration is approximately 9.5 nmol/mumol of phospholipid or about 9% of the level of cholesterol. Pulse-chase experiments with radiolabeled precursors revealed no metabolism of outer segment squalene to sterols in up to 20 h of chase. Taken together with our previous absolute rate studies (Keller, R. K., Fliesler, S. J., and Nellis, S. W. (1988) J. Biol. Chem. 263, 2250-2254), these results suggest that most, if not all, of the squalene synthesized by the frog retina is transported to rod outer segments. Synthesis of protein is not required for squalene transport since puromycin had no effect on squalene incorporation into outer segments. Conversely, inhibition of isoprenoid synthesis with mevinolin had no effect on the incorporation of opsin into the outer segment. These latter results support the conclusion that the de novo synthesis and subsequent intracellular trafficking of opsin and isoprenoid lipids destined for the outer segment occur via independent mechanisms.  相似文献   

2.
Statins and nitrogenous bisphosphonates (NBP) inhibit 3-hydroxy-3-methylglutaryl-coenzyme-A reductase (HMGCR) and farnesyl diphosphate synthase (FDPS), respectively, leading to depletion of farnesyl diphosphate (FPP) and disruption of protein prenylation. Squalene synthase (SQS) utilizes FPP in the first committed step from the mevalonate pathway toward cholesterol biosynthesis. Herein, we have identified novel bisphosphonates as potent and specific inhibitors of SQS, including the tetrasodium salt of 9-biphenyl-4,8-dimethyl-nona-3,7-dienyl-1,1-bisphosphonic acid (compound 5). Compound 5 reduced cholesterol biosynthesis and lead to a substantial intracellular accumulation of FPP without reducing cell viability in HepG2 cells. At high concentrations, lovastatin and zoledronate impaired protein prenylation and decreased cell viability, which limits their potential use for cholesterol depletion. When combined with lovastatin, compound 5 prevented lovastatin-induced FPP depletion and impairment of protein farnesylation. Compound 5 in combination with the NBP zoledronate completely prevented zoledronate-induced impairment of both protein farnesylation and geranylgeranylation. Cotreatment of cells with compound 5 and either lovastatin or zoledronate was able to significantly prevent the reduction of cell viability caused by lovastatin or zoledronate alone. The combination of an SQS inhibitor with an HMGCR or FDPS inhibitor provides a rational approach for reducing cholesterol synthesis while preventing nonsterol isoprenoid depletion.  相似文献   

3.
Mitochondrial μ-calpain and apoptosis-inducing factor (AIF)-dependent photoreceptor cell death has been seen in several rat and mouse models of retinitis pigmentosa (RP). Previously, we demonstrated that the specific peptide inhibitor of mitochondrial μ-calpain, Tat-µCL, protected against retinal degeneration following intravitreal injection or topical eye-drop application in Mertk gene-mutated Royal College of Surgeons rats, one of the animal models of RP. Because of the high rate of rhodopsin mutations in RP patients, the present study was performed to confirm the protective effects of Tat-µCL against retinal degeneration in rhodopsin transgenic S334ter and P23H rats. We examined the effects of intravitreal injection or topical application of the peptide on retinal degeneration in S334ter and P23H rats by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) assay, electroretinogram (ERG), immunohistochemistry for AIF, and histological staining. In S334ter rats, we found that intravitreal injection or topical application of the peptide prevented photoreceptor cell death from postnatal (PN) 15 to 18 days, the time of early-stage retinal degeneration. Topical application of the peptide also delayed attenuation of ERG responses from PN 28 to 56 days. In P23H rats, topical application of the peptide protected against photoreceptor cell death and nuclear translocation of AIF on PN 30, 40, and 50 days, as the primary stages of degeneration. We observed that topical application of the peptide inhibited the thinning of the outer nuclear layer and delayed ERG attenuations from PN 30 to 90 days. Our results demonstrate that the mitochondrial μ-calpain and AIF pathway is involved in early-stage retinal degeneration in rhodopsin transgenic S334ter and P23H rats, and inhibition of this pathway shows curative potential for rhodopsin mutation-caused RP.  相似文献   

4.
The sterol synthesis inhibitor 6-fluoromevalonate (Fmev) was used to explore the role of mevalonate products in lymphocyte proliferation. Fmev blocks the synthesis of isopentenyl pyrophosphate and all more distal products in the sterol pathway. When cells were cultured in lipoprotein-deficient medium, Fmev (200 microM) completely inhibited mitogen-stimulated human lymphocyte proliferation, quantified by measuring DNA synthesis. The addition of low density lipoprotein (LDL) restored lymphocyte responses to normal, whereas mevalonate was totally ineffective. Similar results were obtained with concentrations of Fmev up to 1 mM. These results contrast with those observed when sterol biosynthesis was blocked with lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase. When lymphocyte proliferation was blocked with lovastatin (5 microM), either high concentrations of mevalonate or LDL together with low concentrations of mevalonate was required to restore responses. In contrast, neither LDL nor low concentrations of mevalonate when alone was able to restore lymphocyte DNA synthesis in cultures blocked with 5 microM lovastatin. The effect of Fmev on the capacity of exogenous mevalonate to restore proliferation of lovastatin-blocked lymphocytes was directly examined. Fmev had no effect on the capacity of LDL plus low concentrations of mevalonate to restore DNA synthesis to lovastatin-blocked lymphocytes, indicating that the synthesis of the necessary factor from mevalonate was unaltered by Fmev. Fmev profoundly blocked lymphocyte endogenous sterol synthesis, decreasing incorporation of radiolabeled acetate into digitonin-precipitable sterols by up to 98%. LDL did not alter the capacity of Fmev to block sterol synthesis. The possibility that Fmev allowed shunting of endogenous mevalonate into essential lipid products was assessed by examining the incorporation of radiolabeled mevalonate. Fmev (200 microM) inhibited the incorporation of mevalonate into all lipids, including ubiquinone, dolichol, and other non-sterol lipids by up to 98%, and this was not altered by LDL. Furthermore, Fmev (200 microM) suppressed the incorporation of radiolabeled mevalonate into protein by up to 97%. These data confirm that a product of mevalonate is essential for cell proliferation. However, the results indicate that the required product is directly synthesized from mevalonate or mevalonate phosphates rather than from a more distal isoprenoid metabolite.  相似文献   

5.
We have examined cyclic GMP concentrations, guanylate cyclase activities, and cyclic GMP phosphodiesterase (PDE) activities in developing retinas of congenic mice with different allelic combinations at the retinal degeneration (rd) and retinal degeneration slow (rds) loci. Although guanylate cyclase activities were found to be uniformly low in the mutant retinas, striking differences in PDE activity and cyclic GMP levels were observed in retinas of the various genotypes. Homozygous rds mice, which lack receptor outer segments, showed reduced retinal PDE activity and cyclic GMP concentration in comparison to normal animals. In heterozygous rds/+ mice with abnormal outer segments, the levels were intermediate. In retinas of homozygous rd mice, PDE activity was lower than in rds retinas and cyclic GMP levels were much higher. In mice homozygous for both rd and rds genes, retinal PDE activities were even lower than in single homozygous rd mice; the cyclic GMP level reached the same high value as in the rd animals, persisted for a longer time at this high level, and did not correlate with the rate of photoreceptor cell loss. Thus, a marked variation in PDE activity appears to be the major manifestation of abnormal outer segment differentiation and eventual degeneration of photoreceptor cells in these neurological mutants. An increased cyclic GMP level seems to be an essential corollary in the expression of the rd gene even in the absence of outer segments, but it appears unlikely that an abnormally high nucleotide level in itself causes photoreceptor cell death.  相似文献   

6.
Systemic injection of [2-3H]myo-inositol into frogs resulted in the incorporation of more than half of the label into glycerolipid classes other than phosphoinositides in retinal rod outer segment membranes. Following methanolysis and differential extraction of isolated lipid classes, radioactivity was recovered primarily in the aqueous phase. After phospholipase C hydrolysis of the total membrane lipids, 97% of the radioactivity was extractable with organic solvents, and 70% of the label in lipids was in 1,2-diglycerides. These results indicate that the label was incorporated primarily into the glyceryl moiety of the membrane glycerolipids. Intraocular injection of frog eyes or in vitro incubation of frog retinas with [2-3H]myo-inositol resulted in the incorporation of radioactivity almost exclusively into phosphoinositides in rod outer segment membranes. Incubation of retinas with [U-14C]glucuronic acid did not result in the formation of labeled retinal lipids. These results suggest that myo-inositol can be catabolized systemically to precursors utilized for glycerolipid biosynthesis in the retina.  相似文献   

7.
Posttranslational modification by covalent attachment of polyisoprene intermediates to a carboxyterminal CAAX-box motif is required for the biologic function of proteins such as p21ras, the supergene family of ras-related proteins, nuclear lamins, and subunits of heterotrimeric G-proteins. Cells grown in the presence of lovastatin, which inhibits HMG-CoA reductase and prevents synthesis of intermediates required for protein prenylation, develop a round, refractile morphology. Our data indicate that this is due to the selective loss of actin cables without gross changes in the microtubular lattice or intermediate filament structure. Microinjection of a competitive peptide inhibitor of protein prenyltransferases into the cytoplasm of cells induces an identical change in morphology with loss of actin cables. Mevalonate (MVA) reverses the lovastatin-induced morphologic change by inducing a rapid repolymerization of actin cables with coincident reversion to the flat morphology. Furthermore, microinjection of farnesyl-pyrophosphate or geranylgeranyl-pyrophosphate into lovastatin-treated cells also results in rapid morphologic reversion. The morphologic reversion induced by MVA requires the presence of serum, and is independent of extracellular calcium. The addition of cycloheximide to the growth medium prevents lovastatin-induced loss of actin cables, and causes morphologic reversion of lovastatin-treated cells by a mechanism that is independent of MVA. A1F4- induces morphologic reversion in a manner indistinguishable from MVA. These data indicate that prenylated protein(s) play a critical role in regulating the state of intracellular actin, and that GGPP can rescue the lovastatin-induced morphologic phenotype in the absence of upstream intermediates of cholesterol biosynthesis. We have begun to dissect the signaling events that mediate this pathway.  相似文献   

8.
Delay of photoreceptor degeneration in tubby mouse by sulforaphane   总被引:1,自引:0,他引:1  
In this study, the homozygous tubby (tub/tub) mutant mouse, with an early progressive hearing loss and photoreceptor degeneration, was used as a model system to examine the effects of systemic administration of a naturally occurring isothiocyanate, sulforaphane (SF), on photoreceptor degeneration. Several novel observations have been made: (i) the mRNA and protein expression of thioredoxin (Trx), thioredoxin reductase (TrxR) and NF-E2-related factor-2 (Nrf2) were significantly reduced even prior to photoreceptor cell degeneration in the retinas of tub/tub mice, suggesting that retinal expression of the Trx system is impaired and that Trx regulation is involved in the pathogenesis of retinal degeneration in this model, (ii) intraperitoneal injection with SF significantly up-regulated retinal levels of Trx, TrxR, and Nrf2, and effectively protected photoreceptor cells in tub/tub mice as evaluated functionally by electroretinography and morphologically by quantitative histology, and (iii) treatment with PD98059, an inhibitor of extracellular signal-regulated kinases (ERKs), blocked SF-mediated ERKs activation and up-regulation of Trx/TrxR/Nrf2 in the retinas of tub/tub mice. This suggests that ERKs and Nrf2 are involved in the mechanism of SF-mediated up-regulation of the Trx system to protect photoreceptor cells in this model. These novel findings are significant and could provide important information for the development of a unique strategy to prevent sensorineural deafness/retinal dystrophic syndromes and also other forms of inherited neurological disorders.  相似文献   

9.
We previously reported that propiconazole strongly inhibits cholesterol synthesis, but not cell division in a stimulated cell, the human lymphocyte cultured with phytohemagglutinin, showing that newly synthesized cholesterol is not necessary for cell division. In this study we labeled the L2C leukemic guinea pig lymphocyte, a naturally stimulated cell, with [2-14C]acetate, and compared the composition of newly synthesized lipids isolated from nuclei and whole cells (or microsomes). We observed that the proportion of cholesterol in labeled non-saponifiable lipids extracted from nuclei was lower than in non-saponifiable lipids isolated from whole cells, whereas the proportion of squalene and polar lipids was higher. By analyzing total lipid extracts, the polar lipids were identified as alkylglycerols, and the above mentioned distribution of constituents was confirmed. The identification of alkylglycerols was also supported by the comparison of radioactive lipid composition after labeling cells with three different lipid precursors: [2-14C]mevalonate, [2-14C]acetate and [2-14C]stearate. When cells were labeled in the presence of dodecylimidazole, the percentage of squalene and alkylglycerols decreased in nuclear lipids, but was not altered when cells were cultured in the presence of propiconazole, a cholesterol synthesis inhibitor which does not affect cell division of human stimulated lymphocytes. We have shown that dodecylimidazole inhibited alkylglycerol biosynthesis and squalene uptake by the nucleus, suggesting that these compounds could play a role in the regulation of cell division.  相似文献   

10.
We have previously shown that lovastatin, an HMG-CoA reductase inhibitor, induces apoptosis in rat brain neuroblasts. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) are implicated in regulation of neuronal apoptosis. In this work, we investigated the role of JNK and p38 MAPK in neuroblast apoptosis induced by lovastatin. We found that lovastatin induced the activation of JNK, but not p38 MAPK. It also induced c-Jun phosphorylation with a subsequent increase in activator protein-1 (AP-1) binding, AP-1-mediated gene expression and BimEL protein levels. The effects of lovastatin were prevented by mevalonate. Pre-treatment with iJNK-I (a selective JNK inhibitor) prevented the effect of lovastatin on both neuroblast apoptosis and the activation of the JNK cascade. Furthermore, we found that the activation of the JNK signalling pathway triggered by lovastatin is accompanied by caspase-3 activation which is also inhibited by iJNK-I pre-treatment. Finally, a specific inhibitor of p38 MAPK, SB203580, had no effect on lovastatin-induced neuroblast apoptosis. Taken together, our data suggest that the activation of the JNK/c-Jun/BimEL signalling pathway plays a crucial role in lovastatin-induced neuroblast apoptosis. Our findings may also contribute to elucidate the intracellular mechanisms involved in the central nervous system side effects associated with statin therapy.  相似文献   

11.
We have previously shown that lovastatin induces apoptosis in spontaneously immortalized rat brain neuroblasts. Focal adhesion proteins and protein kinase Cdelta (PKCdelta) have been implicated in the regulation of apoptosis. We found that lovastatin exposure induced focal adhesion kinase, Crk-associated substrate (p130(Cas)), PKCdelta cleavage and caspase-3 activation in a concentration-dependent manner. Lovastatin effects were fully prevented by mevalonate. The cleavage of p130(Cas) was almost completely inhibited by z-DEVD-fmk, a specific caspase-3 inhibitor, and z-VAD-fmk, a broad spectrum caspase inhibitor, indicating that cleavage is mediated by caspase-3. In contrast, the lovastatin-induced cleavage of PKCdelta was only blocked by z-VAD-fmk suggesting that PKCdelta cleavage is caspase-dependent but caspase-3-independent. Additionally, z-VAD-fmk partially prevented lovastatin-induced neuroblast apoptosis. The present data show that lovastatin may induce neuroblast apoptosis by both caspase-dependent and independent pathways. These findings may suggest that the caspase-dependent component leading to the neuroblast cell death is likely to involve the cleavage of focal adhesion proteins and PKCdelta, which may be partially responsible for some biochemical features of neuroblast apoptosis induced by lovastatin.  相似文献   

12.
Retinal ganglion cell degeneration underlies the pathophysiology of diseases affecting the retina and optic nerve. Several studies have previously evidenced the anti-apoptotic properties of the bile constituent, tauroursodeoxycholic acid, in diverse models of photoreceptor degeneration. The aim of this study was to investigate the effects of systemic administration of tauroursodeoxycholic acid on N-methyl-D-aspartate (NMDA)-induced damage in the rat retina using a functional and morphological approach. Tauroursodeoxycholic acid was administered intraperitoneally before and after intravitreal injection of NMDA. Three days after insult, full-field electroretinograms showed reductions in the amplitudes of the positive and negative-scotopic threshold responses, scotopic a- and b-waves and oscillatory potentials. Quantitative morphological evaluation of whole-mount retinas demonstrated a reduction in the density of retinal ganglion cells. Systemic administration of tauroursodeoxycholic acid attenuated the functional impairment induced by NMDA, which correlated with a higher retinal ganglion cell density. Our findings sustain the efficacy of tauroursodeoxycholic acid administration in vivo, suggesting it would be a good candidate for the pharmacological treatment of degenerative diseases coursing with retinal ganglion cell loss.  相似文献   

13.
The objective of this study was to test the hypothesis that cytoskeletal actin fragmentation is mediated through caspase-2, specifically examining the ability of a caspase-2 inhibitor to interfere with actin fragmentation, in comparison with a caspase-3 inhibitor. Cardiomyocytes were cultured from embryonic chick heart. The fine structural element of cellular F-actin was visualized by staining cardiomyocytes with NBD-phallacidin. Lovastatin induced a dramatic and concentration-dependent loss of intact F-actin. The selectivity of this effect of lovastatin was demonstrated by the absence of similar changes in F-actin when cardiomyocytes were treated with the apoptotic stimulus palmitate, the metabolism of which produces acetyl CoA, the early substrate of cholesterol synthesis, through the mevalonate pathway. FACS analysis of NBD-phallacidin-stained cells was used to quantify the amount of F-actin loss. Actin fragmentation produced by lovastatin was operative through a caspase-2 pathway, as the caspase-2 inhibitor, z-VDVAD-fmk, significantly blocked lovastatin-induced changes in F-actin, but the caspase-3 inhibitor, Ac-DEVD-CHO, did not. Interruption of the mevalonate pathway was in part responsible for lovastatin's action, as the downstream metabolite mevalonate partially reversed the effect of lovastatin on actin fragmentation. These data indicate a previously unrecognized link between cytoskeletal actin and caspase-2.  相似文献   

14.
Prenylation of mammalian Ras protein in Xenopus oocytes.   总被引:1,自引:1,他引:0       下载免费PDF全文
R Kim  J Rine    S H Kim 《Molecular and cellular biology》1990,10(11):5945-5949
Ras protein requires an intermediate of the cholesterol biosynthetic pathway for posttranslational modification and membrane anchorage. This step is necessary for biological activity. Maturation of Xenopus laevis oocytes induced by an oncogenic human Ras protein can be inhibited by lovastatin or compactin, inhibitors of the synthesis of mevalonate, an intermediate of cholesterol biosynthesis. This inhibition can be overcome by mevalonic acid or farnesyl diphosphate, a cholesterol biosynthetic intermediate downstream of mevalonate, but not by squalene, an intermediate after farnesyl pyrophosphate in the pathway. This study supports the idea that in Xenopus oocytes, the Ras protein is modified by a farnesyl moiety or its derivative. Furthermore, an octapeptide with the sequence similar to the C-terminus of the c-H-ras protein inhibits the biological activity of Ras proteins in vivo, suggesting that it competes for the enzyme or enzymes responsible for transferring the isoprenoid moiety (prenylation) in the oocytes. This inhibition of Ras prenylation by the peptide was also observed in vitro, using both Saccharomyces cerevisiae and Xenopus oocyte extracts. These observations show that Xenopus oocytes provide a convenient in vivo system for studies of inhibitors of the posttranslational modification of the Ras protein, especially for inhibitors such as peptides that do not penetrate cell membranes.  相似文献   

15.
16.
Intermediary metabolites of cholesterol synthetic pathway are involved in cell proliferation. Lovastatin, an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase, blocks mevalonate synthesis, and has been shown to inhibit mesangial cell proliferation associated with diverse glomerular diseases. Since inhibition of farnesylation and plasma membrane anchorage of the Ras proteins is one suggested mechanism by which lovastatin prevents cellular proliferation, we investigated the effect of lovastatin and key mevalonate metabolites on the activation of mitogen-activated protein kinase (MAP kinase) and Ras in murine glomerular mesangial cells. The preincubation of mesangial cells with lovastatin inhibited the activation of MAP kinase stimulated by either FBS, PDGF, or EGF. Mevalonic acid and farnesyl-pyrophosphate, but not cholesterol or LDL, significantly prevented lovastatin-induced inhibition of agonist-stimulated MAP kinase. Lovastatin inhibited agonist-induced activation of Ras, and mevalonic acid and farnesylpyrophosphate antagonized this effect. Parallel to the MAP kinase and Ras data, lovastatin suppressed cell growth stimulated by serum, and mevalonic acid and farnesylpyrophosphate prevented lovastatin-mediated inhibition of cellular growth. These results suggest that lovastatin, by inhibiting the synthesis of farnesol, a key isoprenoid metabolite of mevalonate, modulates Ras-mediated cell signaling events associated with mesangial cell proliferation.  相似文献   

17.
Monoterpenes have multiple pharmacological effects on the metabolism of mevalonate. Geraniol, a dietary monoterpene, has in vitro and in vivo anti-tumor activity against several cell lines. We have studied the effects of geraniol on growth, fatty-acid metabolism, and mevalonate metabolism in the human hepatocarcinoma cell line Hep G2. Up to 100 micromol geraniol/L inhibited the growth rate and 3-hydroxymethylglutaryl coenzyme A reductase (HMG-CoA) reductase activity of these cells. At the same concentrations, it increased the incorporation of cholesterol from the medium in a dose-dependent manner. Geraniol-treated cells incorporated less 14C-acetate into nonsaponifiable lipids, inhibiting its incorporation into cholesterol but not into squalene and lanosterol. This is indicative of an inhibition in cholesterol synthesis at a step between lanosterol and cholesterol, a fact confirmed when cells were incubated with 3H-mevalonate. The incorporation of 3H-mevalonate into protein was also inhibited, whereas its incorporation into fatty acid increased. An inhibition of delta5 desaturase activity was demonstrated by the inhibition of the conversion of 14C-dihomo-gamma-linolenic acid into arachidonic acid. Geraniol has multiple effects on mevalonate and lipid metabolism in Hep G2 cells, affecting cell proliferation. Although mevalonate depletion is not responsible for cellular growth, it affects cholesterogenesis, protein prenylation, and fatty-acid metabolism.  相似文献   

18.
Inhibition of a plant sesquiterpene cyclase by mevinolin   总被引:2,自引:0,他引:2  
The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.  相似文献   

19.
The isoprenoid pathway provides several important products for retina function. In this study the sterol and dolichol pathways were investigated in retinas from Rana pipiens in order to assess the contribution of de novo synthesis. Levels of 5.9 +/- 2.0 (n = 13) nmol/retina for squalene, 134 +/- 27 (n = 16) nmol/retina for cholesterol, and 0.14 +/- 0.04 (n = 11) nmol/retina for dolichyl phosphate (Dol-P) were determined by high performance liquid chromatography analysis. When whole retinas were incubated with 3H2O, radioactivity was incorporated into compounds which chromatographed on reversed-phase and silica high performance liquid chromatography at the elution positions of squalene, cholesterol, lathosterol, and methyl sterols. From these results, the upper limit for the absolute rate of the sterol pathway was estimated to be 3.4 pmol/h. When retinas were incubated with [3H]acetate, the major labeled product was squalene. The relatively low level of incorporation into cholesterol was apparently due to a substantial pool of squalene which accumulated de novo incorporated [3H]acetate. Dol-P was also labeled with [3H]acetate, and by comparing the ratio of 3H incorporation into Dol-P/squalene with the absolute rate of the sterol pathway, the absolute rate of Dol-P synthesis was determined to be 0.022 pmol/h. Our calculations indicate that the retina does not synthesize sufficient quantities of cholesterol de novo to account for that which is utilized in the biogenesis of rod outer segment membranes.  相似文献   

20.
Retinal degenerative diseases lead to blindness with few treatments. Various cell‐based therapies are aimed to slow the progression of vision loss by preserving light‐sensing photoreceptor cells. A subretinal injection of human neural progenitor cells (hNPCs) into the Royal College of Surgeons (RCS) rat model of retinal degeneration has aided in photoreceptor survival, though the mechanisms are mainly unknown. Identifying the retinal proteomic changes that occur following hNPC treatment leads to better understanding of neuroprotection. To mimic the retinal environment following hNPC injection, a co‐culture system of retinas and hNPCs is developed. Less cell death occurs in RCS retinal tissue co‐cultured with hNPCs than in retinas cultured alone, suggesting that hNPCs provide retinal protection in vitro. Comparison of ex vivo and in vivo retinas identifies nuclear factor (erythroid‐derived 2)‐like 2 (NRF2) mediated oxidative response signaling as an hNPC‐induced pathway. This is the first study to compare proteomic changes following treatment with hNPCs in both an ex vivo and in vivo environment, further allowing the use of ex vivo modeling for mechanisms of retinal preservation. Elucidation of the protein changes in the retina following hNPC treatment may lead to the discovery of mechanisms of photoreceptor survival and its therapeutic for clinical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号