首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G protein coupled inward rectifier K+ channels (GIRK) are activated by the Gβγ subunits of G proteins upon activation of G protein coupled receptors (GPCRs). Receptor-stimulated GIRK currents are known to possess a curious property, termed “agonist-dependent relaxation,” denoting a slow current increase upon stepping the membrane voltage from positive to negative potentials. Regulators of G protein signaling (RGS) proteins have earlier been implicated in this phenomenon since RGS coexpression was required for relaxation to be observed in heterologous expression systems. However, a recent study presented contrasting evidence that GIRK current relaxation reflects voltage sensitive agonist binding to the GPCR. The present study re-examined the role of RGS protein in agonist-dependent relaxation and found that RGS coexpression is not necessary for the relaxation phenomenon. However, RGS4 speeds up relaxation kinetics, allowing the phenomenon to be observed using shorter voltage steps. These findings resolve the controversy regarding the role of RGS protein vs. GPCR voltage sensitivity in mediating agonist-dependent relaxation of GIRK currents.  相似文献   

2.
GIRK (G protein-activated inward-rectifying K(+) channel) channels, important regulators of membrane excitability in the heart and in the central nervous, are activated by interaction with betagamma subunits from heterotrimeric G proteins upon receptor stimulation. For activation interaction of the channel with phosphatidylinositol 4,5-bisphosphate (PtIns(4,5)P(2)) is conditional. Previous studies have provided evidence that in myocytes PtIns(4,5)P(2) levels relevant to GIRK channel regulation are under regulatory control of receptors activating phospholipase C. In the present study a phosphatidyl-4-phosphate 5-kinase was expressed in atrial myocytes by transient transfection. This did not affect basal properties of GIRK current activated by acetylcholine via M(2) receptors but completely abolished inhibition of guanosine triphosphate-gamma-S activated current by endothelin-1 or alpha-adrenergic agonists. We conclude that though PtIns(4,5)P(2) is conditional for channel gating, its normal level in the membrane is not limiting basal function of GIRK channels. Moreover, our data provide further evidence for a regulation of GIRK channels by alpha(1A) receptors and endothelin-A receptors, endogenously expressed in atrial myocytes, via depletion of PtIns(4,5)P(2).  相似文献   

3.
The G protein-coupled inwardly rectifying K+ channel, GIRK1/GIRK4, can be activated by receptors coupled to the Galpha(i) subunit. An opposing role for Galpha(q) receptor signaling in GIRK regulation has only recently begun to be established. We have studied the effects of m1 muscarinic acetylcholine receptor (mAChR) stimulation, which is known to mobilize calcium and activate protein kinase C (PKC) by a Galpha(q)-dependent mechanism, on whole cell GIRK1/4 currents in Xenopus oocytes. We found that stimulation of the m1 mAChR suppresses both basal and dopamine 2 receptor-activated GIRK 1/4 currents. Overexpression of Gbetagamma subunits attenuates this effect, suggesting that increased binding of Gbetagamma to the GIRK channel can effectively compete with the G(q)-mediated inhibitory signal. This G(q) signal requires the use of second messenger molecules; pharmacology implicates a role for PKC and Ca2+ responses as m1 mAChR-mediated inhibition of GIRK channels is mimicked by PMA and Ca2+ ionophore. We have analyzed a series of mutant and chimeric channels suggesting that the GIRK4 subunit is capable of responding to G(q) signals and that the resulting current inhibition does not occur via phosphorylation of a canonical PKC site on the channel itself.  相似文献   

4.
The recently discovered family of RGS (regulators of G protein signaling) proteins acts as GTPase activating proteins which bind to alpha subunits of heterotrimeric G proteins. We previously showed that a brain-specific RGS, RGS8 speeds up the activation and deactivation kinetics of the G protein-coupled inward rectifier K+ channel (GIRK) upon receptor stimulation (Saitoh, O., Kubo, Y., Miyatani, Y., Asano, T., and Nakata, H. (1997) Nature 390, 525-529). Here we report the isolation of a full-length rat cDNA of another brain-specific RGS, RGS7. In situ hybridization study revealed that RGS7 mRNA is predominantly expressed in Golgi cells within granule cell layer of cerebellar cortex. We observed that RGS7 recombinant protein binds preferentially to Galphao, Galphai3, and Galphaz. When co-expressed with GIRK1/2 in Xenopus oocytes, RGS7 and RGS8 differentially accelerate G protein-mediated modulation of GIRK. RGS7 clearly accelerated activation of GIRK current similarly with RGS8 but the acceleration effect of deactivation was significantly weaker than that of RGS8. These acceleration properties of RGS proteins may play important roles in the rapid regulation of neuronal excitability and the cellular responses to short-lived stimulations.  相似文献   

5.
Regulators of G protein signaling (RGS) stimulate the GTPase activity of G protein Galpha subunits and probably play additional roles. Some RGS proteins contain a Ggamma subunit-like (GGL) domain, which mediates a specific interaction with Gbeta5. The role of such interactions in RGS function is unclear. RGS proteins can accelerate the kinetics of coupling of G protein-coupled receptors to G-protein-gated inwardly rectifying K(+) (GIRK) channels. Therefore, we coupled m2-muscarinic acetylcholine receptors to GIRK channels in Xenopus oocytes to evaluate the effect of Gbeta5 on RGS function. Co-expression of either RGS7 or RGS9 modestly accelerated GIRK channel kinetics. When Gbeta5 was co-expressed with either RGS7 or RGS9, the acceleration of GIRK channel kinetics was strongly increased over that produced by RGS7 or RGS9 alone. RGS function was not enhanced by co-expression of Gbeta1, and co-expression of Gbeta5 alone had no effect on GIRK channel kinetics. Gbeta5 did not modulate the function either of RGS4, an RGS protein that lacks a GGL domain, or of a functional RGS7 construct in which the GGL domain was omitted. Enhancement of RGS7 function by Gbeta5 was not a consequence of an increase in the amount of plasma membrane or cytosolic RGS7 protein.  相似文献   

6.
Activation of G protein-gated inwardly-rectifying K+ (GIRK or Kir3) channels by metabotropic gamma-aminobutyric acid (B) (GABAB) receptors is an essential signalling pathway controlling neuronal excitability and synaptic transmission in the brain. To investigate the relationship between GIRK channel subunits and GABAB receptors in cerebellar Purkinje cells at post- and pre-synaptic sites, we used biochemical, functional and immunohistochemical techniques. Co-immunoprecipitation analysis demonstrated that GIRK subunits are co-assembled with GABAB receptors in the cerebellum. Immunoelectron microscopy showed that the subunit composition of GIRK channels in Purkinje cell spines is compartment-dependent. Thus, at extrasynaptic sites GIRK channels are formed by GIRK1/GIRK2/GIRK3, post-synaptic densities contain GIRK2/GIRK3 and dendritic shafts contain GIRK1/GIRK3. The post-synaptic association of GIRK subunits with GABAB receptors in Purkinje cells is supported by the subcellular regulation of the ion channel and the receptor in mutant mice. At pre-synaptic sites, GIRK channels localized to parallel fibre terminals are formed by GIRK1/GIRK2/GIRK3 and co-localize with GABAB receptors. Consistent with this morphological evidence we demonstrate their functional interaction at axon terminals in the cerebellum by showing that GIRK channels play a role in the inhibition of glutamate release by GABAB receptors. The association of GIRK channels and GABAB receptors with excitatory synapses at both post- and pre-synaptic sites indicates their intimate involvement in the modulation of glutamatergic neurotransmission in the cerebellum.  相似文献   

7.
Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C (PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.  相似文献   

8.
The G-protein-gated inwardly rectifying K +(GIRK) family of ion channels form functional Gβγ-sensitive channels as heteromultimers of GIRK1 and either the GIRK2 or GIRK4 subunits. However, the homologous mouse brain GIRK3 clone failed to express in the earliest reported functional experiments in Xenopus oocytes. We recloned the GIRK3 subunit from mouse brain and found that the new clone differed significantly from that originally reported. The functional aspects of GIRK3 were reinvestigated by expression in CHO cells. The single channel properties of GIRK1/GIRK3 were characterized and compared to those of the GIRK1/GIRK2 and GIRK1/GIRK4 channels. All three GIRK1/GIRKx combinations produced channels with nearly indistinguishable conductances and kinetics. The response of GIRK1/GIRK3 to Gβγ in the 1–47 nm range was examined and found to be indistinguishable from that of GIRK1/GIRK4 channels. We conclude that GIRK1, with either GIRK2, 3, or 4, gives rise to heteromultimeric channels with virtually identical conductances, kinetics, and Gβγ sensitivities. Received: 13 January 1999/Revised: 2 March 1999  相似文献   

9.
Four isoforms of GIRK channels (GIRK1-4) have been described in humans. In addition, several splice variants of more or less unknown function have been identified from several tissues and species. In our study, we investigated the structure and function of a new variant of GIRK1 that has been isolated from rat brain. Because of wide similarities with a previously described variant, we also named it GIRK1d. This variant lacks a region corresponding to exon 2 of full-length GIRK1, leading to a truncated GIRK1 that lacks the main part of the C-terminus. To study GIRK1d we used the Xenopus laevis expression system, the two-electrode voltage clamp method, and confocal laser scan microscopy. We found that our GIRK1d variant preferentially binds GIRK2 or GIRK4 over GIRK1. Furthermore, it largely reduces conductances mediated by GIRK1/2 or GIRK1/4 hetero-multimeric channels when coexpressed and nearly totally abolishes currents when replacing GIRK1 in hetero-multimeric channels.  相似文献   

10.
Four isoforms of GIRK channels (GIRK1–4) have been described in humans. In addition, several splice variants of more or less unknown function have been identified from several tissues and species. In our study, we investigated the structure and function of a new variant of GIRK1 that has been isolated from rat brain. Because of wide similarities with a previously described variant, we also named it GIRK1d. This variant lacks a region corresponding to exon 2 of full-length GIRK1, leading to a truncated GIRK1 that lacks the main part of the C-terminus. To study GIRK1d we used the Xenopus laevis expression system, the two-electrode voltage clamp method, and confocal laser scan microscopy. We found that our GIRK1d variant preferentially binds GIRK2 or GIRK4 over GIRK1. Furthermore, it largely reduces conductances mediated by GIRK1/2 or GIRK1/4 hetero-multimeric channels when coexpressed and nearly totally abolishes currents when replacing GIRK1 in hetero-multimeric channels.  相似文献   

11.
γ-Aminobutyric acid (GABA) release from inhibitory interneurons located within the cerebellar cortex limits the extent of neuronal excitation in part through activation of metabotropic GABA(B) receptors. Stimulation of these receptors triggers a number of downstream signaling events, including activation of GIRK channels by the Gβγ dimer resulting in membrane hyperpolarization and inhibition of neurotransmitter release from presynaptic sites. Here, we identify RGS6, a member of the R7 subfamily of RGS proteins, as a key regulator of GABA(B)R signaling in cerebellum. RGS6 is enriched in the granule cell layer of the cerebellum along with neuronal GIRK channel subunits 1 and 2 where RGS6 forms a complex with known binding partners Gβ(5) and R7BP. Mice lacking RGS6 exhibit abnormal gait and ataxia characterized by impaired rotarod performance improved by treatment with a GABA(B)R antagonist. RGS6(-/-) mice administered baclofen also showed exaggerated motor coordination deficits compared with their wild-type counterparts. Isolated cerebellar neurons natively expressed RGS6, GABA(B)R, and GIRK channel subunits, and cerebellar granule neurons from RGS6(-/-) mice showed a significant delay in the deactivation kinetics of baclofen-induced GIRK channel currents. These results establish RGS6 as a key component of GABA(B)R signaling and represent the first demonstration of an essential role for modulatory actions of RGS proteins in adult cerebellum. Dysregulation of RGS6 expression in human patients could potentially contribute to loss of motor coordination and, thus, pharmacological manipulation of RGS6 levels might represent a viable means to treat patients with ataxias of cerebellar origin.  相似文献   

12.
G-protein-gated inwardly rectifying K(+) (GIRK) channels are widely expressed in the brain and are activated by at least eight different neurotransmitters. As K(+) channels, they drive the transmembrane potential toward E(K) when open and thus dampen neuronal excitability. There are four mammalian GIRK subunits (GIRK1-4 or Kir 3.1-4), with GIRK1 being the most unique of the four by possessing a long carboxyl-terminal tail. Early studies suggested that GIRK1 was an integral component of native GIRK channels. However, more recent data indicate that native channels can be either homo- or heterotetrameric complexes composed of several GIRK subunit combinations. The functional implications of subunit composition are poorly understood at present. The purpose of this study was to examine the functional and biochemical properties of GIRK channels formed by the co-assembly of GIRK2 and GIRK3, the most abundant GIRK subunits found in the mammalian brain. To examine the properties of a channel composed of these two subunits, we co-transfected GIRK2 and GIRK3 in CHO-K1 cells and assayed the cells for channel activity by patch clamp. The most significant difference between the putative GIRK2/GIRK3 heteromultimeric channel and GIRK1/GIRKx channels at the single channel level was an approximately 5-fold lower sensitivity to activation by Gbetagamma. Complexes containing only GIRK2 and GIRK3 could be immunoprecipitated from transfected cells and could be purified from native brain tissue. These data indicate that functional GIRK channels composed of GIRK2 and GIRK3 subunits exist in brain.  相似文献   

13.
Among purinergic P2X receptor (P2XR) channels, the P2X7R exhibits the most complex gating kinetics; the binding of orthosteric agonists at the ectodomain induces a conformational change in the receptor complex that favors a gating transition from closed to open and dilated states. Bath Ca(2+) affects P2X7R gating through a still uncharacterized mechanism: it could act by reducing the adenosine triphosphate(4-) (ATP(4-)) concentration (a form proposed to be the P2X7R orthosteric agonist), as an allosteric modulator, and/or by directly altering the selectivity of pore to cations. In this study, we combined biophysical and mathematical approaches to clarify the role of calcium in P2X7R gating. In naive receptors, bath calcium affected the activation permeability dynamics indirectly by decreasing the potency of orthosteric agonists in a concentration-dependent manner and independently of the concentrations of the free acid form of agonists and status of pannexin-1 (Panx1) channels. Bath calcium also facilitated the rates of receptor deactivation in a concentration-dependent manner but did not affect a progressive delay in receptor deactivation caused by repetitive agonist application. The effects of calcium on the kinetics of receptor deactivation were rapid and reversible. A438079, a potent orthosteric competitive antagonist, protected the rebinding effect of 2'(3')-O-4-benzoylbenzoyl)ATP on the kinetics of current decay during the washout period, but in the presence of A438079, calcium also increased the rate of receptor deactivation. The corresponding kinetic (Markov state) model indicated that the decrease in binding affinity leads to a decrease in current amplitudes and facilitation of receptor deactivation, both in an extracellular calcium concentration-dependent manner expressed as a Hill function. The results indicate that calcium in physiological concentrations acts as a negative allosteric modulator of P2X7R by decreasing the affinity of receptors for orthosteric ligand agonists, but not antagonists, and not by affecting the permeability dynamics directly or indirectly through Panx1 channels. We expect these results to generalize to other P2XRs.  相似文献   

14.
Regulators of G protein signaling RGS4 and RGS7 accelerate the kinetics of K(+) channels (GIRKs) in the Xenopus oocyte system. Here, via quantitative analysis of RGS expression, we reveal biphasic effects of RGSs on GIRK regulation. At low concentrations, RGS4 inhibited basal GIRK activity, but stimulated it at high concentrations. RGS7, which is associated with the G protein subunit G beta 5, is regulated by G beta 5 by two distinct mechanisms. First, G beta 5 augments RGS7 activity, and second, it increases its expression. These dual effects resolve previous controversies regarding RGS4 and RGS7 function and indicate that they modulate signaling by mechanisms supplementary to their GTPase-activating protein activity.  相似文献   

15.
G protein-gated inwardly rectifying K(+) (GIRK/Kir3) channels mediate the postsynaptic inhibitory effects of many neurotransmitters and drugs of abuse. The lack of drugs selective for GIRK channels has hindered our ability to study their contributions to behavior. Here, we assessed the impact of GIRK subunit ablation on several behavioral endpoints. Mice were evaluated with respect to open-field motor activity and habituation, anxiety-related behavior, motor co-ordination and ataxia and operant performance. GIRK3 knockout ((-/-)) mice behaved indistinguishably from wild-type mice in this panel of tests. GIRK1(-/-) mice and GIRK2(-/-) mice, however, showed elevated motor activity and delayed habituation to an open field. GIRK2(-/-) mice, and to a lesser extent GIRK1(-/-) mice, also displayed reduced anxiety-related behavior in the elevated plus maze. Both GIRK1(-/-) mice and GIRK2(-/-) mice displayed marked resistance to the ataxic effects of the GABA(B) receptor agonist baclofen in the rotarod test. All GIRK(-/-) mice were able to learn an operant task using food as the reinforcing agent. Within-session progressive ratio scheduling, however, showed elevated lever press behavior in GIRK2(-/-) mice and, to a lesser extent, in GIRK1(-/-) mice. Phenotypic differences between mice lacking GIRK1, GIRK2 and GIRK3 correlate well with the known impact of GIRK subunit ablation on neurotransmitter-gated GIRK currents, arguing that most neuronal GIRK channels contain GIRK1 and/or GIRK2. Altogether, our data suggest that GIRK channels make important contribution to a range of behaviors and may represent points of therapeutic intervention in disorders of anxiety, spasticity and reward.  相似文献   

16.
Although G protein-coupled receptor-mediated signaling is one of the best studied biological events, little is known about the kinetics of these processes in intact cells. Experiments with neurons from alpha(2A)-adrenergic receptor knockout mice suggested that the alpha(2A)-receptor subtype inhibits neurotransmitter release with higher speed and at higher action potential frequencies than the alpha(2C)-adrenergic receptor. Here we investigated whether these functional differences between presynaptic alpha(2)-adrenergic receptor subtypes are the result of distinct signal transduction kinetics of these two receptors and their coupling to G proteins. alpha(2A)- and alpha(2C)-receptors were stably expressed in HEK293 cells at moderate ( approximately 2 pmol/mg) or high (17-24 pmol/mg) levels. Activation of G protein-activated inwardly rectifying K(+) (GIRK) channels was similar in extent and kinetics for alpha(2A)- and alpha(2C)-receptors at both expression levels. However, the two receptors differed significantly in their deactivation kinetics after removal of the agonist norepinephrine. alpha(2C)-Receptor-activated GIRK currents returned much more slowly to base line than did alpha(2A)-stimulated currents. This observation correlated with a higher affinity of norepinephrine at the murine alpha(2C)- than at the alpha(2A)-receptor subtype and may explain why alpha(2C)-adrenergic receptors are especially suited to control sympathetic neurotransmission at low action potential frequencies in contrast to the alpha(2A)-receptor subtype.  相似文献   

17.
This Letter describes a novel series of GIRK activators identified through an HTS campaign. The HTS lead was a potent and efficacious dual GIRK1/2 and GIRK1/4 activator. Further chemical optimization through both iterative parallel synthesis and fragment library efforts identified dual GIRK1/2 and GIRK1/4 activators as well as the first examples of selective GIRK1/4 activators. Importantly, these compounds were inactive on GIRK2 and other non-GIRK1 containing GIRK channels, and SAR proved shallow.  相似文献   

18.
G protein–sensitive inwardly rectifying potassium (GIRK) channels are important pharmaceutical targets for neuronal, cardiac, and endocrine diseases. Although a number of GIRK channel modulators have been discovered in recent years, most lack selectivity. GIRK channels function as either homomeric (i.e., GIRK2 and GIRK4) or heteromeric (e.g., GIRK1/2, GIRK1/4, and GIRK2/3) tetramers. Activators, such as ML297, ivermectin, and GAT1508, have been shown to activate heteromeric GIRK1/2 channels better than GIRK1/4 channels with varying degrees of selectivity but not homomeric GIRK2 and GIRK4 channels. In addition, VU0529331 was discovered as the first homomeric GIRK channel activator, but it shows weak selectivity for GIRK2 over GIRK4 (or G4) homomeric channels. Here, we report the first highly selective small-molecule activator targeting GIRK4 homomeric channels, 3hi2one-G4 (3-[2-(3,4-dimethoxyphenyl)-2-oxoethyl]-3-hydroxy-1-(1-naphthylmethyl)-1,3-dihydro-2H-indol-2-one). We show that 3hi2one-G4 does not activate GIRK2, GIRK1/2, or GIRK1/4 channels. Using molecular modeling, mutagenesis, and electrophysiology, we analyzed the binding site of 3hi2one-G4 formed by the transmembrane 1, transmembrane 2, and slide helix regions of the GIRK4 channel, near the phosphatidylinositol-4,5-bisphosphate binding site, and show that it causes channel activation by strengthening channel–phosphatidylinositol-4,5-bisphosphate interactions. We also identify slide helix residue L77 in GIRK4, corresponding to residue I82 in GIRK2, as a major determinant of isoform-specific selectivity. We propose that 3hi2one-G4 could serve as a useful pharmaceutical probe in studying GIRK4 channel function and may also be pursued in drug optimization studies to tackle GIRK4-related diseases such as primary aldosteronism and late-onset obesity.  相似文献   

19.
Neuronal G protein‐gated inwardly rectifying potassium (GIRK) channels mediate the slow inhibitory effects of many neurotransmitters post‐synaptically. However, no evidence exists that supports that GIRK channels play any role in the inhibition of glutamate release by GABAB receptors. In this study, we show for the first time that GABAB receptors operate through two mechanisms in nerve terminals from the cerebral cortex. As shown previously, GABAB receptors reduces glutamate release and the Ca2+ influx mediated by N‐type Ca2+ channels in a mode insensitive to the GIRK channel blocker tertiapin‐Q and consistent with direct inhibition of this voltage‐gated Ca2+ channel. However, by means of weak stimulation protocols, we reveal that GABAB receptors also reduce glutamate release mediated by P/Q‐type Ca2+ channels, and that these responses are reversed by the GIRK channel blocker tertiapin‐Q. Consistent with the functional interaction between GABAB receptors and GIRK channels at nerve terminals we demonstrate by immunogold electron immunohistochemistry that pre‐synaptic boutons of asymmetric synapses co‐express GABAB receptors and GIRK channels, thus suggesting that the functional interaction of these two proteins, found at the post‐synaptic level, also occurs at glutamatergic nerve terminals.  相似文献   

20.
Gbetagamma-activated inwardly rectifying K(+) (GIRK) channels have distinct gating properties when activated by receptors coupled specifically to Galpha(o) versus Galpha(i) subunit isoforms, with Galpha(o)-coupled currents having approximately 3-fold faster agonist-evoked activation kinetics. To identify the molecular determinants in Galpha subunits mediating these kinetic differences, chimeras were constructed using pertussis toxin (PTX)-insensitive Galpha(oA) and Galpha(i2) mutant subunits (Galpha(oA(C351G)) and Galpha(i2(C352G))) and examined in PTX-treated Xenopus oocytes expressing muscarinic m2 receptors and Kir3.1/3.2a channels. These experiments revealed that the alpha-helical N-terminal region (amino acids 1-161) and the switch regions of Galpha(i2) (amino acids 162-262) both partially contribute to slowing the GIRK activation time course when compared with the Galpha(oA(C351G))-coupled response. When present together, they fully reproduce Galpha(i2(C352G))-coupled GIRK kinetics. The Galpha(i2) C-terminal region (amino acids 263-355) had no significant effect on GIRK kinetics. Complementary responses were observed with chimeras substituting the Galpha(o) switch regions into the Galpha(i2(C352G)) subunit, which partially accelerated the GIRK activation rate. The Galpha(oA)/Galpha(i2) chimera results led us to examine an interaction between the alpha-helical domain and the Ras-like domain previously implicated in mediating a 4-fold slower in vitro basal GDP release rate in Galpha(i1) compared with Galpha(o). Mutations disrupting the interdomain contact in Galpha(i2(C352G)) at either the alphaD-alphaE loop (R145A) or the switch III loop (L233Q/A236H/E240T/M241T), significantly accelerated the GIRK activation kinetics consistent with the Galpha(i2) interdomain interface regulating receptor-catalyzed GDP release rates in vivo. We propose that differences in Galpha(i) versus Galpha(o)-coupled GIRK activation kinetics are due to intrinsic differences in receptor-catalyzed GDP release that rate-limit Gbetagamma production and is attributed to heterogeneity in Galpha(i) and Galpha(o) interdomain contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号