首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adenovirus DNA-binding protein (DBP) binds cooperatively to single-stranded DNA (ssDNA) and stimulates both initiation and elongation of DNA replication. DBP consists of a globular core domain and a C-terminal arm that hooks onto a neighboring DBP molecule to form a stable protein chain with the DNA bound to the internal surface of the chain. This multimerization is the driving force for ATP-independent DNA unwinding by DBP during elongation. As shown by x-ray diffraction of different crystal forms of the C-terminal domain, the C-terminal arm can adopt different conformations, leading to flexibility in the protein chain. This flexibility is a function of the hinge region, the part of the protein joining the C-terminal arm to the protein core. To investigate the function of the flexibility, proline residues were introduced in the hinge region, and the proteins were purified to homogeneity after baculovirus expression. The mutant proteins were still able to bind ss- and double-stranded DNA with approximately the same affinity as wild type, and the binding to ssDNA was found to be cooperative. All mutant proteins were able to stimulate the initiation of DNA replication to near wild type levels. However, the proline mutants could not support elongation of DNA replication efficiently. Even the elongation up to 26 nucleotides was severely impaired. This defect was also seen when DNA unwinding was studied. Binding studies of DBP to homo-oligonucleotides showed an inability of the proline mutants to bind to poly(dA)(40), indicating an inability to adapt to specific DNA conformations. Our data suggest that the flexibility of the protein chain formed by DBP is important in binding and unwinding of DNA during adenovirus DNA replication. A model explaining the need for flexibility of the C-terminal arm is proposed.  相似文献   

2.
Ott V  Koch J  Späte K  Morbach S  Krämer R 《Biochemistry》2008,47(46):12208-12218
The glycine betaine carrier BetP from Corynebacterium glutamicum responds to changes in external osmolality by regulation of its transport activity, and the C-terminal domain was previously identified to be involved in this process. Here we investigate the structural requirements of the C-terminal domain for osmoregulation as well as interacting domains that are relevant for intramolecular signal transduction in response to osmotic stress. For this purpose, we applied a proline scanning approach and amino acid replacements other than proline in selected positions. To analyze the impact of the surrounding membrane, BetP mutants were studied in both C. glutamicum and Escherichia coli, which strongly differ in their phospholipid composition. A region of approximately 25 amino acid residues within the C-terminal domain with a high propensity for alpha-helical structure was found to be essential in terms of its conformational properties for osmodependent regulation. The size of this region was larger in E. coli membranes than in the highly negatively charged C. glutamicum membranes. As a novel aspect of BetP regulation, interaction of the C-terminal domain with one of the cytoplasmic loops as well as with the N-terminal domain was shown to be involved in osmosensing and/or osmoregulation. These results support a functional model of BetP activation that involves the C-terminal domain shifting from interaction with the membrane to interaction with intramolecular domains in response to osmotic stress.  相似文献   

3.
Amyloid fibrils in Alzheimer's disease mainly consist of 40- and 42-mer beta-amyloid peptides (Abeta40 and Abeta42) that exhibit aggregative ability and neurotoxicity. Although the aggregates of Abeta peptides are rich in intermolecular beta-sheet, the precise secondary structure of Abeta in the aggregates remains unclear. To identify the amino acid residues involved in the beta-sheet formation, 34 proline-substituted mutants of Abeta42 were synthesized and their aggregative ability and neurotoxicity on PC12 cells were examined. Prolines are rarely present in beta-sheet, whereas they are easily accommodated in beta-turn as a Pro-X corner. Among the mutants at positions 15-32, only E22P-Abeta42 extensively aggregated with stronger neurotoxicity than wild-type Abeta42, suggesting that the residues at positions 15-21 and 24-32 are involved in the beta-sheet and that the turn at positions 22 and 23 plays a crucial role in the aggregation and neurotoxicity of Abeta42. The C-terminal proline mutants (A42P-, I41P-, and V40P-Abeta42) hardly aggregated with extremely weak cytotoxicity, whereas the C-terminal threonine mutants (A42T- and I41T-Abeta42) aggregated potently with significant cytotoxicity. These results indicate that the hydrophobicity of the C-terminal two residues of Abeta42 is not related to its aggregative ability and neurotoxicity, rather the C-terminal three residues adopt the beta-sheet. These results demonstrate well the large difference in aggregative ability and neurotoxicity between Abeta42 and Abeta40. In contrast, the proline mutants at the N-terminal 13 residues showed potent aggregative ability and neurotoxicity similar to those of wild-type Abeta42. The identification of the beta-sheet region of Abeta42 is a basis for designing new aggregation inhibitors of Abeta peptides.  相似文献   

4.
An improved chemical method, capable of derivatizing all natural amino acids to their corresponding thiohydantoins, is described. This involves activation by acetyl chloride in TFA followed by derivatization with ammonium thiocyanate. Possible interference of reactive side chains was investigated by reacting N-acetylamino acids as well as several peptides with propionyl chloride instead of acetyl chloride. The products were characterized by PDMS mass spectrometry and 1H-NMR. This chemical method allows, for the first time, complete derivatization of N-acetylproline to proline thiohydantoin. Applying this chemistry to peptides with a C-terminal proline, the yields for formation of proline thiohydantoin were found to be up to 60%, depending on the peptide sequence. The previous inability to derivatize C-terminal proline to thiohydantoin was thought to stem from the fact that proline cannot form the oxazolonium ion required for efficient reaction with the thiocyanate ion. However, we have found mass spectrometric evidence for the existence of a proline oxazolonium ion, under basic as well as under acidic conditions. This improvement in derivatization of C-terminal amino acids including proline is a major step forward in the development of a general chemical C-terminal sequencing method that permits the C-terminal sequence analysis of proteins of any amino acid composition.  相似文献   

5.
B Keuntje  B Masepohl    W Klipp 《Journal of bacteriology》1995,177(22):6432-6439
Four Rhodobacter capsulatus mutants unable to grow with proline as the sole nitrogen source were isolated by random Tn5 mutagenesis. The Tn5 insertions were mapped within two adjacent chromosomal EcoRI fragments. DNA sequence analysis of this region revealed three open reading frames designated selD, putR, and putA. The putA gene codes for a protein of 1,127 amino acid residues which is homologous to PutA of Salmonella typhimurium and Escherichia coli. The central part of R. capsulatus PutA showed homology to proline dehydrogenase of Saccharomyces cerevisiae (Put1) and Drosophila melanogaster (SlgA). The C-terminal part of PutA exhibited homology to Put2 (pyrroline-5-carboxylate dehydrogenase) of S. cerevisiae and to aldehyde dehydrogenases from different organisms. Therefore, it seems likely that in R. capsulatus, as in enteric bacteria, both enzymatic steps for proline degradation are catalyzed by a single polypeptide (PutA). The deduced amino acid sequence of PutR (154 amino acid residues) showed homology to the small regulatory proteins Lrp, BkdR, and AsnC. The putR gene, which is divergently transcribed from putA, is essential for proline utilization and codes for an activator of putA expression. The expression of putA was induced by proline and was not affected by ammonia or other amino acids. In addition, putA expression was autoregulated by PutA itself. Mutations in glnB, nifR1 (ntrC), and NifR4 (ntrA encoding sigma 54) had no influence on put gene expression. The open reading frame located downstream of R. capsulatus putR exhibited strong homology to the E. coli selD gene, which is involved in selenium metabolism. R. capsulatus selD mutants exhibited a Put+ phenotype, demonstrating that selD is required neither for viability nor for proline utilization.  相似文献   

6.
Y Kanai  J Chen    N Hirokawa 《The EMBO journal》1992,11(11):3953-3961
Tau varies both in the N-terminal region (three types) and in the C-terminal repeated microtubule binding domain (two types), generating six isoforms through alternative splicing. To understand the differences between the isoforms and to determine which domains are important for microtubule bundling, we performed transfection studies on fibroblasts using tau isoforms and deletion mutants to quantify their ability to bundle microtubules. By comparing the isoforms, we found that a longer N-terminal region induced microtubule bundling more efficiently, but changes in the microtubule binding domain did not. Mutants lacking the proline rich region or the repeated domain did not bind to microtubules. Although all the other mutants could bind to and bundle microtubules, deletion in the N-terminal neutral region or the first half of the C-terminal tail caused a significant decrease in microtubule bundling, indicating the importance of these regions in microtubule bundling.  相似文献   

7.
Role of L-proline in the biosynthesis of prodigiosin.   总被引:1,自引:0,他引:1       下载免费PDF全文
Nonproliferating cells of Serratia marcescens, wild-type strain Nima, synthesized the pigment, prodigiosin, when saline suspensions were incubated with aeration at 27 degrees C in the presence of proline or alanine. Mutants PutS1 and PutS2 derived from strain Nima formed prodigiosin from alanine, but not from proline, unless alanine also was added. Strain Nima utilized proline as a sole source of carbon and of nitrogen for growth, whereas Put mutants did not. Investigation of enzymes degrading proline showed that the wild-type strain contained proline oxidase, which was absent in Put mutants. The wild type, as well as the mutants, utilized alanine as the sole source of carbon and nitrogen for growth. Although nonproliferating cells of Put mutants failed to synthesize prodigiosin from proline, addition of L-[U-14C]proline to suspensions metabolizing and synthesizing the pigment because of addition of alanine resulted in the incorporation of radioactive label into prodigiosin, as well as into cellular protein. Since Put mutants could not catabolize proline, the incorporation of [14C]proline into the prodigiosin molecule indicated that proline was incorporated directly into the pigment.  相似文献   

8.
Human Equilibrative Nucleoside Transporter 1 (hENT1) is an integral membrane protein that transports nucleosides and analog drugs across cellular membranes. Very little is known about intracellular processing and localization of hENT1. Here we show that disruption of a highly conserved triplet (PWN) near the N-terminus, or the last eight C-terminal residues (two hydrophobic triplets separated by a positive arginine) result in loss of plasma membrane localization and/or transport function. To understand the role of specific residues within these regions, we studied the localization patterns of N- or C-terminal deletion and/or substitution mutants of GFP-hENT1 using confocal microscopy. Quantification of GFP-hENT1 (mutant and wildtype) protein at the plasma membrane was conducted using nitrobenzylthioinosine (NBTI) binding. Functionality of the GFP-hENT1 mutants was determined by heterologous expression in Xenopus laevis oocytes followed by measurement of uridine uptake. Mutation of the proline within the PWN motif disrupts plasma membrane localization. C-terminal mutations (primarily within the hydrophobic triplets) lead to hENT1 retention within the cell (e.g. in the ER). Some mutants still localize to the plasma membrane but show reduced transport activity. These data suggest that these two regions contribute to the structural integrity and thus correct processing and function of hENT1.  相似文献   

9.
Macrophage migration inhibitory factor (MIF) is a multifunctional protein and a major mediator of innate immunity. Although X-ray crystallography revealed that MIF exists as a homotrimer, its oligomerization state in vivo and the factors governing its oligomerization and stability remain poorly understood. The C-terminal region of MIF is highly conserved and participates in several intramolecular interactions that suggest a role in modulating the stability and biochemical activity of MIF. To determine the importance of these interactions, point mutations (A48P, L46A), insertions (P107) at the monomer-monomer interfaces, and C-terminal deletion (Delta 110-114NSTFA and Delta 105-114NVGWNNSTFA) variants were designed and their structural properties, thermodynamic stability, oligomerization state, catalytic activity and receptor binding were characterized using a battery of biophysical methods. The C-terminal deletion mutants DeltaC5 huMIF 1-109 and DeltaC10 huMIF 1-104 were enzymatically inactive and thermodynamically less stable than wild type MIF. Analytical ultracentrifugation studies demonstrate that both C-terminal mutants sediment as trimers and exhibit similar binding to CD74 as the wild type protein. Disrupting the conformation of the C-terminal region 105-114 and increasing its conformational flexibility through the insertion of a proline residue at position 107 was sufficient to reproduce the structural, biochemical and thermodynamic properties of the deletion mutants. P107 MIF forms an enzymatically inactive trimer and exhibits reduced thermodynamic stability relative to the wild type protein. To provide a rationale for the changes induced by these mutations at the molecular level, we also performed molecular dynamics simulations on these mutants in comparison to the wild type MIF. Together, our studies demonstrate that intersubunit interactions involving the C-terminal region 105-114, including a salt-bridge interaction between Arg73 of one monomer and the carboxy terminus of a neighboring monomer, play critical roles in modulating tertiary structure stabilization, enzymatic activity, and thermodynamic stability of MIF, but not its oligomerization state and receptor binding properties. Our results suggest that targeting the C-terminal region could provide new strategies for allosteric modulation of MIF enzymatic activity and the development of novel inhibitors of MIF tautomerase activity.  相似文献   

10.
To help understand the structure/function relationships in antifreeze proteins (AFP), and to define the motifs required for ice binding, a Type III AFP suitable for two-dimensional (2D) NMR studies was produced in Escherichia coli. A synthetic gene for one of the Type III AFP isoforms was assembled in a T7 polymerase-directed expression vector. The 67-amino acid-long gene product differed from the natural AFP by inclusion of an N-terminal methionine but was indistinguishable in activity. The NMR spectra of this AFP were complicated by cis-trans proline isomerization from the C-terminal sequence YPPA. Substitution of this sequence by YAA eliminated isomer signals without altering the activity or structure of the mutant AFP. This variant (rQAE m1.1) was selected for sequential assignment and the secondary structure determination using 2D 1H NMR spectroscopy. Nine beta-strands are paired to form two triple-stranded antiparallel sheets and one double-stranded antiparallel sheet. Two further proline replacements, P29A and P33A, were made to delineate the role of conserved prolines in Type III AFP. These mutants were valuable in clarifying ambiguous NMR spectral assignments amongst the remaining six prolines of rQAE m1.1. In contrast to the replacement of the C-terminal prolyl residues, the exchange of P29 and P33 caused some structural changes and significantly decreased protein solubility and antifreeze activity.  相似文献   

11.
The stringent response is activated by the binding of stringent factor to stalled ribosomes that have an unacylated tRNA in the ribosomal aminoacyl-site. Ribosomes lacking ribosomal protein L11 are deficient in stimulating stringent factor. L11 consists of a dynamic N-terminal domain (amino acid residues 1-72) connected to an RNA-binding C-terminal domain (amino acid residues 76-142) by a flexible linker (amino acid residues 73-75). In vivo data show that mutation of proline 22 in the N-terminal domain is important for initiation of the stringent response. Here, six different L11 point and deletion-mutants have been constructed to determine which regions of L11 are necessary for the activation of stringent factor. The different mutants were reconstituted with programmed 70 S(DeltaL11) ribosomes and tested for their ability to stimulate stringent factor in a sensitive in vitro pppGpp synthesis assay. It was found that a single-site mutation at proline 74 in the linker region between the two domains did not affect the stimulatory activity of the reconstituted ribosomes, whereas the single-site mutation at proline 22 reduced the activity of SF to 33% compared to ribosomes reconstituted with wild-type L11. Removal of the entire linker between the N and C-terminal domains or removal of the entire proline-rich helix beginning at proline 22 in L11 resulted in an L11 protein, which was unable to stimulate stringent factor in the ribosome-dependent assay. Surprisingly, the N-terminal domain of L11 on its own activated stringent factor in a ribosome-dependent manner without restoring the L11 footprint in 23 S rRNA in the 50 S subunit. This suggests that the N-terminal domain can activate stringent factor in trans. It is also shown that this activation is dependent on unacylated tRNA.  相似文献   

12.
Chung KM  Huang CH  Cheng JH  Tsai CH  Suen CS  Hwang MJ  Chen X 《Biochemistry》2011,50(37):7909-7918
A transmembrane domain (TMD) at the N-terminus of a membrane protein is a signal sequence that targets the protein to the endoplasmic reticulum (ER) membrane. Proline is found more frequently in TM helices compared to water-soluble helices. To investigate the effects of proline on protein translocation and integration in mammalian cells, we made proline substitutions throughout the TMD of dipeptidyl peptidase IV, a type II membrane protease with a single TMD at its N-terminus. The proteins were expressed and their capacities for targeting and integrating into the membrane were measured in both mammalian cells and in vitro translation systems. Three proline substitutions in the central region of the TMD resulted in various defects in membrane targeting and/or integration. The replacement of proline with other amino acids of similar hydrophobicity rescued both the translocation and anchoring defects of all three proline mutants, indicating that conformational change caused by proline is a determining factor. Increasing hydrophobicity of the TMD by replacing other residues with more hydrophobic residues also effectively reversed the translocation and integration defects. Intriguingly, increasing hydrophobicity at the C-terminal end of the TMD rescued much more effectively than it did at the N-terminal end. Thus, the effect of proline on translocation and integration of the TMD is not determined solely by its conformation and hydrophobicity, but also by the location of proline in the TMD, the location of highly hydrophobic residues, and the relative position of the proline to other proline residues in the TMD.  相似文献   

13.
K Ekena  M K Liao    S Maloy 《Journal of bacteriology》1990,172(6):2940-2945
Proline uptake can be mediated by three different transport systems in wild-type Salmonella typhimurium: a high-affinity proline transport system encoded by the putP gene and two glycine-betaine transport systems with a low affinity for proline encoded by the proP and proU genes. However, only the PutP permease transports proline well enough t allow growth on proline as a sole carbon or nitrogen source. By selecting for mutations that allow a putP mutant to grow on proline as a sole nitrogen source, we isolated mutants (designated proZ) that appeared to activate a cryptic proline transport system. These mutants enhanced the transport of proline and proline analogs but did not require the function of any of the known proline transport genes. The mutations mapped between 75 and 77.5 min on the S. typhimurium linkage map. Proline transport by the proZ mutants was competitively inhibited by isoleucine and leucine, which suggests that the ProZ phenotype may be due to unusual mutations that alter the substrate specificity of the branched-chain amino acid transport system encoded by the liv genes.  相似文献   

14.
Two proline porters in Escherichia coli K-12   总被引:12,自引:10,他引:2       下载免费PDF全文
Escherichia coli mutants defective at putP and putA lack proline transport via proline porter I and proline dehydrogenase activity, respectively. They retain a proline uptake system (proline porter II) that is induced during tryptophan-limited growth and are sensitive to the toxic L-proline analog, 3,4-dehydroproline. 3,4-Dehydroproline-resistant mutants derived from a putP putA mutant lack proline porter II. Auxotrophic derivatives derived from putP+ or putP bacteria can grow if provided with proline at low concentration (25 microM); those derived from the 3,4-dehydroproline-resistant mutants require high proline for growth (2.5 mM). We conclude that E. coli, like Salmonella typhimurium, possesses a second proline porter that is inactivated by mutations at the proP locus.  相似文献   

15.
Mutations in the PARK7 gene encoding DJ-1 cause autosomal recessive Parkinson disease. The most deleterious point mutation is the L166P substitution, which resides in a structure motif comprising two alpha-helices (G and H) separated by a kink. Here we subjected the C-terminal helix-kink-helix motif to systematic site-directed mutagenesis, introducing helix-incompatible proline residues as well as conservative substitutions into the helical interface. Furthermore, we generated deletion mutants lacking the H-helix, the kink, and the entire C terminus. When transfected into neural and nonneural cell lines, steady-state levels of G-helix breaking and kink deletion mutants were dramatically lower than wild-type DJ-1. The effects of H-helix breakers were comparably smaller, and the non-helix breaking mutants only slightly destabilized DJ-1. The decreased steady-state levels were due to accelerated protein degradation involving in part the proteasome. G-helix breaking DJ-1 mutations abolished dimer formation. These structural perturbations had functional consequences on the cytoprotective activities of DJ-1. The destabilizing mutations conferred reduced cytoprotection against H(2)O(2) in transiently retransfected DJ-1 knock-out mouse embryonic fibroblasts. The loss of survival promoting activity of the DJ-1 mutants with destabilizing C-terminal mutations correlated with impaired anti-apoptotic signaling. We found that wild-type, but not mutant DJ-1 facilitated the Akt pathway and simultaneously blocked the apoptosis signal-regulating kinase 1, with which DJ-1 interacted in a redox-dependent manner. Thus, the G-helix and kink are critical determinants of the C-terminal helix-kink-helix motif, which is absolutely required for stability and the regulation of survival-promoting redox signaling of the Parkinson disease-associated protein DJ-1.  相似文献   

16.
The relationship between helical stability and binding affinity was examined for the intrinsically disordered transactivation domain of the myeloblastosis oncoprotein, c-Myb, and its ordered binding partner, KIX. A series of c-Myb mutants was designed to either increase or decrease helical stability without changing the binding interface with KIX. This included a complimentary series of A, G, P, and V mutants at three non-interacting sites. We were able to use the glycine mutants as a reference state and show a strong correlation between binding affinity and helical stability. The intrinsic helicity of c-Myb is 21%, and helicity values of the mutants ranged from 8% to 28%. The c-Myb helix is divided into two conformationally distinct segments. The N-terminal segment, from K291–L301, has an average helicity greater than 60% and the C-terminal segment, from S304–L315, has an average helicity less than 10%. We observed different effects on binding when these two segments were mutated. Mutants in the N-terminal segment that increased helicity had no effect on the binding affinity to KIX, while helix destabilizing glycine and proline mutants reduced binding affinity by more than 1 kcal/mol. Mutants that either increased or decreased helical stability in the C-terminal segment had almost no effect on binding. However, several of the mutants reveal the presence of multiple conformations accessible in the bound state based on changes in enthalpy and linkage analysis of binding free energies. These results may explain the high level of sequence identity (> 90%), even at non-interacting sites, for c-Myb homologues.  相似文献   

17.
The putP gene encodes a proline permease required for Salmonella typhimurium LT2 to grow on proline as the sole source of nitrogen. The wild-type strain is sensitive to two toxic proline analogs (azetidine-2-carboxylic acid and 3,4-dehydroproline) also transported by the putP permease. Most mutations in putP prevent transport of all three substrates. Such mutants are unable to grow on proline and are resistant to both of the analogs. To define domains of the putP gene that specify the substrate binding site, we used localized mutagenesis to isolate rare mutants with altered substrate specificity. The position of the mutations in the putP gene was determined by deletion mapping. Most of the mutations are located in three small (approximately 100-base-pair) deletion intervals of the putP gene. The sensitivity of the mutants to the proline analogs was quantitated by radial streaking to determine the affinity of the mutant permeases for the substrates. Some of the mutants showed apparent changes in the kinetics of the substrates transported. These results indicate that the substrate specificity mutations are probably due to amino acid substitutions at or near the active site of proline permease.  相似文献   

18.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

19.
Results of studies on proline-nonutilizing (Put-) mutants of the yeast Saccharomyces cerevisiae indicate that proline is an essential intermediate in the degradation of arginine. Put- mutants excreted proline when grown on arginine or ornithine as the sole nitrogen source. Yeast cells contained a single enzyme, delta 1-pyrroline-5-carboxylate (P5C) dehydrogenase, which is essential for the complete degradation of both proline and arginine. The sole inducer of this enzyme was found to be proline. P5C dehydrogenase converted P5C to glutamate, but only when the P5C was derived directly from proline. When the P5C was derived from ornithine, it was first converted to proline by the enzyme P5C reductase. Proline was then converted back to P5C and finally to glutamate by the Put enzymes proline oxidase and P5C dehydrogenase.  相似文献   

20.
tmrB is the gene responsible for tunicamycin resistance in Bacillus subtilis. It is predicted that an increase in tmrB gene expression makes B. subtilis tunicamycin resistant. To examine the tmrB gene product, we produced the tmrB gene product in Escherichia coli by using the tac promoter. TmrB protein was found not only in the cytoplasm fraction but also in the membrane fraction. Although TmrB protein is entirely hydrophilic and has no hydrophobic stretch of amino acids sufficient to span the membrane, its C-terminal 18 amino acids could form an amphiphilic alpha-helix. Breaking this potential alpha-helix by introducing proline residues or a stop codon into this region caused the release of this membrane-bound protein into the cytoplasmic fraction, indicating that the C-terminal 18 residues were essential for membrane binding. On the other hand, TmrB protein has an ATP-binding consensus sequence in the N-terminal region. We have tested whether this sequence actually has the ability to bind ATP by photoaffinity cross-linking with azido-[alpha-32P]ATP. Wild-type protein bound azido-ATP well, but mutants with substitutions in the consensus amino acids were unable to bind azido-ATP. These C-terminal or N-terminal mutant genes were unable to confer tunicamycin resistance on B. subtilis in a multicopy state. It is concluded that TmrB protein is a novel ATP-binding protein which is anchored to the membrane with its C-terminal amphiphilic alpha-helix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号