首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although best known for its fossil hominins, the Omo-Turkana Basin of Kenya and Ethiopia is the source of one of the best records of vertebrate evolution from the Late Cenozoic of Africa. Located near the heart of the East African Rift Valley, the basin serves as an important frame of reference for the continent. The fossil record from this region plays a key role in our efforts to understand the environmental and ecological context of human evolution in Africa. The Omo-Turkana faunal data shed light on key questions of human evolution: What kinds of environments did early humans inhabit? How did these environments change over time? What is the relationship between faunal change in East Africa and broader patterns of climatic change?  相似文献   

2.
Fossil Bovidae constitute one of the most significant proxy records for evolutionary and palaeoecological change in Africa. Tragelaphus nakuae is a regularly encountered antelope in the East African Plio‐Pleistocene, and is a common component of hominin faunas. As previously understood, this species ranged for almost 2 million years, encompassed a large range of morphological variation, exhibited relative stasis in the face of environmental perturbations, and left no known living descendants. I here review and revise the fossil record of this tragelaphin bovid, finding that specimens older than ~2.8 Mya and previously attributed to T. nakuae or a close form are in fact referable to a distinct, but ancestral, species. This new interpretation adds these fossil tragelaphins to the body of evidence supporting major faunal turnover occurring around 2.8 Mya in concert with global climatic change. I also document morphological changes that occur through the duration of T. nakuae, particularly after 2.3 Mya. These taxonomic revisions allow for refined biochronological estimates for several East African Plio‐Pleistocene sites and specimen assemblages of uncertain age. A phylogenetic analysis suggests that the T. nakuae lineage is related to the extant bongo (Tragelaphus eurycerus), relating this living but enigmatic forest antelope to the fossil record. One resulting palaeoecological hypothesis is that the bongo's modern fragmented range represents the relicts of a much more widely distributed late Pliocene African forest belt. This study highlights the importance of specimen‐based approaches for elucidating the pattern and timing of major evolutionary events. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 162 , 699–711.  相似文献   

3.
We synthesize African paleoclimate from 150 to 30 ka (thousand years ago) using 85 diverse datasets at a regional scale, testing for coherence with North Atlantic glacial/interglacial phases and northern and southern hemisphere insolation cycles. Two major determinants of circum-African climate variability over this time period are supported by principal components analysis: North Atlantic sea surface temperature (SST) variations and local insolation maxima. North Atlantic SSTs correlated with the variability found in most circum-African SST records, whereas the variability of the majority of terrestrial temperature and precipitation records is explained by local insolation maxima, particularly at times when solar radiation was intense and highly variable (e.g., 150-75 ka). We demonstrate that climates varied with latitude, such that periods of relatively increased aridity or humidity were asynchronous across the northern, eastern, tropical and southern portions of Africa. Comparisons of the archaeological, fossil, or genetic records with generalized patterns of environmental change based solely on northern hemisphere glacial/interglacial cycles are therefore imprecise.We compare our refined climatic framework to a database of 64 radiometrically-dated paleoanthropological sites to test hypotheses of demographic response to climatic change among African hominin populations during the 150-30 ka interval. We argue that at a continental scale, population and climate changes were asynchronous and likely occurred under different regimes of climate forcing, creating alternating opportunities for migration into adjacent regions. Our results suggest little relation between large scale demographic and climate change in southern Africa during this time span, but strongly support the hypothesis of hominin occupation of the Sahara during discrete humid intervals ∼135-115 ka and 105-75 ka. Hominin populations in equatorial and eastern Africa may have been buffered from the extremes of climate change by locally steep altitudinal and rainfall gradients and the complex and variable effects of increased aridity on human habitat suitability in the tropics. Our data are consistent with hominin migrations out of Africa through varying exit points from ∼140-80 ka.  相似文献   

4.
The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa becomes locally sensitive to precessional forcing, resulting in rapid shifts from wet to dry conditions. These periods of extreme climate variability may have provided a catalyst for evolutionary change and driven key speciation and dispersal events amongst mammals and hominins in Africa. In particular, hominin species seem to differentially originate and go extinct during periods of extreme climate variability. Results presented in this volume may represent the basis of a new theory of early human evolution in Africa.  相似文献   

5.
Central to the debate surrounding global climate change and Plio-Pleistocene hominin evolution is the degree to which orbital-scale climate patterns influence low-latitude continental ecosystems and how these influences can be distinguished from regional volcano-tectonic events and local environmental effects. The Pliocene Hadar Formation of Ethiopia preserves a record of hominin paleoenvironments from roughly 3.5 to 2.2 Ma at a temporal resolution relevant to evolutionary change within hominins and other taxa. This study integrates the high-resolution sedimentological and paleontological records at Hadar with climate proxies such as marine core isotope, dust, and sapropel records. Consistent cycling observed both between and within fluvial and lacustrine depositional environments prior to 2.9 Ma at Hadar appears to be predominantly climatic in nature. In contrast a significant change in depositional facies after 2.9 Ma to sequences dominated by conglomerate cut-and-fill cycles indicates a strong tectonic signature related to regional developments in the Main Ethiopian Rift. While specific events seen in marine proxy records may have parallels in the Hadar environmental archive, their overall patterns of high versus low variability may be even more relevant. For example, periods of relatively high-amplitude climate oscillations between 3.15 and 2.95 Ma may be linked to noted size-related morphological changes within the Hadar Australopithecus afarensis lineage and a significant increase in more arid-adapted bovid taxa. Increased aridity in East Africa during this period is also indicated by peaks in eolian dust in the marine core record. Conversely, the dominant lacustrine phase at Hadar ca. 3.3 Ma coincides with the least variable period in several climate proxy records, including marine core foraminifera delta(18)O values and eolian dust concentration. This phase is also coeval with low insolation variability and a very distinct and significant long-term period of low dust percentage in circum-Africa marine cores.  相似文献   

6.
Uplift of the roof of africa and its bearing on the evolution of mankind   总被引:4,自引:0,他引:4  
Evidence concerning the geomorphological evolution of the Western Rift Valley, sedimentation within the valley and comparison of the fossil mammalian faunas of Western Uganda and East Africa indicate that the mountain ranges which now flank the Western Rift were uplifted in three or more stages beginning during the upper Miocene and that they reached climatically important altitudes during the upper Pliocene, at which time they began to modify regional climatic patterns in East Africa. Their main effect was the xerification of conditions over much of the region east of the mountains. The regional climatic effects due to the mountain ranges were themselves modified by global climatic changes related to the onset of the Glacial Period, the two phenomena combining to yield the Present day climatic regime of East Africa. As the climate changed, so did the flora and fauna. Faunal response was of three main kinds: a) dispersal into East Africa of pre-existing forms already adapted to more xeric conditions (many bovids, some cercopithecids), b) autochthonous evolution of forms adapted to mesic environments into forms adapted to more xeric conditions (suids, elephantids, some bovids, hominids), c) displacement of species ranges of those lineages unable to adapt to changing conditions (i.e. local extinctions) (Anancus, Brachypotherium). Autochthonous evolvers, including hominids, adopted two main strategies reflected in their hard anatomy: a) dietary shift (suids, proboscideans, bovids and later Pliocene hominids) and b) locomotor changes (early Pliocene hominids).  相似文献   

7.
Hominin evolution in the African Pliocene and Pleistocene was accompanied and mediated by changes in the abiotic and biotic spheres. It has been hypothesized that such environmental changes were catalysts of hominin morphological evolution and speciations. Whereas there is little doubt that ecological changes were relevant to shaping the trajectories of mammalian evolution, testing specific hypotheses with data from the fossil record has yielded ambiguous results regarding environmental disruption as a primary catalyst. Proposed mechanisms for abiotic and biotic causes of evolution are not always consistent with the timing and trends exhibited by the African fossil record of hominins and other mammals. Analyses of fossil and genetic data suggest that much of hominin evolution, and by extension mammalian evolution, was autocatalytic, driven by feedback loops within a species or lineage, irrespective of changes in the external environment.  相似文献   

8.
Rift Valley sites in southern Ethiopia and northern Kenya preserve the oldest fossil remains attributed to Homo sapiens and the earliest archaeological sites attributed to the Middle Stone Age (MSA). New localities from the Kapedo Tuffs augment the sparse sample of MSA sites from the northern Kenya Rift. Tephrostratigraphic correlation with dated pyroclastic deposits from the adjacent volcano Silali suggests an age range of 135-123 ka for archaeological sites of the Kapedo Tuffs. Comparisons of the Kapedo Tuffs archaeological assemblages with those from the adjacent Turkana and Baringo basins show broad lithic technological similarity but reveal that stone raw material availability is a key factor in explaining typologically defined archaeological variability within this region. Spatially and temporally resolved comparisons such as this provide the best means to link the biological and behavioral variation manifest in the record of early Homo sapiens.  相似文献   

9.
Environmental and faunal changes through time have been recorded for many African Plio-Pleistocene sites. Fossil evidence suggests that there is a continuous, if not uniform, transformation of the fauna and flora from the Pliocene through the end of Pleistocene. However, discerning major biotic turnovers and linking them to global and regional climatic changes have been complicated by many factors, notably taphonomy and discontinuity of the fossil evidence, notwithstanding the considerable work of some researchers (e.g., Vrba, E.S., 1988. Late Pliocene climatic events and hominid evolution, in: Grine, F. (Ed.), Evolutionary History of the "Robust" Australopithecines. De Gruyter, New York, pp. 405-426, Vrba, E.S., 1995. The fossil record of African (Mammalia, Bovidae) in relation to human evolution and paleoclimate, in: Vrba, E.S., Denton, G.H., Partridge, T.C., Burkle, L.H. (Eds.), Paleoclimate and Evolution, with Emphasis on Human Origins. Yale University Press, New Haven, pp. 385-424). A sample of over 22,000 fossils collected by the French Omo Expedition, from the Shungura Formation of Ethiopia, was analyzed using an integrated approach to investigate taphonomic and faunal change patterns. The following results are obtained: (1) Univariate and multivariate studies support continuous faunal change from Member A through Member G of the Shungura sequence; (2) Correspondence analysis (CA) on extant bovids in African game parks shows that bovid tribes and genera are generally characterized by habitat specificity; (3) Taphonomic studies demonstrate that the relative abundance of different skeletal elements varies according to depositional environment; (4) CA on 73 localities of the Shungura Formation and 19 mammalian taxa points to a major faunal change around the base of Member G dated to ca. 2.3 Ma. This transformation is characterized by a change to open and edaphic grassland as a dominant type of environment; (5) This major faunal change correlates in time with the appearance of A. boisei. It is tentatively suggested that this major biome change is associated with an anagenetic speciation from A. aethiopicus to A. boisei.  相似文献   

10.
The Omo-Turkana Basin, including the hominin fossil sites around Lake Turkana and the sites along the lower reaches of the Omo River, has made and continues to make an important contribution to improving our murky understanding of human evolution. This review highlights the various ways the Omo-Turkana Basin fossil record has contributed to, and continues to challenge, interpretations of human evolution. Despite many diagrams that look suspiciously like comprehensive hypotheses about human evolutionary history, any sensible paleoanthropologist knows that the early hominin fossil record is too meager to do anything other than offer very provisional statements about hominin taxonomy and phylogeny. If history tells us anything, it is that we still have much to learn about the hominin clade. Thus, we summarize the current state of knowledge of the hominin species represented at the Omo-Turkana Basin sites. We then focus on three specific topics for which the fossil evidence is especially relevant: the origin and nature of Paranthropus; the origin and nature of early Homo; and the ongoing debate about whether the pattern of human evolution is more consistent with speciation by cladogenesis, with greater taxonomic diversity or with speciation by anagenetic transformation, resulting in less taxonomic diversity and a more linear interpretation of human evolutionary history.  相似文献   

11.
Estimating species ability to adapt to environmental changes is crucial to understand their past and future response to climate change. The Mediterranean Basin has experienced remarkable climatic changes since the Miocene, which have greatly influenced the evolution of the Mediterranean flora. Here, we examine the evolutionary history and biogeographic patterns of two sedge sister species (Carex, Cyperaceae) restricted to the western Mediterranean Basin, but with Pliocene fossil record in central Europe. In particular, we estimated the evolution of climatic niches through time and its influence in lineage differentiation. We carried out a dated phylogenetic–phylogeographic study based on seven DNA regions (nDNA and ptDNA) and fingerprinting data (AFLPs), and modelled ecological niches and species distributions for the Pliocene, Pleistocene and present. Phylogenetic and divergence time analyses revealed that both species form a monophyletic lineage originated in the late Pliocene–early Pleistocene. We detected clear genetic differentiation between both species with distinct genetic clusters in disjunct areas, indicating the predominant role of geographic barriers limiting gene flow. We found a remarkable shift in the climatic requirements between Pliocene and extant populations, although the niche seems to have been relatively conserved since the Pleistocene split of both species. This study highlights how an integrative approach combining different data sources and analyses, including fossils, allows solid and robust inferences about the evolutionary history of a plant group since the Pliocene.  相似文献   

12.
现存狒狒类(Papionin)生活于非洲(如Papio和Theropithoan)、亚洲(如Macaca)和北非(M.sylvanas)。在上新世和更新世,Theropithecus经历了从非洲到亚洲的扩散过程,在印度发现了类似化石。这次在云南中甸金沙江附近发现的下更新世狒狒化石(Papio)证明,如同亚洲猕猴和现代人类祖先一样,非洲狒狒类(Papio和Theropithecus)在同一时期从非洲扩散到亚洲。所不同的是它们没有像猕猴和人类一样生存下来。这次化石的发现对于研究以下生物学问题提供了重要依据1)探讨旧大陆猴类在上新—更新世从非洲到亚洲的扩散过程;2)研究不同旧大陆猴类的进化和环境适应性;3)为现代人类祖先在非洲—亚大陆的扩散研究提供证据;4)由于化石产地包括有人类祖先和其他动物的化石,因此,狒狒在亚洲的生态适应研究将为探讨人类在同一时期的生态适应提供证据。  相似文献   

13.
We describe lark (Alaudidae) fossils from the upper Pliocene of the Beregovaya (southern Transbaikalia) and Shaamar (northern Mongolia) localities. The presence of 4 extinct forms in these localities is established, including the new fossil horned lark Eremophila orkhonensis (Zelenkov et Kurochkin, 2012), comb. nov. This is the oldest member of Eremophila in the fossil record, indicating a possible Central Asian origin of the genus. Two other larks Alaudala aff. A. rufescens and Calandrella aff. C. brachydactyla also probably represent extinct forms. The paper describes in detail the osteology of larks and compares it with other passerines in its size class. The evolutionary history of Eremophila is discussed, and the environmental preferences of larks and their relationship to the late Pliocene landscapes of Central Asia are considered.  相似文献   

14.
Theropithecus and 'Out of Africa' dispersal in the Plio-Pleistocene   总被引:1,自引:0,他引:1  
Theropithecus oswaldi was one of the most widely distributed Plio-Pleistocene primates, found in southern, East, and North Africa, as well as in Spain, India, and possibly Italy. Such a large geographic range for a single primate species is highly unusual. Here, the nature and timing of its dispersal is examined using the Stepping Out cellular automata model. A hypothetical dispersal of T. darti is also modelled to assess whether the late Pliocene might have been a more favorable period for Afro-Eurasian dispersal than the early Pleistocene. Stepping Out draws on climatic and biome reconstruction to provide the paleovegetative and climatic background necessary for the simulations, and model parameters for T. oswaldi and T. darti were set a priori on the basis of their fossil records and paleobiologies. The simulations indicate that T. darti could have readily left Africa in the Pliocene, and that it swiftly reaches Asia. A European T. darti colonization was less certain and less rapid. The simulated T. oswaldi dispersal out of Africa was slower, but nonetheless T. oswaldi arrived at Mirzapur within the time period indicated by the fossil record. Using the a priori parameters, T. oswaldi did not arrive at the European sites of Cueva Victoria and Pirro Nord. It cannot be discounted, therefore, that some of the European fossils are a result of an earlier T. darti dispersal. The simulations also showed that in order for Theropithecus to reach Europe, it needed to be tolerant of a relatively wide range of habitats. In addition, our finding that Asian colonization was more rapid and more probable parallels the information from the hominin fossil record, in which the fossils from Asia predate those from Europe by several hundred thousand years.  相似文献   

15.
Global climate fluctuated considerably throughout the Pliocene-Pleistocene period, influencing the evolutionary history of a wide array of species. Using the phylogeographic patterns within the hartebeest (Alcelaphus buselaphus (Pallas, 1766)) complex, we evaluated the evolutionary consequences of such environmental change for a typical large mammal ranging on the African savannah. Our results, as generated from two mitochondrial DNA markers (the D-loop and cytochrome b), suggest an origin of the hartebeest in eastern Africa from where the species has colonized other parts of the continent. Phylogenetic analyses revealed an early diversification into southern and northern hartebeest lineages, an event that may be related to the formation of the Rift Valley lakes. The northern lineage has further diverged into eastern and western lineages, most probably as a result of the expanding central African rainforest belt and subsequent contraction of savannah habitats during a period of global warming. The diversification events appear to have coincided with major climatic changes and are highly correlated in time. These observations strongly suggest that large-scale climatic fluctuations have been a major determinant for the species' evolutionary history and that hartebeest evolution has mainly taken place in isolated yet environmentally favourable refugia during periods of global warming. Indications of sudden population expansion for two putative ancestral hartebeest populations provide further support for a refugia-based explanation of the diversification events. Reciprocal monophyly between southern and northern lineages may suggest that reproductive barriers exist and that the hartebeest complex comprises two different species.  相似文献   

16.
Major morphological and behavioral innovations in early human evolution have traditionally been viewed as responses to conditions associated with increasing aridity and the development of extensive grassland-savanna biomes in Africa during the Plio-Pleistocene. Interpretations of paleoenvironments at the Pliocene locality of Laetoli in northern Tanzania have figured prominently in these discussions, primarily because early hominins recovered from Laetoli are generally inferred to be associated with grassland, savanna or open woodland habitats. As these reconstructions effectively extend the range of habitat preferences inferred for Pliocene hominins, and contrast with interpretations of predominantly woodland and forested ecosystems at other early hominin sites, it is worth reevaluating the paleoecology at Laetoli utilizing a new approach. Isotopic analyses were conducted on the teeth of twenty-one extinct mammalian herbivore species from the Laetolil Beds (∼ 4.3–3.5 Ma) and Upper Ndolanya Beds (∼ 2.7–2.6 Ma) to determine their diet, as well as to investigate aspects of plant physiognomy and climate. Enamel samples were obtained from multiple localities at different stratigraphic levels in order to develop a high-resolution spatio-temporal framework for identifying and characterizing dietary and ecological change and variability within the succession. In general, dietary signals at Laetoli suggest heterogeneous ecosystems with both C3 and C4 dietary plants available that could support grassland, woodland, and forested communities. All large-bodied herbivores analyzed yielded dietary signatures indicating mixed grazing/browsing strategies or exclusive reliance on C3 browse, more consistent with wooded than grassland-savanna biomes. There are no clear isotopic patterns documenting shifting ecology within the Laetolil Beds or between the Laetolil and overlying Upper Ndolanya Beds, although limited data from the U. Ndolanya Beds constrains interpretations. Comparison of the results from Laetoli with isotopic enamel profiles of other African fossil and modern communities reveals significant differences in dietary patterns. Relative to extant taxa in related lineages, carbon isotopic ranges of a number of Laetoli fossil herbivores are anomalous, indicating significantly more generalized intermediate C3/C4 feeding behaviors, perhaps indicative of dietary niches and habitat types with no close modern analogs. Enamel oxygen isotope ranges of fossil taxa from Laetoli are consistently more 18O depleted than modern E. African herbivores, possibly indicating more humid conditions during that interval in the past. These data have important implications for reconstructing dietary trajectories of mammalian herbivore lineages, as well as the evolution of ecosystems in East Africa. Isotopic analyses of similar or related taxa at other hominin fossil sites yield signatures generally consistent with Laetoli, suggesting that mammalian communities in East Africa were sampling ecosystems with similar proportions of browse and grass. Collectively, the isotopic dietary signatures indicate heterogeneous habitats with significant wooded or forested components in the Laetoli area during deposition of the Laetolil and Upper Ndolanya Beds. Early hominin foraging activity in this interval may have included access to forest or woodland biomes within this ecosystem, complicating traditional interpretations linking early human evolutionary innovations with a shift to savanna habitats.  相似文献   

17.
Aim Montane tropics are areas of high endemism, and mechanisms driving this endemism have been receiving increasing attention at a global scale. A general trend is that climatic factors do not explain the species richness of species with small to medium‐sized geographic ranges, suggesting that geological and evolutionary processes must be considered. On the African continent, several hypotheses including both refugial and geographic uplift models have been advanced to explain avian speciation and diversity in the lowland forest and montane regions of central and eastern Africa; montane regions in particular are recognized as hotspots of vertebrate endemism. Here, we examine the possible role of these models in driving speciation in a clade of African forest robins. Location Africa. Methods We constructed the first robustly supported molecular phylogenetic hypothesis of forest robins. On this phylogeny, we reconstructed habitat‐based distributions and geographic distributions relative to the Albertine Rift. We also estimated the timing of lineage divergences via a molecular clock. Results Robust estimates of phylogenetic relationships and clock‐based divergences reject Miocene tectonic uplift and Pleistocene forest refugia as primary drivers of speciation in forest robins. Instead, our data suggest that most forest robin speciation took place in the Late Pliocene, from 3.2 to 2.2 Ma. Distributional patterns are complex, with the Albertine Rift region serving as a general east–west break across the group. Montane distributions are inferred to have evolved four times. Main conclusions Phylogenetic divergence dates coincide with a single period of lowland forest retraction in the late Pliocene, suggesting that most montane speciation resulted from the rapid isolation of populations in montane areas, rather than montane areas themselves being drivers of speciation. This conclusion provides additional evidence that Pliocene climate change was a major driver of speciation in broadly distributed African animal lineages. We further show that lowland forest robins are no older than their montane relatives, suggesting that lowland areas are not museums which house ‘ancient’ taxa; rather, for forest robins, montane areas should be viewed as living museums of a late Pliocene diversification event. A forest refugial pattern is operating in Africa, but it is not constrained to the Pleistocene.  相似文献   

18.
Climate change is hypothesized as a cause of major events of Plio-Pleistocene East African hominin evolution, but the vertically discontinuous and laterally confined nature of the relevant geological records has led to difficulties with assessing probable links between the two. High-resolution sedimentary sequences from lacustrine settings can provide comprehensive data of environmental changes and detailed correlations with well-established orbital and marine records of climate. Hominin-bearing deposits from Koobi Fora Ridge localities in the northeast Turkana Basin of Kenya are an archive of Plio-Pleistocene lake-margin sedimentation though significant developmental junctures of northern African climates, East African environments, and hominin evolution. This study examines alluvial channel and floodplain, nearshore lacustrine, and offshore lacustrine facies environments for the approximately 136-m-thick KBS Member (Koobi Fora Formation) exposed at the Koobi Fora Ridge. Aspects of the facies environments record information on the changing hydrosedimentary dynamics of the lake margin and give insights into potential climatic controls. Seasonal/yearly climate changes are represented by the varve-like laminations in offshore mudstones and the slickensides, dish-shaped fractures, and other paleosol features overprinted on floodplain strata. Vertical shifts between facies environments, however, are interpreted to indicate lake-level fluctuations deriving from longer-term, dry-wet periods in monsoonal rainfall. Recurrence periods for the inferred lake-level changes range from about 10,000 to 50,000 years, and several are consistent with the average estimated timescales of orbital precession ( approximately 20,000 years) and obliquity ( approximately 40,000 years). KBS Member facies environments from the Koobi Fora Ridge document the development of lake-margin hominin habitats in the northeast Turkana Basin. Environmental changes in these habitats may be a result of monsoonal rainfall variations that derive from orbital insolation and/or glacial forcing.  相似文献   

19.
Late Pliocene climate changes have long been implicated in environmental changes and mammalian evolution in Africa, but high-resolution examinations of the fossil and climatic records have been hampered by poor sampling. By using fossils from the well-dated Shungura Formation (lower Omo Valley, northern Turkana Basin, southern Ethiopia), we investigate palaeodietary changes in one bovid and in one suid lineage from 3 to 2 Ma using stable isotope analysis of tooth enamel. Results show unexpectedly large increases in C4 dietary intake around 2.8 Ma in both the bovid and suid, and possibly in a previously reported hippopotamid species. Enamel δ13C values after 2.8 Ma in the bovid (Tragelaphus nakuae) are higher than recorded for any living tragelaphin, and are not expected given its conservative dental morphology. A shift towards increased C4 feeding at 2.8 Ma in the suid (Kolpochoerus limnetes) appears similarly decoupled from a well-documented record of dental evolution indicating gradual and progressive dietary change. The fact that two, perhaps three, disparate Pliocene herbivore lineages exhibit similar, and contemporaneous changes in dietary behaviour suggests a common environmental driver. Local and regional pollen, palaeosol and faunal records indicate increased aridity but no corresponding large and rapid expansion of grasslands in the Turkana Basin at 2.8 Ma. Our results provide new evidence supporting ecological change in the eastern African record around 2.8 Ma, but raise questions about the resolution at which different ecological proxies may be comparable, the correlation of vegetation and faunal change, and the interpretation of low δ13C values in the African Pliocene.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号