首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The photoexcitation (lambda = 313 +/- 10 nm) of adriamycin, daunomycin, and mitoxantrone in the presence of peptides or pyrimidine nucleic acid bases was investigated. In air-saturated and air-free solutions, peptides are decarboxylated by the photoexcited drug molecules. The decarboxylation reactions were shown to occur specifically at the C-terminal amino acid of the peptide. The decarboxylated peptide radicals were spin-trapped using 2-methyl-2-nitrosopropane (MNP) and identified by electron spin resonance (ESR). In air-free solutions, nucleic acid bases are oxidized by the photoexcited drug molecules predominantly generating C(5)-carbon-centered radicals in the pyrimidine rings of uracil, cytosine, and thymine. However, spin adducts of MNP and thymine were also obtained at the N(1) or N(3) positions of the pyrimidine ring. In air-saturated adriamycin and daunomycin solutions, the spin adducts of MNP with uracil or thymine are similar to those obtained following hydroxyl radical reactions with these pyrimidines. This suggests that in the presence of oxygen, the photoexcited adriamycin and daunomycin transfer an electron to oxygen generating the superoxide anion radicals (O2-.), which are precursors of hydroxyl radicals. O2-. was also formed when O2-saturated DNA solutions were photoirradiated (lambda = 313 +/- 10 and 438 +/- 10 nm) in the presence of adriamycin and daunomycin, indicating that the photodegradation of DNA in the presence of these drugs caused by hydroxyl radicals is mediated by dissolved oxygen.  相似文献   

2.
The production of hydroxyl radicals by adriamycin in red blood cells   总被引:2,自引:0,他引:2  
Spin trapping of the free radicals formed from the interaction between adriamycin and red blood cells resulted in the formation of a hydroxyl spin adduct. The formation of hydroxyl radicals was found to be inhibited by mannitol. Hemoglobin was found not to be obligatory for the formation of hydroxyl radicals which probably result from the reduction of hydrogen peroxide by adriamycin semiquinone.  相似文献   

3.
The formation of hydroxyl radicals in beta-glucan solutions treated with ascorbic acid and iron(II) was demonstrated by ESR spin trapping based methods. Two different spin traps were tested, namely DMPO which is commonly used to detect hydroxyl radicals, and POBN often used to detect carbon centered radicals. The experiments performed showed that the presence of iron(II) with DMPO led to low DMPO-OH adduct stability and further to DMPO dimerization. The level of hydroxyl radicals formed during the beta-glucan radical mediated degradation was evaluated using two ESR spin trapping methods based on the use POBN together with either 2% (v/v) EtOH or DMSO. The addition of ascorbic acid together with iron(II) in beta-glucan solution led to an immediate maximal production of hydroxyl radicals while the presence of ascorbic acid alone led to a progressive production of radical. Further hydroxyl radicals were found to be formed when iron(II) was added alone in beta-glucan solutions. The viscosity loss observed in the three last mentioned beta-glucan solutions were found to relate with the formation of hydroxyl radicals. These data confirm the involvement of hydroxyl radical in the beta-glucan degradation.  相似文献   

4.
A novel cyclic nitrone spin trap, 5-tert-butoxycarbonyl 5-methyl-1-pyrroline N-oxide (BMPO) as a pure white solid has been synthesized for the first time. BMPO offers several advantages over the existing spin traps in the detection and characterization of thiyl radicals, hydroxyl radicals, and superoxide anions in biological systems. The corresponding BMPO adducts exhibit distinct and characteristic electron spin resonance (ESR) spectral patterns. Unlike the 5,5-dimethyl-1-pyrroline N-oxide (DMPO)-derived superoxide adduct, the BMPO superoxide adduct does not non-enzymatically decompose to the BMPO hydroxyl adduct. This feature is clearly perceived as a definite advantage of BMPO in its biological applications. In addition, the ESR spectrum of the BMPO glutathionyl adduct (BMPO/*SG) does not fully overlap with the spectrum of its hydroxyl adduct. This spectral feature is again distinctly different from that of DMPO because the ESR spectral lines of DMPO glutathionyl and hydroxyl radical adducts largely overlap. Finally, the ESR spectra of BMPO-derived adducts exhibit a much higher signal-to-noise ratio in biological systems. These favorable chemical and spectroscopic features make BMPO ideal for the detection of superoxide anions, hydroxyl and thiyl radicals in biochemical oxidation and reduction.  相似文献   

5.
The spin trap 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO) forms a superoxide adduct with a half-life of almost 15 min. DEPMPO is very hydrophilic and its use for the detection of radicals in the lipid phase (lipid-derived radicals and superoxide generated in the lipid phase) is therefore limited due to its very low concentration in the lipid phase. For the detection of lipid-derived radicals, three derivatives of DEPMPO with increasing degree of lipid solubility have been investigated: 5-(di-n-propoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DPPMPO), 5-(di-n-butoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DBPMPO), and 5-(bis-(2-ethylhexyloxy)phosphoryl)-5-methyl-1-pyrroline N-oxide (DEHPMPO). As compared with the spin trap DMPO, the half-lives of the respective superoxide adducts were clearly higher in aqueous solutions of the spin traps, which facilitates qualitative ESR measurements. The stability of the superoxide spin adducts formed with the various lipophilic spin traps in aqueous buffer were similar to those observed with DEPMPO (half-life: 7-11 min.). In model experiments using Fe(3+)-catalyzed nucleophilic addition of methanol or tert-butanol to the respective spin trap the respective alkoxyl radical adducts were formed in aqueous solution as transient species in the presence of high concentrations of the alcohol. Upon dilution with water the alkoxyl group was substituted by water, giving the respective hydroxyl adduct of the spin trap. Care must therefore be taken when Fenton-type reactions are used for the generation of radicals such as the use of Fe(2+) complexes with phosphate or DTPA or inactivation of iron by addition of "Desferal" (Novarti's Pharma GmbH, Vienna, Austria) after a short incubation time. Addition of Fe(2+) under anaerobic conditions to an aqueous suspension of linoleic acid hydroperoxide and the spin trap resulted in the detection of three different species: a carbon-centered radical adduct, an acyl radical adduct, and the hydroxyl adduct. In the presence of oxygen a different species was observed with DEPMPO, DPPMPO, and DBPMPO, which was only slightly suppressed upon the addition of SOD, possibly the respective spin adduct of either the alkylperoxyl radical or, in analogy to DMPO, a secondary alkoxyl radical.  相似文献   

6.
Short-lived free radicals formed in the reaction of 11 substrates and radiolytically produced hydroxyl radicals were trapped successfully with 5, 5-dimethyl-1-pyrroline-N-oxide (DMPO) in dilute aqueous solution. The in situ radiolysis steady-state ESR spectra of the spin adducts were analyzed to determine accurate ESR parameters for these spin adducts in a uniform environment. Parent alkyl radicals include methyl, ethyl, 1-propyl and 2-propyl (1-methylethyl). Hydroxyalkyl parent radicals were hydroxymethyl, hydroxyethyl, 2-hydroxy-2-propyl (1-methyl-1-hydroxyethyl), 1-hydroxypropyl and 2-hydroxy-2-methylpropyl. Carboxyl radical (carbon dioxide anion, formate radical) and sulfite anion radical were the sigma radicals studied. The DMPO spin adduct of 1-propyl was identified for the first time. For most spin adducts, g factors were also determined for the first time. In DMPO spin adducts of hydroxyalkyl radicals, nitrogen and C(2)-proton hyperfine coupling constants are smaller than those of alkyl radical adducts; the hydroxyalkyl spin adducts possess larger g values than their unsubstituted counterparts. These changes are ascribed to the spread of pi conjugation to include the hydroxyl group. Strong evidence of spin addend-aminoxyl group interaction can be seen in the asymmetrical line shapes in the hydroxyethyl and the hydroxypropyl spin adducts.  相似文献   

7.
Radical scavenging by reconstituted lyophilized powders of water extracts from 16 common vegetables was measured using electron spin resonance (ESR) with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), hydroxyl radicals, (.OH) or superoxide anion radicals (O2.-), as DMPO-OH or DMPO-OOH spin adducts. On a dry weight basis, eggplant, and red, yellow and green bell pepper extracts showed potent superoxide anion radical scavenging activities (SOD-like activities). Ascorbate oxidase- or heat-treatments, decreased SOD-like activities in bell pepper extracts suggesting that ascorbate accounts for much of their free radical scavenging activity. Eggplant epidermis extract exhibited the most potent hydroxyl radical scavenging and SOD-like activities. Eggplant SOD-like activity did not decrease after ascorbate oxidase treatment, but decreased following ultrafiltration demonstrating that SOD-like activity is partially due to high molecular weight substances. Nasunin, an anthocyanin in eggplant epidermis, showed markedly potent superoxide anion radical scavenging activity, while it inhibited hydroxyl radical generation probably by chelating ferrous ion.  相似文献   

8.
The response of superoxide dismutase- and catalase-deficient strains of Escherichia coli to redox active compounds was examined by electron spin resonance. Levels of radicals formed in response to pyocyanine in situ were extremely low and were found to be predominantly extracellular, even in a strain completely deficient in both superoxide dismutase and catalase. In cell-free extracts of superoxide dismutase-minus strains incubated with NADPH and pyocyanine, the primary accumulating radical was the superoxide anion (O2-), although low levels of the hydroxyl radical (.OH) were also detected. In contrast, extracts from strains lacking catalase were found to accumulate higher levels of hydroxyl radicals.  相似文献   

9.
Aqueous extracts of cigarette tar produce hydroxyl radicals that are spin trapped by 5,5-dimethyl-1-pyrroline-N-oxide. The addition of catalase almost completely inhibits and superoxide dismutase partially inhibits spin adduct formation. The addition of ethylenediamine tetraacetic acid greatly increases the amount of hydroxyl radical adduct observed; in contrast, diethylenetriamine pentaacetic acid causes complete inhibition of spin adduct formation. We suggest that the hydroxyl radical arises from the metal-mediated decomposition of hydrogen peroxide, and that hydrogen peroxide is formed from the reduction of dioxygen by the semiquinones present in the cigarette tar.  相似文献   

10.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   

11.
5-(2,2-Dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO), a new cyclic DEPMPO-type nitrone was evaluated for spin-trapping capabilities toward hydroxyl and superoxide radicals. CYPMPO is colorless crystalline and freely soluble in water. Both the solid and diluted aqueous solution did not develop electron spin resonance (ESR) signal for at least 1 month at ambient conditions. CYPMPO can spin-trap superoxide and hydroxyl radicals in both chemical and biological systems, and the ESR spectra are readily assignable. Half life for the superoxide adduct of CYPMPO produced in UV-illuminated hydrogen peroxide solution was approximately 15 min, and in biological systems such as hypoxanthine (HX)/xanthine oxidase (XOD) the half-life of the superoxide adduct was approximately 50 min. In UV-illuminated hydrogen peroxide solution, there was no conversion from the superoxide adduct to the hydroxyl adduct. Although overall spin-trapping capabilities of CYPMPO are similar to DEPMPO, its high melting point, low hygroscopic property, and the long shelf-life would be highly advantageous for the practical use.  相似文献   

12.
The spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide of free radicals formed from Bacillus-Calmette-Guerin elicited peritoneal macrophages stimulated with phorbol myristate acetate resulted in the formation of a superoxide and hydroxyl spin adducts. The formation of both spin adducts was inhibited by copper/zinc superoxide dismutase. Only 70% of the hydroxyl spin adduct could be inhibited by catalase or the scavenger dimethyl sulfoxide. This suggests that the production of hydroxyl radicals involves prior formation of both superoxide radicals and hydrogen peroxide, implicating a Fenton catalysed Haber-Weiss reaction. The metal scavenger desferrioxamine also reduced the hydroxyl radical signal by 70%. The unaccounted 30% hydroxyl radical-like signals are probably due to carbon-centered free radicals formed by the lipoxygenase reaction. Spin trapping in the presence of the lipid-soluble spin trap, 5-octadecyl-5,3,3-trimethyl-1-pyrroline-N-oxide, resulted in a spectrum consistent with the presence of an oxaziridine nitroxide. This results from the free radical-induced cyclisation of a nitrone with an unsaturated fatty acid.  相似文献   

13.
Chondrocytes have been shown to produce superoxide and hydrogen peroxide, suggesting possible formation of hydroxyl radical in these cells. In this study, we used electron spin resonance/spin trapping technique to detect hydroxyl radicals in chondrocytes. We found that hydroxyl radicals could be detected as α-hydroxyethyl spin trapped adduct of 4-pyridyl 1-oxide N-tert-butylnitrone (4-POBN) in chondrocytes stimulated with phorbol 12-myristate 13-acetate in the presence of ferrous ion. The formation of hydroxyl radical appears to be mediated by the transition metal-catalyzed Haber-Weiss reaction since no hydroxyl radical was detected in the absence of exogenous iron. The hydroxyl radical formation was inhibited by catalase but not by superoxide dismutase, suggesting that the hydrogen peroxide is the precursor. Cytokines, IL-1 and TNF enhanced the hydroxyl radical formation in phorbol 12-myristate 13-acetate treated chondrocytes. Interestingly, hydroxyl radical could be detected in unstimulated fresh human and rabbit cartilage tissue pieces in the presence of iron. These results suggest that the formation of hydroxyl radical in cartilage could play a role in cartilage matrix degradation.  相似文献   

14.
Electron spin resonance (ESR) studies on spin trapping of superoxide and hydroxyl radicals by 5,5-dimethyl-1-pyrroline-1-oxide (DMPO) were performed in NADPH-cytochrome P-450 reductase-paraquat systems at pH 7.4. Spin adduct concentrations were determined by comparing ESR spectra of the adducts with the ESR spectrum of a stable radical solution. Kinetic analysis in the presence of 100 microM desferrioxamine B (deferoxamine) showed that: 1) the oxidation of 1 mol of NADPH produces 2 mol of superoxide ions, all of which can be trapped by DMPO when extrapolated to infinite concentration; 2) the rate constant for the reaction of superoxide with DMPO was 1.2 M-1 s-1; 3) the superoxide spin adduct of DMPO (DMPO-OOH) decays with a half-life of 66 s and the maximum level of DMPO-OOH formed can be calculated by a simple steady state equation; and 4) 2.8% or less of the DMPO-OOH decay occurs through a reaction producing hydroxyl radicals. In the presence of 100 microM EDTA, 5 microM Fe(III) ions nearly completely inhibited the formation of the hydroxyl radical adduct of DMPO (DMPO-OH) as well as the formation of DMPO-OOH and, when 100 microM hydrogen peroxide was present, produced DMPO-OH exclusively. Fe(III)-EDTA is reduced by superoxide and the competition of superoxide and hydrogen peroxide in the reaction with Fe(II)-EDTA seems to be reflected in the amounts of DMPO-OOH and DMPO-OH detected. These effects of EDTA can be explained from known kinetic data including a rate constant of 6 x 10(4) M-1 s-1 for reduction of DMPO-OOH by Fe(II)-EDTA. The effect of diethylenetriamine pentaacetic acid (DETAPAC) on the formation of DMPO-OOH and DMPO-OH was between deferoxamine and EDTA, and about the same as that of endogenous chelator (phosphate).  相似文献   

15.
The spin trapping ESR technique was applied to investigate oxygen-derived radicals in ischemic and post-ischemic rat hearts. Using 5,5'-dimethyl-l-pyrroline-N-oxide, carbon-centered radicals were identified during ischemia and oxy-radical adducts (superoxide anion radical, O.-2 and hydroxyl radicals, .OH) in post-ischemic rat heart. The formation of these spin adducts was inhibited by superoxide dismutase, suggesting that superoxide plays a role in the adducts' formation. The results demonstrate that oxygen derived free radicals are important byproducts of abnormal oxidative metabolism during myocardial ischemic and reperfusion injuries.  相似文献   

16.
We describe the synthesis and biological applications of a novel nitrogen-15-labeled nitrone spin trap, 5-ethoxycarbonyl-5-methyl-1-pyrroline N-oxide ([(15)N]EMPO) for detecting superoxide anion. Superoxide anion generated in xanthine/xanthine oxidase (100 nM min(-1)) and NADPH/calcium-calmodulin/nitric oxide synthase systems was readily detected using EMPO, a nitrone analog of 5,5'-dimethyl-1-pyrroline N-oxide (DMPO). Unlike DMPO-superoxide adduct (DMPO-OOH), the superoxide adduct of EMPO (EMPO-OOH) does not spontaneously decay to the corresponding hydroxyl adduct, making spectral interpretation less confounding. Although the superoxide adduct of 5-(diethoxyphosphoryl)-5-methyl-pyrroline N-oxide is more persistent than EMPO-OOH, the electron spin resonance spectra of [(14)N]EMPO-OOH and [(15)N]EMPO-OOH are less complex and easier to interpret. Potential uses of [(15)N]EMPO in elucidating the mechanism of superoxide formation from nitric oxide synthases, and in ischemia/reperfusion injury are discussed.  相似文献   

17.
Anaerobic reduction of hydrogen peroxide in a xanthine/xanthine oxidase system by adriamycin semiquinone in the presence of chelators and radical scavengers was investigated by direct electron paramagnetic resonance and spin trapping techniques. Under these conditions, adriamycin semiquinone appears to react with hydrogen peroxide forming the hydroxyl radical in the presence of chelators such as ethylenediaminetetraacetic acid and diethylenetriaminepentaacetic acid. In the absence of chelators, a related, but unknown oxidant is formed. In the presence of desferrioxamine, adriamycin semiquinone does not disappear in the presence of hydrogen peroxide at a detectable rate. The presence of adventitious iron is therefore implicated during adriamycin semiquinone-catalyzed reduction of hydrogen peroxide. Formation of alpha-hydroxyethyl radical and carbon dioxide radical anion from ethanol and formate, respectively, was detected by spin trapping. Both the hydroxyl radical and the related oxidant react with these scavengers, forming the corresponding radical. In the presence of scavengers from which reducing radicals are formed, the rate of consumption of hydrogen peroxide in this system is increased. This result can be explained by a radical-driven Fenton reaction.  相似文献   

18.
Stabilities of hydroxyl radical spin adducts of PBN-type spin traps.   总被引:6,自引:0,他引:6  
The stability of the hydroxyl spin adduct of nine different PBN-type spin traps has been examined in phosphate buffer solutions of various pH. The hydroxyl adduct is produced by short illumination of hydrogen peroxide with UV light in the presence of spin trap and the decay of its EPR signal followed. The stability measured by the half life of the first-order decay is strongly dependent on the pH of the solution and the structure of the aromatic ring used in the trap. All hydroxyl adducts are more stable in acidic media. tert-Butyl hydroaminoxyl is detected as a degradation product of the hydroxyl adduct from all spin traps.  相似文献   

19.
Soybean lipoxygenase is shown to catalyze the breakdown of polyunsaturated fatty acid hydroperoxides to produce superoxide radical anion as detected by spin trapping with 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In addition to the DMPO/superoxide radical adduct, the adducts of peroxyl, acyl, carbon-centered, and hydroxyl radicals were identified in incubations containing linoleic acid and lipoxygenase. These DMPO radical adducts were observed just prior to the system becoming anaerobic. Only a carbon-centered radical adduct was observed under anaerobic conditions. The superoxide radical production required the presence of fatty acid substrates, fatty acid hydroperoxides, active lipoxygenase, and molecular oxygen. Superoxide radical production was inhibited when nordihydroguaiaretic acid, butylated hydroxytoluene, or butylated hydroxyanisole was added to the incubation mixtures. We propose that polyunsaturated fatty acid hydroperoxides are reduced to form alkoxyl radicals and that after an intramolecular rearrangement, the resulting hydroxyalkyl radical reacts with oxygen, forming a peroxyl radical which subsequently eliminates superoxide radical anion.  相似文献   

20.
Nitrofurantoin, misonidazole, and metronidazole were reduced to their corresponding nitro anion radicals by ascorbate in anaerobic solutions at high pH. The nitrofurantoin anion radical could be detected at neutral pH. In neutral solutions, the nitro anion radicals of misonidazole and metronidazole were too unstable to be observed by electron spin resonance spectroscopy. At neutral pH, solutions containing ascorbate, nitrofurantoin, or misonidazole consumed oxygen. The addition of superoxide dismutase, catalase, or both superoxide dismutase and catalase decreased the rate of oxygen consumption. These results show that nitro anion radicals are formed by reduction with ascorbate, and superoxide anion radical and hydrogen peroxide are produced by reactions of these radicals with oxygen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号