首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Abstract: Two populations of the psocid, Liposcelis bostrychophila Badonnel, were exposed to two CO2-enriched atmospheres (35% CO2 + 21% O2, and 55% CO2 + 21% O2, balance N2) for 30 generations. Controls were reared in normal atmospheres. The reserves of triacylglycerol and polysaccharides were evaluated in adults of the two experimental and the control populations in generations F15 and F30. The utilization rate of triacylglycerol and polysaccharides in the CO2-enriched atmospheres were also determined in generation F30. The results indicated that the reserves of triacylglycerol and polysaccharides increased significantly during selection for CO2 resistance; the higher the resistance level, the greater the reserves. Exposure of these populations to controlled atmosphere was associated with a steady utilization of the reserves. By contrast, the unselected population responded to controlled atmospheres by accelerated utilization of triacylglycerol and polysaccharides. Comparison of the utilization rates during CO2 exposure showed that triacylglycerol is the main energy source, and polysaccharides contribute to metabolic energy supply only to a small extent.  相似文献   

2.
Interaction between induction of carbonic anhydrase (CA) activity, induction of inorganic carbon (Ci) concentrating mechanisms and the photorespiratory glycolate pathway has been studied in wild type 6145c and photorespiratory mutant 18–7F (low in phosphoglycolate phosphatase activity) cells of C. reinhardtii . Cell transfer from high CO2 (5%, v/v) to low CO2 (0.03%) provoked an increase of extracellular and total (extracellular plus intracellular) CA in both wild type and mutant cells. During adaptation to low CO2 conditions, both strains excreted ammonium to the medium at a similar rate in the presence of l -methionine- d-l -sulfoximine (MSX), an inhibitor of glutamine synthetase (GS). MSX also provoked ammonium excretion by air adapted wild type and mutant cells, even though both strains had high levels of CA activity and of Ci concentrating activities.
GS increased in both strains after transfer from high to low CO2 conditions. However, this increase was abolished by aminooxyacetate, an inhibitor of the glyoxylate-serine aminotransferase, and by glycolaldehyde, an inhibitor of triose phosphate to ribulose 1,5-bisphosphate conversion. CA synthesis did not occur in the presence of either aminooxyacetate or glycolaldehyde. Algae grown in high CO2 in the presence of aminooxyacetate did not induce Ci concentrating mechanisms. Integration of these three processes, i.e., CA synthesis, Ci-concentration, and photorespiratory glycolate pathway is proposed in the framework of carbon metabolism of the alga.  相似文献   

3.
Unicellular green algae such as Chlamydomonas and Dunaliella excrete small amounts of glycolate during active photosynthesis. This phenomenon has been explained by the fact that these algae do not have leaf-type peroxisomes and glycolate oxidase; instead, they have a limited capacity to metabolise glycolate in their mitochondria by a membrane-associated glycolate dehydrogenase. Salicylhydroxamic acid (SHAM), an inhibitor of alternative oxidase in plant and algal mitochondria, stimulates glycolate excretion by the algae or their isolated chloroplasts 5-fold. In the presence of SHAM, cells of Chlamydomonas or Dunaliella grown with high-CO2 (5% CO2 in air, v/v) or adapted with air levels of CO2 excreted glycolate at a rate of about 14 µmol glycolate mg−1 Chl h−1. Aminooxyacetate (AOA), an inhibitor of aminotransferases, also increases glycolate excretion by the algal cells or chloroplasts but at a lower rate (about 50%) than SHAM. The algal, light dependent, SHAM-sensitive glycolate oxidizing system in the chloroplasts appears to be the primary site for glycolate oxidation, and it is different and more active then the minor mitochondrial glycolate dehydrogenase.  相似文献   

4.
5.
There is considerable interest in modeling isoprene emissions from terrestrial vegetation, because these emissions exert a principal control over the oxidative capacity of the troposphere. We used a unique field experiment that employs a continuous gradient in CO2 concentration from 240 to 520 ppmv to demonstrate that isoprene emissions in Eucalyptus globulus were enhanced at the lowest CO2 concentration, which was similar to the estimated CO2 concentrations during the last Glacial Maximum, compared with 380 ppmv, the current CO2 concentration. Leaves of Liquidambar styraciflua did not show an increase in isoprene emission at the lowest CO2 concentration. However, isoprene emission rates from both species were lower for trees grown at 520 ppmv CO2 compared with trees grown at 380 ppmv CO2. When grown in environmentally controlled chambers, trees of Populus deltoides and Populus tremuloides exhibited a 30–40% reduction in isoprene emission rate when grown at 800 ppmv CO2, compared with 400 ppmv CO2. P. tremuloides exhibited a 33% reduction when grown at 1200 ppmv CO2, compared with 600 ppmv CO2. We used current models of leaf isoprene emission to demonstrate that significant errors occur if the CO2 inhibition of isoprene is not taken into account. In order to alleviate these errors, we present a new model of isoprene emission that describes its response to changes in atmospheric CO2 concentration. The model logic is based on assumed competition between cytosolic and chloroplastic processes for pyruvate, one of the principal substrates of isoprene biosynthesis.  相似文献   

6.
Abstract. The objective of this study was to investigate the effects of water stress in sweet potato ( Ipomoea batatas L. [Lam] 'Georgia Jet') on biomass production and plant-water relationships in an enriched CO2 atmosphere. Plants were grown in pots containing sandy loam soil (Typic Paleudult) at two concentrations of elevated CO2 and two water regimes in open-top field chambers. During the first 12 d of water stress, leaf xylem potentials were higher in plants grown in a CO2 concentration of 438 and 666 μmol mol−1 than in plants grown at 364 μmol mol−1. The 364 μmol mol−1 CO2 grown plants had to be rewatered 2 d earlier than the high CO2-grown plants in response to water stress. For plants grown under water stress, the yield of storage roots and root: shoot ratio were greater at high CO2 than at 364 μmol mol−1; the increase, however, was not linear with increasing CO2 concentrations. In well-watered plants, biomass production and storage root yield increased at elevated CO2, and these were greater as compared to water-stressed plants grown at the same CO2 concentration.  相似文献   

7.
Increased root exudation under elevated atmospheric CO2 and the contrasting environments in soil macro- and microaggregates could affect microbial growth strategies. We investigated the effect of elevated CO2 on the contribution of fast- ( r -strategists) and slow-growing ( K -strategists) microorganisms in soil macro- and microaggregates. We fractionated the bulk soil from the ambient and elevated (for 5 years) CO2 treatments of FACE-Hohenheim (Stuttgart) into large macro- (>2 mm), small macro- (0.25–2.00 mm), and microaggregates (<0.25 mm) using 'optimal moist' sieving. Microbial biomass (Cmic), the maximum specific growth rate (μ), growing microbial biomass (GMB) and lag-period ( t lag) were estimated by the kinetics of CO2 emission from bulk soil and aggregates amended with glucose and nutrients. Although Corg and Cmic were unaffected by elevated CO2, μ values were significantly higher under elevated than ambient CO2 for bulk soil, small macroaggregates, and microaggregates. Substrate-induced respiratory response increased with decreasing aggregate size under both CO2 treatments. Based on changes in μ, GMB and lag period, we conclude that elevated atmospheric CO2 stimulated the r- selected microorganisms, especially in soil microaggregates. Such an increase in r -selected microorganisms indicates acceleration of available C mineralization in soil, which may counterbalance the additional C input by roots in soils in a future elevated atmospheric CO2 environment.  相似文献   

8.
Plantago lanceolata L. seedlings were grown in sand microcosm units over a 43‐day experimental period under two CO2 regimes (800 or 400 µmol mol−1) to investigate the effect of elevated atmospheric CO2 concentration on carbon partitioning and exudate release. Total organic carbon (TOC) content of the collected exudate material was measured throughout the experimental period. After 42 days growth the seedlings were labelled with [14C]‐CO2 and the fate of the label within the plant and its release by the roots monitored. Elevated CO2 significantly (P ≤ 0.001) enhanced shoot, root and total dry matter production although the R:S ratio was unaltered, suggesting no alteration in gross carbon partitioning. The cumulative release of TOC (in mg C) over 0‐42 days was unaltered by CO2 treatment however, when expressed as a percentage of net assimilated C, ambient‐grown plants released a significantly (P≤ 0.001) higher percentage from their roots compared to elevated CO2‐grown plants (i.e. 8 vs 3%). The distribution of 14C‐label was markedly altered by CO2 treatment with significantly (P≤ 0.001) greater per cent label partitioned to the roots under elevated CO2. This indicates increased partitioning of recent assimilate below‐ground under elevated CO2 treatment although there was no significant difference in the percentage of 14C‐label released by the roots. Comparison of plant C budgets based on 14C‐pulse‐chase methodology and TOC measurements is discussed.  相似文献   

9.
Plantago lanceolata L. and Trifolium repens L. were grown for 16 wk in ambient (360 μmol mol−1) and elevated (610 μmol mol−1) atmospheric CO2. Plants were inoculated with the arbuscular mycorrhizal (AM) fungus Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe and given a phosphorus supply in the form of bonemeal, which would not be immediately available to the plants. Seven sequential harvests were taken to determine whether the effect of elevated CO2 on mycorrhizal colonization was independent of the effect of CO2 on plant growth. Plant growth analysis showed that both species grew faster in elevated CO2 and that P. lanceolata had increased carbon allocation towards the roots. Elevated CO2 did not affect the percentage of root length colonized (RLC); although total colonized root length was greater, when plant size was taken into account this effect disappeared. This finding was also true for root length colonized by arbuscules. No CO2 effect was found on hyphal density (colonization intensity) in roots. The P content of plants was increased at elevated CO2, although both shoot and root tissue P concentration were unchanged. This was again as a result of bigger plants at elevated CO2. Phosphorus inflow was unaffected by CO2 concentrations. It is concluded that there is no direct permanent effect of elevated CO2 on mycorrhizal functioning, as internal mycorrhizal development and the mycorrhizal P uptake mechanism are unaffected. The importance of sequential harvests in experiments is discussed. The direction for future research is highlighted, especially in relation to C storage in the soil.  相似文献   

10.

A , carbon assimilation rate
ABA, abscisic acid
Ci , intercellular space CO2 concentration
g , leaf conductance
WUE, water use efficiency

Carbon dioxide and abscisic acid (ABA) are two major signals triggering stomatal closure. Their putative interaction in stomatal regulation was investigated in well-watered air-grown or double CO2-grown Arabidopsis thaliana plants, using gas exchange and epidermal strip experiments. With plants grown in normal air, a doubling of the CO2 concentration resulted in a rapid and transient drop in leaf conductance followed by recovery to the pre-treatment level after about two photoperiods. Despite the fact that plants placed in air or in double CO2 for 2 d exhibited similar levels of leaf conductance, their stomatal responses to an osmotic stress (0·16–0·24 MPa) were different. The decrease in leaf conductance in response to the osmotic stress was strongly enhanced at elevated CO2. Similarly, the drop in leaf conductance triggered by 1 μ M ABA applied at the root level was stronger at double CO2. Identical experiments were performed with plants fully grown at double CO2. Levels of leaf conductance and carbon assimilation rate measured at double CO2 were similar for air-grown and elevated CO2-grown plants. An enhanced response to ABA was still observed at high CO2 in pre-conditioned plants. It is concluded that: (i) in the absence of stress, elevated CO2 slightly affects leaf conductance in A. thaliana ; (ii) there is a strong interaction in stomatal responses to CO2 and ABA which is not modified by growth at elevated CO2.  相似文献   

11.
Elevated CO2 appears to be a significant factor in global warming, which will likely lead to drought conditions in many areas. Few studies have considered the interactive effects of higher CO2, temperature and drought on plant growth and physiology. We grew canola ( Brassica napus cv. 45H72) plants under lower (22/18°C) and higher (28/24°C) temperature regimes in controlled-environment chambers at ambient (370 μmol mol−1) and elevated (740 μmol mol−1) CO2 levels. One half of the plants were watered to field capacity and the other half at wilting point. In three separate experiments, we determined growth, various physiological parameters and content of abscisic acid (ABA), indole-3-acetic acid and ethylene. Drought-stressed plants grown under higher temperature at ambient CO2 had decreased stem height and diameter, leaf number and area, dry matter, leaf area ratio, shoot/root weight ratio, net CO2 assimilation and chlorophyll fluorescence. However, these plants had increased specific leaf weight, leaf weight ratio and chlorophyll concentration. Elevated CO2 generally had the opposite effect, and partially reversed the inhibitory effects of higher temperature and drought on leaf dry weight accumulation. This study showed that higher temperature and drought inhibit many processes but elevated CO2 partially mitigate some adverse effects. As expected, drought stress increased ABA but higher temperature inhibited the ability of plants to produce ABA in response to drought.  相似文献   

12.
The influence of the root holoparasitic angiosperm Orobanche minor Sm. on the biomass, photosynthesis, carbohydrate and nitrogen content of Trifolium repens L. was determined for plants grown at two CO2 concentrations (350 and 550 μmol mol−1). Infected plants accumulated less biomass than their uninfected counterparts, although early in the association there was a transient stimulation of growth. Infection also influenced biomass allocation both between tissues (infected plants had lower root:shoot ratios) and within tissues:infected roots were considerably thicker before the point of parasite attachment and thinner below. Higher concentrations of starch were also found in roots above the point of attachment, particularly for plants grown in elevated CO2. Elevated CO2 stimulated the growth of T. repens only during the early stages of development. There was a significant interaction between infection and CO2 on growth, with infected plants showing a greater response, such that elevated CO2 partly alleviated the effects of the parasite on host growth. Elevated CO2 did not affect total O. minor biomass per host, the number of individual parasites supported by each host, or their time of attachment to the host root system. Photosynthesis was stimulated by elevated CO2 but was unaffected by O. minor . There was no evidence of down-regulation of photosynthesis in T. repens grown at elevated CO2 in either infected or uninfected plants. The data are discussed with regard to the influence of elevated CO2 on other parasitic angiosperm-host associations and factors which control plant responses to elevated CO2.  相似文献   

13.
Over the past 10 years it has become clear that cyanobacteria and microalgae possess mechanisms for actively acquiring inorganic carbon from the external medium and are able to use this to elevate the CO2 concentration around the active site of the primary photosynthetic carboxylating enzyme, ribulose bisphosphate carboxylase-oxygenase (Rubisco). This results in a vastly enhanced photosynthetic affinity for inorganic carbon (Ci) and improved photosynthetic efficiency. The CO2 concentrating mechanism is dependent on the existence of membrane bound Ci transport systems, and a microenvironment within the cell where the accumulated Ci can be used to elevate CO2 at the site of Rubisco. Evidence presented in this review suggests that in cyanobacteria this is achieved by the packaging of Rubisco and carbonic anhydrase (CA) into discrete structures, which are termed carboxysomes. Analogous structures in microalgae, termed pyrenoids, may perform a similar function. The recovery and analysis of high-CO2-requiring mutants has greatly advanced our understanding of the mechanisms and genes underlying these systems, especially in cyanobacteria, and this review places particular emphasis on the contribution made by molecular genetic approaches.  相似文献   

14.
Potato plants ( Solanum tuberosum L. var. Russet Burbank) treated with 1 μl ethylene 1−1 of air showed an inhibition of CO2 assimilation by 18%. The inhibition occurred after 3 h of exposure to ethylene and was not mediated through closure of the stomata. The enrichment of the root zone with CO2 almost completely abolished the ethylene inhibition of CO2 assimilation which was apparently due to an increase in the intercellular concentration of CO2 in leaves following enrichment. The effect of application of CO2 to the root zone on ethylene inhibition of CO2 assimilation seemed to last for a few days. Potato plants treated with aminoethoxyvinlglycine (AVG) showed an increase in fresh and dry weight as compared to non-treated plants. Our results indicate that both CO2 and AVG alter the effect of ethylene and promote growth in plants by inhibiting ethylene action and biosynthesis, respectively.  相似文献   

15.
The cellular basis of guard cell sensing of rising CO2   总被引:5,自引:1,他引:4  
Numerous studies conducted on both whole plants and isolated epidermes have documented stomatal sensitivity to CO2. In general, CO2 concentrations below ambient stimulate stomatal opening, or an inhibition of stomatal closure, while CO2 concentrations above ambient have the opposite effect. The rise in atmospheric CO2 concentrations which has occurred since the industrial revolution, and which is predicted to continue, will therefore alter rates of transpirational water loss and CO2 uptake in terrestrial plants. An understanding of the cellular basis for guard cell CO2 sensing could allow us to better predict, and perhaps ultimately to manipulate, such vegetation responses to climate change. However, the mechanisms by which guard cells sense and respond to the CO2 signal remain unknown. It has been hypothesized that cytosolic pH and malate levels, cytosolic Ca2+ levels, chloroplastic zeaxanthin levels, or plasma-membrane anion channel regulation by apoplastic malate are involved in guard cell perception and response to CO2. In this review, these hypotheses are discussed, and the evidence for guard cell acclimation to prevailing CO2 concentrations is also considered.  相似文献   

16.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

17.
Testing whether and how subordinate individuals differ from dominants in the utilization of enriched CO2 atmospheres is important for understanding future stand and community structure. We hypothesized that subordinate and dominant Ambrosia artemisiifolia L. (Asteraceae) (common ragweed) plants growing in dense stands would not equally acquire or utilize carbon gains from CO2-enrichment, and that the resulting disproportionate growth gains to subordinates would reduce size inequalities in competing stands. We grew experimental stands of A. artemisiifolia in either ambient (360 μL L−1) or twice ambient (720 μL L−1) levels of atmospheric CO2. We compared the relative growth, photosynthetic capacity, and architecture of subordinate and dominant plants in each treatment, and assessed size inequalities using the stand-level coefficient of variation (CV). In elevated CO2, plants grew larger, but subordinate plants shifted more mass to upper stem allocation than dominants. Dominant plants demonstrated reduced leaf-level photosynthetic gains in elevated CO2 compared with subordinate plants. Reduced CVs in plant size reflected smaller proportional growth gains by dominants over subordinates in elevated vs. ambient stands. We conclude that differences in the architectural and physiological responses of subordinate and dominant ragweed plants reduce competition and allow subordinate plants to catch up to dominants in elevated CO2 conditions.  相似文献   

18.
In Chlamydomonas reinhardtii the formation of a starch sheath surrounding the pyrenoid is observed when cells grown under high CO2 (5% CO2 in air) are transferred to low CO2 (0.03%) conditions. Formation of the starch sheath occurs coincidentally with induction of the CO2 concentrating mechanism and with de novo synthesis of 5 polypeptides with molecular masses of 21, 36, 37, 42–44 kDa. We studied the effect of CO2 concentrations on photosynthesis, ultrastructure and protein synthesis in Chlamydomonas reinhardtii cw-15 (wild phenotype for photosynthesis) and in the starch-less mutant BAFJ -6, with the aim to clarify the role of the pyrenoid starch sheath in the operation of the CO2 concentrating mechanism and whether these low CO2-inducible polypeptides are involved in the formation of starch sheath. When wild type and starch-less mutant cells were transferred from high to low CO2, the CO2 requirement for half-maximal rates of photosynthesis decreased from 40 μM to 2 μM CO2. 35SO42- labeling analyses showed that the starch-less mutant induced the 5 low CO2-inducible polypeptides. These observations suggest that the starch-less mutant was able to induce a fully active CO2 concentrating mechanism. Since the starch-less mutant did not form a pyrenoid starch sheath, we suggest that the starch sheath is not involved in the operation of the CO2 concentrating mechanism and that none of these 5 low CO2-inducible proteins is involved in the formation of the starch sheath in Chlamydomonas .  相似文献   

19.
The responses of individual stomata to CO2 concentrations ranging from 0 to 900 μmol mol−1 air were analysed in Ipomoea pes-caprae L. Sweet (Convolvulaceae). The stomata were directly observed using a measurement system that permitted continuous observation of stomatal movement under controlled light and CO2 conditions. A CO2 concentration of 350 μmol mol−1 or higher induced stomatal closure, whereas concentrations below 350 μmol mol−1 did not. The time lag before stomatal closure decreased with increasing CO2 concentration, as did the steady-state aperture of the stomata after a change in CO2 concentration. However, the rate of stomatal closure increased with increasing CO2 concentration. Therefore, not only the stomatal closure rate but also the time from the CO2 concentration change to the beginning of stomatal closure changed with increasing CO2 concentration. These results suggest that atmospheric CO2 may be the stimulus for the closure of guard cells. No significant differences were observed between adaxial and abaxial stomata in terms of their responses to CO2. However, heterogeneous responses were detected between neighbouring stomata on each leaf surface.  相似文献   

20.
Because of the economical relevance of sugarcane and its high potential as a source of biofuel, it is important to understand how this crop will respond to the foreseen increase in atmospheric [CO2]. The effects of increased [CO2] on photosynthesis, development and carbohydrate metabolism were studied in sugarcane ( Saccharum ssp.). Plants were grown at ambient (∼370 ppm) and elevated (∼720 ppm) [CO2] during 50 weeks in open-top chambers. The plants grown under elevated CO2 showed, at the end of such period, an increase of about 30% in photosynthesis and 17% in height, and accumulated 40% more biomass in comparison with the plants grown at ambient [CO2]. These plants also had lower stomatal conductance and transpiration rates (−37 and −32%, respectively), and higher water-use efficiency (c.a. 62%). cDNA microarray analyses revealed a differential expression of 35 genes on the leaves (14 repressed and 22 induced) by elevated CO2. The latter are mainly related to photosynthesis and development. Industrial productivity analysis showed an increase of about 29% in sucrose content. These data suggest that sugarcane crops increase productivity in higher [CO2], and that this might be related, as previously observed for maize and sorghum, to transient drought stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号