首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A "neutral" polymer of glucose, galactose, and 2-acetamido-2-deoxyglucose (molar ratios 1:1:2) has been isolated from the lipopolysaccharide of Serratia marcescens strain C.D.C. 1783-57 (O14:H9). Degradative and spectroscopic studies established that the polysaccharide has a branched tetrasaccharide repeating-unit of the structure shown. The polymer was absent from other strains of serogroup O14 studied, but a polymer differing only in the configuration of the glucose residue has previously been isolated from a strain of S. marcescens O8. The polymer from strain C.D.C. 1783-57 also shares structural features with the Escherichia coli O18 antigen, which is known to be serologically related to the S. marcescens O8 antigen. (Formula: see text).  相似文献   

3.
A neutral polymer (the putative O antigen) has been isolated from the lipopolysaccharide of the reference strain for Serratia marcescens serogroup 018. From the results of spectroscopic and degradative studies, the repeating unit of the polymer was identified as a linear tetrasaccharide having the structure shown. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----6)-alpha-D- GlcpNAc-(1----  相似文献   

4.
A partially acetylated acidic galactoglucomannan has been isolated from the lipopolysaccharide of the O3 reference strain (C.D.C. 863-57) of Serratia marcescens. By means of n.m.r. spectroscopy, methylation analysis, and degradative studies, the polymer was found to have the branched pentasaccharide repeating-unit shown. The position(s) of partial acetylation were not determined. Although the polymer is believed to confer O specificity on the parent organism, it is probably not an integral component of the lipopolysaccharide. (Formula: see text).  相似文献   

5.
Both neutral and acidic polymers have been isolated from the lipopolysaccharide extract of the reference strain (C.D.C. 4523-60) for Serratia marcescens serogroup O15. By means of n.m.r. spectroscopy, methylation analysis, and studies of degradation products, the acidic polysaccharide was shown to have a branched pentasaccharide repeating-unit with the following structure. (Formula: see text)  相似文献   

6.
Both a neutral and an acidic polymer have been isolated from a lipopolysaccharide extract of the reference strain for Serratia marcescens serogroup O22. The neutral polymer has a linear structure with the repeating unit shown. The same tetrasaccharide unit also forms the backbone of the branched neutral polymer isolated from the reference strain for serogroup O10, which cross-reacts strongly with O22. ----2)-alpha-L-Rhap-(1----2)-alpha-L-Rhap-(1----3)-alpha-L-+ ++Rhap-(1----3)-alpha- D-GlcpNAc-(1----  相似文献   

7.
Structural studies have been carried out on the putative O-specific polysaccharide of the reference strain (C.D.C. 3607-60) for Serratia marcescens O13. Circumstantial evidence that the O13 antigen is a microcapsular, acidic polymer, rather than an integral part of the lipopolysaccharide, has been obtained. Degradative and spectroscopic studies established that the polymer is based on the repeating unit shown, in which the glucuronic acid residue of the linear pentasaccharide carries the lateral 2-acetamido-2-deoxy-beta-D-glucopyranosyl substituent in only about half of the units. The same polymer, again with non-stoichiometric substitution, is also produced by strain IP 421 (O13:H7). The latter strain also produces a neutral polymer which appears to constitute the side chain of the lipopolysaccharide. This polymer, which has a disaccharide repeating-unit of 2-substituted beta-D-ribofuranosyl and 4-substituted 2-acetamido-2-deoxy-alpha-D-galactopyranosyl residues, has been isolated previously from the lipopolysaccharides of the reference strains for S. marcescens serogroups O12 and O14, and appears to be the antigen known to be shared by these strains. (Formula: see text).  相似文献   

8.
Structural studies have been carried out on the O-specific polysaccharide from the lipopolysaccharide of the reference strain (CDC 1604-55) for serogroup O8 of Serratia marcescens. The polymer has a branched, tetrasaccharide repeating unit of D-galactose(Gal),D-glucose(Glc), and 2-acetamido-2-deoxy-D-glucose(GlcNAc) with the following structure: (Formula: see text). The anomeric configuration assigned to the glucose residue differs from that (beta) previously proposed [Tarcsay, L., Wang, C. S., Li, S.-C. and Alaupovic, P. (1973) Biochemistry 12, 1948-1955]. The structure of the O8 polymer is identical with that of one of two polymers present in the cell envelope of a strain (CDC 1783-57) of S. marcescens O14.  相似文献   

9.
The acidic polysaccharide from Serratia marcescens serogroup O14:K12 was analyzed by means of chemical studies and NMR spectroscopy and its repeating unit structure found to be carbohydrate sequence [see text] O-Acetyl groups are proposed to be present in non-stoichiometric amounts on O-6 on one of the hexose residues in the main chain.  相似文献   

10.
The putative O-specific polysaccharide of Serratia marcescens N.C.T.C. 1377 is a partially acetylated glucorhamnan. By means of 1H- and 12C-n.m.r. spectroscopy, methylation analysis, and periodate oxidation, it was shown that the polymer has a disaccharide repeating-unit for which the following structure is proposed: leads to 4)-alpha-D-Glcp-(1 leads to 3)-beta-L-Rhap-(1-leads. O-Acetyl groups are probably located at C-2 of the rhamnopyranosyl residues. Except for the extent of O-acetylation, the polysaccharide is identical with the corresponding product from S. marcescens Bizio (A.T.C.C. 264), for which a different structure has previously been proposed.  相似文献   

11.
Partially acetylated glucorhamnans have been isolated from the lipopolysaccharides of three strains of Serratia marcescens. The polymer from the reference strain (C.D.C. 864-57) for serogroup O4 has the disaccharide repeating-unit shown below, in which acetylation at position 2 of the rhamnosyl residue is approximately 90% complete. Similar glucorhamnans from the reference strain (C.D.C. 843-57) for serogroup O7 and from a pigmented strain (NM) of serogroup O14 differ only in the configuration of the L-rhamnopyranosyl residue (beta) and the extent of O-acetylation (O7, almost stoichiometric; NM, 80-90%). Glucorhamnans of the second type have been isolated previously from the lipopolysaccharides of other strains of S. marcescens, including the reference strain for serogroup O6 and another pigmented O14 strain (N.C.T.C. 1377). In all cases, the lipopolysaccharide extracts also contained acidic glycans, but the glucorhamnans are believed to constitute the integral side-chains. (Formula: see text).  相似文献   

12.
Abstract The surface polysaccharides of the two most recently proposed O-serotype strains of Serratia marcescens , O25 and O26, were characterised in terms of their chemical structure and immunological reactions. No polymer was isolated from O25, which was shown to lack both capsular K-antigen and smooth, O-antigenic lipopolysaccharide. A neutral polysaccharide was isolated from O26 and shown to be a polymer of rhamnose and N -acetylgalactosamine of the type previously found in the O9 and O15 reference strains. Serological cross-reactions among all three strains were demonstrated by using both whole-cell enzyme-linked immunosorbent assay and immunoblotting of lipopolysaccharide resolved by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. No acidic polysaccharide was found in O26 and this was consistent with the absence of an immunogenic capsule. Thus, neither strain qualifies for inclusion as a new serotype in either an O-typing or a K-typing scheme.  相似文献   

13.
The putative O-specific polysaccharide for Serratia marcescens serogroup O24 is a galactan with a branched, trisaccharide repeating-unit of the structure shown. The structure of the backbone is identical to that of the linear galactans isolated from the reference strains for S. marcescens serogroups O16 and O20, presumably accounting for the serological cross-reactions observed. (Formula: see text)  相似文献   

14.
The lipopolysaccharide extract from the cell wall of the reference strain for Serratia marcescens serogroup O18 contained, in addition to a neutral glycan characterised previously, an acidic glycan. Acidity was contributed both by D-glucuronic acid and by 4-O-[(R)-1-carboxyethyl]-D-glucose (4-O-Lac-D-Glc). By using n.m.r. spectroscopy, methylation analysis, and chemical degradations, the repeating unit of the acidic glycan was identified as a branched hexasaccharide having the structure shown; an O-acetyl group also present was not located. The glycan is believed to define the O18 serogroup, but is probably not an integral component of the lipopolysaccharide. [formula: see text].  相似文献   

15.
16.
The gene cluster (waa) involved in Serratia marcescens N28b core lipopolysaccharide (LPS) biosynthesis was identified, cloned, and sequenced. Complementation analysis of known waa mutants from Escherichia coli K-12, Salmonella enterica, and Klebsiella pneumoniae led to the identification of five genes coding for products involved in the biosynthesis of a shared inner core structure: [L,D-HeppIIIalpha(1-->7)-L,D-HeppIIalpha(1-->3)-L,D-HeppIalpha(1-->5)-KdopI(4<--2)alphaKdopII] (L,D-Hepp, L-glycero-D-manno-heptopyranose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid). Complementation and/or chemical analysis of several nonpolar mutants within the S. marcescens waa gene cluster suggested that in addition, three waa genes were shared by S. marcescens and K. pneumoniae, indicating that the core region of the LPS of S. marcescens and K. pneumoniae possesses additional common features. Chemical and structural analysis of the major oligosaccharide from the core region of LPS of an O-antigen-deficient mutant of S. marcescens N28b as well as complementation analysis led to the following proposed structure: beta-Glc-(1-->6)-alpha-Glc-(1-->4))-alpha-D-GlcN-(1-->4)-alpha-D-GalA-[(2<--1)-alpha-D,D-Hep-(2<--1)-alpha-Hep]-(1-->3)-alpha-L,D-Hep[(7<--1)-alpha-L,D-Hep]-(1-->3)-alpha-L,D-Hep-[(4<--1)-beta-D-Glc]-(1-->5)-Kdo. The D configuration of the beta-Glc, alpha-GclN, and alpha-GalA residues was deduced from genetic data and thus is tentative. Furthermore, other oligosaccharides were identified by ion cyclotron resonance-Fourier-transformed electrospray ionization mass spectrometry, which presumably contained in addition one residue of D-glycero-D-talo-oct-2-ulosonic acid (Ko) or of a hexuronic acid. Several ions were identified that differed from others by a mass of +80 Da, suggesting a nonstoichiometric substitution by a monophosphate residue. However, none of these molecular species could be isolated in substantial amounts and structurally analyzed. On the basis of the structure shown above and the analysis of nonpolar mutants, functions are suggested for the genes involved in core biosynthesis.  相似文献   

17.
The structure of the O-antigen polysaccharide (PS) from Escherichia coli O77 has been determined. Sugar and methylation analysis together with 1H and 13C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure:-->2)-alpha-D-Manp-(1-->2)-beta-D-Manp-(1-->3)-alpha-D-GlcpNAc-(1-->6)-alpha-D-Manp-(1-->  相似文献   

18.
19.
The lipopolysaccharide isolated from the cells of Shigella boydii type 8 bacteria gave precipitin bands against homologous antisera on Ouchterlony plates, whereas the carbohydrate-containing fractions obtained from it did not. One of the fractions was obtained in major proportion and contained 23.5% of sugars. A structure was assigned to the carbohydrate chain in this material by using the results of methylation, periodate oxidation, and deamination studies.  相似文献   

20.
Aim: To determine the cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708). Methods and Results: Serratia marcescens strain SRM was isolated from the flowers of summer squash plants, showing no apparent symptoms of yellow vine disease. It was evaluated for growth and plant growth promotion attributes at 15 and 4°C. At 15°C, the isolate was able to solubilize 76·6 μg ml?1 of P and produce Indole Acetic Acid, IAA (11·1 μg ml?1). HCN and siderophore production were also detected at 15°C. The isolate retained all the plant growth promotion traits at 4°C. Seed bacterization with the isolate significantly enhanced plant biomass and nutrient uptake of wheat seedlings grown in cold temperatures. Conclusion: Serratia marcescens strain SRM is a promising cold‐tolerant isolate that can significantly influence wheat seedling growth at cold temperatures. Significance and Impact of the Study: This strain can be employed as a bioinoculant in cold temperature conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号