首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The distribution of net assimilated C in barley (Hordeum vulgare L.) grown at two N-levels was determined in a growth chamber. The N-fertilization involved 0 and 3.61 mol N g-1 dry soil. After growth for seven weeks in an atmosphere with continuously 14C-labelled CO2, 14C was determined in shoots, roots, rhizosphere respiration and soil. At the low N-level, 32% of the net assimilated 14C was translocated below ground, whereas at the high N-level 27% was translocated below ground. The release of C from roots (root respiration, microbial respiration originating from decomposition of 14C-labelled root material and 14C remaining in soil) was greater with no N-supply (19% of net assimilated 14C) than in the treatment with N-supply (15%). Thus, the effect of N-supply on both translocation of assimilated 14C below ground and the release of 14C from growing roots was relatively small.  相似文献   

2.
Boron (B) is an essential micronutrient in crop growth but its sufficiency range is narrow. Boron toxicity is a widespread problem in arid and semi-arid areas with cold weather. We investigated the effect of soil temperature (5, 10 and 15°C) on development of symptoms of B toxicity, plant growth and plant development, and on content and concentration of B in tissue of seedlings of four barley lines grown in soil with high level of available B (12 mg kg–1). Visual symptoms of toxicity were first observed in the high B soil concentration treatment at 5 °C at 12 days after emergence. Concentration of B in tissue decreased with increasing soil-temperatures. There was no effect of soil temperature on B content or B concentration in plant tissue at the final sample (17 days after emergence). High soil B reduced seedling and leaf emergence rates, although the final seedling emergence and number of leaves were unaffected. Barley lines differed in concentration of B in tissues and visual toxicity symptom development. Adaptation to high B was either through maintaining low tissue B concentration or through tolerance to high tissue B concentration. While the investigated range of temperature does influence B toxicity in barley seedlings, it remains to be determined whether it affects crop yield.  相似文献   

3.
Cultivar differences in root elongation under B toxic conditions were observed in barley (Hordeum vulgare L.). A significant increase in the length and width of the root meristematic zone (RMZ) was observed in Sahara 3771 (B tolerant) when it was grown under excessive B concentration, compared to when grown at adequate B supply. This coincided with an increase in cell width and cell numbers in the meristematic zone (MZ), whereas a significant decrease in the length and no significant effect on the width of the MZ was observed in Clipper (B intolerant) when it was grown under excessive B supply. This was accompanied by a decrease in cell numbers, but an increase in the length and width of individual cells present along the MZ. Excessive B concentrations led to a significantly lower osmotic potential within the cell sap of the root tip in SloopVic (B tolerant) and Sahara 3771, while the opposite was observed in Clipper. Enhanced sugar levels in the root tips of SloopVic were observed between 48 and 96 h after excess B was applied. This coincided with an increase in the root elongation rate and with a 2.7-fold increase in sucrose level within mature leaf tissue. A significant decrease in reducing sugar levels was observed in the root tips of Clipper under excessive B concentrations. This coincided with significantly lower root elongation rates and lower sucrose levels in leaf tissues. Results indicate a B tolerance mechanism associated with a complex control of sucrose levels between leaf and root tip that assist in maintaining root growth under B toxicity.  相似文献   

4.
K. M. Volkmar 《Plant and Soil》1994,163(2):197-202
The effects of conditions pre-dating germination on growth rate of impeded barley cv. Harrington roots were measured using an agar-capillary tube technique. Seedling root tips were directed into glass capillary tubes twothirds filled with agar at eight concentrations ranging from 1.6 to 9.6%, equivalent to penetrometer resistances of 25 to 1240 kPa. The rate of unrestricted root elongation (growth in air) of seed stored for 13 months (old seed), and of seed grown for a second generation without subsequent storage (new seed) was compared with growth in agar over a 24-hour interval. Root elongation rate of old and new seed was identical in the absence of resistance. At low to intermediate agar concentrations, elongation was significantly slower in roots from old, compared with new seed. At high agar concentrations root growth of old and new seed was the same. In both old and new seed, root growth through agar was greater in seed that germinated after 24, compared with 48 h. Differences in impeded root growth between old and new seed were lost in progeny of the test seed. Environmental factors that pre-date germination are an important influence on the ability of seedling roots to elongate through soil.LRS Contribution no. 3879349LRS Contribution no. 3879349  相似文献   

5.
Aluminium/silicon interactions in barley (Hordeum vulgare L.) seedlings   总被引:3,自引:0,他引:3  
The response of seedlings of the monocot Hordeum vulgare L. cv. Bronze to 0,25 and 50 M aluminium in factorial combination with 0, 1.4, 2.0 and 2.8 mM Si was tested in hydroponic culture at pH 4.5. Nutrient solution (500 M calcium nitrate) and Al/Si treatments were designed to avoid the precipitation of Al from solution. Silicon treatments gave significant amelioration of the toxic effects of Al on root and shoot growth and restored calcium levels in roots and shoots at harvest to levels approaching those of control plants. Aluminium uptake by roots was also significantly diminished in the presence of Si. Silicon alone gave a slight stimulation of growth, insufficient to explain its ameliorative effect on Al toxicity. The mechanism of the Si effect on Al toxicity in monocotyledons awaits further investigation.Abbreviations ICP inductively coupled plasma  相似文献   

6.
Summary The leaf and root nitrate reductase activities were measured in 7 day-old barley seedlings by anoxic nitrite accumulation in darkness, during 48h after the transfer from a N-starved medium to a 1.5 mM K15NO3 medium. Thisin situ nitrate reduction was compared with the15N incorporation in the reduced N fraction of the whole seedlings.The nitrate reduction integrated fromin situ measurements was lower than the reduced15N accumulation. The rootin situ nitrate reductase activity seemed to account for only the third of the real root nitrate reduction, which may have been responsible for the overall underestimation. This discrepancy was partly explained by the ability of the root to reduce nitrite in an anoxic environment.These results suggest that, after correction of thein situ estimation of the nitrate reduction. the roots contribute to about 50% of the total assimilation.  相似文献   

7.
Five mutant lines of barley (Hordeum vulgare L.), which are only able to grow at elevated levels of CO2, contain less than 5% of the wild-type activity of ferredoxin-dependent glutamate synthase (EC 1.4.7.1). Two of these lines (RPr 82/1 and RPr 82/9) have been studied in detail. Leaves and roots of both lines contain normal activities of NADH-dependent glutamate synthase (EC 1.4.1.14) and the other enzymes of ammonia assimilation. Under conditions that minimise photorespiration, both mutants fix CO2 at normal rates; on transfer to air, the rates drop rapidly to 15% of the wild-type. Incorporation of 14CO2 into sugar phosphates and glycollate is increased under such conditions, whilst incorporation of radioactivity into serine, glycine, glycerate and sucrose is decreased; continuous exposure to air leads to an accumulation of 14C in malate. The concentrations of malate, glutamine, asparagine and ammonia are all high in air, whilst aspartate, alanine, glutamate, glycine and serine are low, by comparison with the wild-type parent line (cv. Maris Mink), under the same conditions. The metabolism of [14C]glutamate and [14C]glutamine by leaves of the mutants indicates a very much reduced ability to convert glutamine to glutamate. Genetic analysis has shown that the mutation in RPr 82/9 segregates as a single recessive nuclear gene.Abbreviations GDH glutamate dehydrogenase (EC 1.4.1.2) - GS glutamine synthetase (EC 6.3.1.2) - RuBP ribulose 1,5-bisphosphate  相似文献   

8.
Polymorphism at the Hor 1 locus of barley (Hordeum vulgare L.)   总被引:1,自引:0,他引:1  
The Hor 1 locus of barley encodes a group of seed storage polypeptides called C hordein. Two-dimensional electrophoretic analysis of C-hordein fractions from six cultivars with different alleles at the Hor 1 locus showed extensive polymorphism. A total of 34 major polypeptides was mapped, with between 4 and 18 present in each cultivar. There was less variation among the same cultivars in the numbers (6 to 10) of restriction fragments of genomic DNA which hybridized to a cDNA clone related to C hordein. The total number of restriction fragments was also lower (22), and most pairs of cultivars had more restriction fragments than polypeptides in common. A total number of about 20–30 C-hordein genes per haploid genome was estimated. The results indicate that cultivars differ mainly in the extent of gene and polypeptide divergence, rather than in the degree of gene reiteration. They are consistent with the proposed origin of the multiple structural genes at the Hor 1 locus by the duplication and divergence of a single ancestral gene.NACB was supported by a grant from the Home Grown Cereals Authority.  相似文献   

9.
10.
A mutant line, RPr79/2, of barley (Hordeum vulgare L. cv. Maris Mink) has been isolated that has an apparent defect in photorespiratory nitrogen metabolism. The metabolism of 14C-labelled glutamine, glutamate and 2-oxoglutarate indicates that the mutant has a greatly reduced ability to synthesise glutamate, especially in air, although in-vitro enzyme analysis indicates the presence of wild-type activities of glutamine synthetase (EC 6.3.1.2) glutamate synthase (EC 1.4.7.1 and EC 1.4.1.14) and glutamate dehydrogenase (EC 1.4.1.2). Several characteristics of RPr79/2 are very similar to those described for glutamate-synthase-deficient barley and Arabidopsis thaliana mutants, including the pattern of labelling following fixation of 14CO2, and the rapid rise in glutamine content and fall in glutamate in leaves on transfer to air. The CO2-fixation rate in RPr79/2 declines much more slowly on transfer from 1% O2 to air than do the rates in glutamate-synthase-deficient plants, and RPr79/2 plants do not die in air unless the temperature and irradiance are high. Analysis of (glutamine+NH3+2-oxoglutarate)-dependent O2 evolution by isolated chloroplasts shows that chloroplasts from RPr79/2 require a fivefold greater concentration of 2-oxoglutarate than does the wild-type for maximum activity. The levels of 2-oxoglutarate in illuminated leaves of RPr79/2 in air are sevenfold higher than in Maris Mink. It is suggested that RPr79/2 is defective in chloroplast dicarboxylate transport.  相似文献   

11.
The effect of phosphorus (P) concentration in barley seed on seedling growth has not been much investigated. Consequently, two experiments were conducted in the greenhouse to determine the effect of P concentration in barley seed (Hordeum vulgare L., cv. Empress) on the seedlings grown in sand-filled boxes receiving a culture solution without P. Seeds were selected with three P concentrations: high-P (113.0 mmol P kg−1), medium-P (80.7 mmol P kg−1) and low-P (54.9 mmol P kg−1). At 21 days after sowing, the shoot and root yield or shoot height was the least with seedlings from low-P seed. In the other experiment, high-P and low-P seeds were wetted with distilled water or with a solution of 25.8 cmol L−1 of NaH2PO4 for 24 h, and then grown for 31 days. Solution P had been imbibed by seeds whether low or high in native P, but only the imbibed P held by low native P seed benefited seedling dry matter accumulation and shoot elongation. The lack of benefit from seed-imbibed P on seedlings grown from high-P barley seed was associated with low recovery of the imbibed P in those seedlings.  相似文献   

12.
Morikawa  C.K.  Saigusa  M. 《Plant and Soil》2002,240(1):161-168
The influence of silicon on aluminium toxicity in barley (Hordeum vulgare L. cv. Shunrai) was studied in two Andosols. Silicon sources were a solution of sodium metasilicate with pH adjusted to 5.0, silica gel, and an industrial waste, porous hydrated calcium silicate. The waste is produced in large amounts in the manufacturing processes of autoclaved light concrete, and has been used as a silicon source for rice plants. The addition of the waste increased the concentration of Si in the soil solution, soil pH and amelioration of aluminium toxicity was observed. The addition of silica gel and sodium metasilicate solution to both soils increased significantly (p<0.05) the Si concentration of the soil solutions, but no amelioration of aluminium toxicity was observed. An amelioration of aluminium toxicity by the waste porous hydrated calcium silicate was probably due to the increase in soil pH rather than to the increase of silicon concentration in the soil solution.  相似文献   

13.
Quantification of root dynamics by destructive methods is confounded by high coefficients of variation and loss of fine roots. The minirhizotron technique is non-destructive and allows for sequential root observations to be made at the same depth in situ. Observations can be stored on video tape which facilitates data handling and computer-aided image processing. A color composite technique using digital image analyses was adapted in this study to detect barley root dynamics from sequential minirhizotron images. Plants were grown in the greenhouse in boxes (80 × 80 × 75 cm) containing soil from a surface horizon of a Typic Cryoboroll. A minirhizotron was installed at a 45°C angle in each box. Roots intersecting the minirhizotron were observed and video-recorded at tillering, stem extension, heading, dough and ripening growth stages. The images from a particular depth were digitized from the analog video then registered to each other. Discrimination of roots from the soil matrix gave quantitative estimates of root appearance and disappearance. Changes in root appearance and disappearance were detected by assigning a separate primary color (red, green, blue) to selected growth stages, then overlaying the images to create red-green and red-green-blue color composites. The resulting composites allowed for a visual interpretation and quantification of barley root dynamics in situ.  相似文献   

14.
Barley anthers from cold pretreated spikes produced no or few calluses when plated with both loculi in contact with the medium (flat). When anthers were plated with only one loculus in contact with the medium (up), a high proportion of the anthers produced calluses. The top loculus of the up anthers was most productive. Flat anthers, when compared with up anthers, were not only slower to produce multicellular pollen grains (MCPs) and microcalluses, but also produced fewer of them and ceased production earlier. The MCPs and microcalluses in flat anthers grew more slowly and few developed beyond the 30 cell stage. These results establish the importance of anther orientation for barley anther culture.  相似文献   

15.
Below-ground carbon (C) production and nitrogen (N) flows in the root-zone of barley supplied with high or low amounts of N-fertilizer were investigated. Interest was focused on the effect of the level of N-fertilizer on the production of root-derived C and on gross immobilization (i) and gross mineralization (m) rates. The plants were grown for 46 days in a sandy loam soil. Principles of pool dilution and changes in 15N pool abundances were used in conjunction with mathematical modelling to calculate the flows of N. N was applied at a high or a low rate, as (15NH4)2SO4 solution (17.11 atom% 15N excess), before sowing. Nitrification was inhibited by using nitrapyrin (N-Serve). Pots were sampled four or five times during the experimental period, i.e. 0, 22, 30, 38 and 46 days after germination. On the three last sampling occasions, samples were also collected from pots in a growth chamber with 14C-labelled atmosphere.The release of 14C, measured as the proportion of the total 14C translocated below ground, was higher in the high-N treatment, but the differences between treatments were small. Our results were not conclusive in demonstrating that high-N levels stimulate the decomposition and microbial utilization of root-released materials. However, the internal circulation of soil-N, calculated N fluxes (m), which were in accordance with C mineralization rates and amounts of unlabelled N found in the plants (PU), suggested that the decomposition of native soil organic matter was hampered in the high-N treatment. Apparently, towards the end of the experimental period, microorganisms in the low-N treatment used C from soil organic matter to a greater extent than C they used from root released material, presumably because lower amounts of mineral N were available to microorganisms in the low-N treatment. Immobilization of N appeared to be soil driven (organisms decomposing soil organic matter account for the N demand) at low-N and root-driven (organisms decomposing roots and root-derived C account for the N demand) at high-N.Abbreviations AU Ammonium N-unlabelled - AL Ammonium N-labelled - AT Ammonium N-labelled and unlabelled (total) - NU Nitrate N-unlabelled - OU Organic N-unlabelled - OL Organic N-labelled - OT Organic N-total - PU Plant N-unlabelled (shoots and roots) - PL Plant N-labelled (shoots and roots) - PT Plant N-total (shoots and roots) - SL Sink or source of N-labelled - S Source or sink of N, mainly to and from the outer part of the cylinder - SU Sink or source of N-unlabelled - m Mineralization rate - i Immobilization rate - ua Uptake of ammonium - un Uptake of nitrate - la Loss of ammonium.  相似文献   

16.
Root research has been hampered by a lack of good methods and by the amount of time involved in making measurements. The use of the minirhizotron as a quantitative tool requires comparison with conventional destructive methods. This study was conducted in the greenhouse to compare the minirhizotron technique with core and monolith methods in quantifying barley (Hordeum vulgare L.) and fababean (Vicia faba L.) root distribution. Plants were grown in boxes (80 cm long × 80 cm wide × 75 cm deep) in a hexagonal arrangement to minimize the effects of rooting anistrophy. Minirhizotron observations and destructive sampling to a depth of 70 cm using core and monolith methods were performed at the ripening growth stage. Total root length for the entire depth interval was generally higher in barley (159–309 m) than fababean (110–226 m). Significant correlation coefficients between monolith and core methods for root length density (RLD, cm cm–3) was observed in both crops (p 0.01). A method and depth interaction showed no significant differences in fababean RLD distribution measured by core and monolith methods. However, the RLD was different for the uppermost 40 cm depth in barley. The relationship for RLD between minirhizotron and core methods was significant only in barley (r=0.77*). For both crops, estimates of RLD in the top 10-cm layer by the minirhizotron technique were lower than those by core and monolith techniques. In contrast, estimates of RLD were higher in fababean at a depth >30 cm. Destructive sampling still remains the method to quantify root growth in the 0–10 cm soil layer. ei]B E Clothier  相似文献   

17.
During the first 4 d after the removal of SO 4 2- from cultures of young barley plants, the net uptake of 15N-nitrate and the transport of labelled N to the shoot both decline. This occurred during a period in which there was no measurable change in plant growth rate and where the incorporation of [3H]leucine into membrane and soluble proteins was unaffected. Reduced N translocation was associated with six- to eightfold increases in the level of asparagine and two- to fourfold increases in glutamine in root tissue; during the first 4 d of SO 4 2- deprivation there were no corresponding increases in amides in leaf tissue. The provision of 1 mol · m–3 methionine halted, and to some extent reversed the decline in NO 3 - uptake and N translocation which occurred during continued SO 4 2- deprivation. This treatment had relatively little effect in lowering amide levels in roots. Experiments with excised root systems indicated that SO 4 2- deprivation progressively lowered the hydraulic conductivity, Lp, of roots; after 4 d the Lp of SO 4 2- -deprived excised roots was only 20% of that of +S controls. In the expanding leaves of intact plants, SO 4 2- deprivation for 5 d was found to lower stomatal conductance, transpiration and photosynthesis, in the order given, to 33%, 37% and 18% of control values. The accumulation of amides in roots is probably explained by a failure to export either the products of root nitrate assimilation or phloem-delivered amino-N. This may be correlated with the lowered hydraulic conductivity. Enhanced glutamine and-or asparagine levels probably repressed net uptake of NO 3 - and 13NO 3 - influx reported earlier (Clarkson et al. 1989, J. Exp. Bot. 40, 953–963). Attention is drawn to the similar hydraulic signals occurring in the early stages of several different types of mineral-nutrient stresses.Abbreviations Asn asparagine - Gln glutamine - Lp hydraulic conductivity J.L.K. is extremely grateful to the British Council for supporting his working visit to Long Ashton. We thank John Radin for helpful discussion and encouragement.  相似文献   

18.
Summary A highly regenerable target tissue and a high-frequency DNA delivery system are required for the routine production of transgenic barley. This project separately optimized tissue culture and particle bombardment parameters. Immature zygotic embryos (0.7 to 1.2 mm) were excised and culture on B5L solid medium. Klages and H930-36 cultivars regenerated significantly more green plants than Sabarlis and Bruce. The regeneration pathway shifted from organogenesis to somatic embryogenesis when maltose was used as the medium carbohydrate source instead of sucrose. More somatic embryos were induced on 5 mg/liter 2,4-dichlorophenoxyacetic acid than 2 mg/liter. Gene delivery was optimized using anthocyanin regulatory genes as a transient marker. A 3-mm rupture disc-to-macrocarrier gap distance, a 1-day prebombardment embryo culture period, and a maltose carbohydrate source were each significantly better than other treatments. Double bombardments per plate, a 6-mm macrocarrier fly distance, and 650-psi rupture discs each had the highest number of transiently expressing cells in individual experiments, although the results were not statistically significant compared to the other treatments. Using the optimized parameters, over 200 cells routinely expressed anthocyanin in a bombarded immature embryo. In tissue culture experiments, 350 to 400 green plants regenerated per 100 immature embryos. The improvement of green plant regeneration and gene delivery forms a strong basis to develop a practical barley transformation system.  相似文献   

19.
20.
Effects of UV-B radiation on the developing chloroplast of barley (Hordeum vulgare L.) seedling during greening were determined by Chl contents, Fo, Fv and fluorescence quenching coefficients. In greening of etiolated barley seedling, the value of Fo was greatly increased after the initiation of greening. However Fv and Fv/Fo were gradually increased. In greening with the additional irradiation of UV-B radiation, the value of Fo was strikingly decreased than that of the control after the initiation of greening, but Fv was gradually decreased from than that of the control during the greening period. These results suggest that the function of light-harvesting Chl are more sensitive than photosynthetic electron transport system by UV-B. Chl contents, Fv/Fo, qP and qNP, were decreased from than that of the control during the 72 h greening, especially, qR was strikingly decreased, but qE was slightly decreased by UV-B. These suggest that the sites of inhibition by UV-B are PSII and all sites of photosynthetic electron transport system. But PQ pool seems to be slightly inhibited by UV-B.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号