首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relative distribution of type A and type B monoamine oxidase (MAO) inside and outside the monoaminergic synaptosomes in preparations from hypothalamus and striatum of the guinea pig was determined by incubation of synaptosomal preparations of these regions with low concentrations of [14C]5-hydroxytryptamine (5-HT), noradrenaline, and dopamine. The deamination within the monoaminergic synaptosomes was hindered by selective amine uptake inhibitors. In the absence of these inhibitors, both intra- and extraneuronal deamination was measured. The two forms of the enzyme were differentiated with the irreversible and selective MAO-A and MAO-B inhibitors clorgyline and selegiline (l-deprenyl), respectively. [14C]5-HT was deaminated greater than 90% by MAO-A both inside and outside the 5-hydroxytryptaminergic synaptosomes prepared from the guinea pig hypothalamus. The deamination of [14C]noradrenaline within the noradrenergic synaptosomes of the hypothalamic preparation was in the ratio 75:25% for MAO-A:MAO-B; the corresponding ratio outside these synaptosomes was 45:55%. The deamination of [14C]dopamine within dopaminergic synaptosomes in the striatal preparation was 65% type A:35% type B, whereas outside these synaptosomes the ratio was 35:65%. Because the relative amounts and the distribution of the two forms of MAO in the guinea pig brain seem to be similar to those previously detected for the human brain, the MAO in the guinea pig brain may be a good model for the MAO in the human brain.  相似文献   

2.
The irreversible inhibition of the monoamine oxidase (MAO) activity within monoaminergic neurons in the rat brain 24 h after single or repeated administration of (E)-beta-fluoromethylene-m-tyrosine (FMMT, MDL 72394) was examined. The enzyme activity was determined by incubating synaptosome-rich homogenates of hypothalamus or striatum with low concentrations of 5-[14C]hydroxytryptamine (5-HT), [14C]noradrenaline (NA), or [14C]dopamine (DA) in the absence and presence of the selective amine uptake inhibitors citalopram (5-HT), maprotiline (NA), and GBR 12909 (DA). After a single subcutaneous injection of FMMT, the inhibition of MAO within the noradrenergic and dopaminergic neurons was significant but only slightly greater than that outside these neurons. The opposite relationship was observed for the serotonergic neurons. After 7 days' treatment of rats with carbidopa, 20 mg/kg p.o., + FMMT once daily, the preference for the inhibition of MAO within the noradrenergic and dopaminergic neurons was accentuated further. The inhibition outside the serotonergic neurons was still greater than within these neurons. The NA uptake inhibitor CPP 199 antagonized the selective inhibition of MAO within the noradrenergic neurons, which indicates that this preference is due to the accumulation of the active metabolite (E)-beta-fluoromethylene-m-tyramine by the NA transporter.  相似文献   

3.
This study investigated for the first time the potential effects of cis- and trans-resveratrol (c-RESV and t-RESV) on noradrenaline (NA) and 5-hydroxytryptamine (5-HT) uptake by synaptosomes from rat brain, on 5-HT uptake by human platelets, and on monoamine oxidase (MAO) isoform activity. Both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the uptake of [3H]NA and [3H]5-HT by synaptosomes from rat brain and the uptake of [3H]5-HT by human platelets. In both experimental models, t-RESV was slightly more efficient than c-RESV. Furthermore, in synaptosomes from rat brain, the RESV isomers were less selective against [3H]5-HT uptake than the reference drug fluoxetine (0.1-30 microM). On the other hand, both c-RESV and t-RESV (5-200 microM) concentration-dependently inhibited the enzymatic activity of commercial (human recombinant) MAO isoform (MAO-A and MAO-B) activity, c-RESV being slightly less effective than t-RESV. In addition, both RESV isomers were slight but significantly more selective against MAO-A than against MAO-B. Since the principal groups of drugs used in the treatment of depressive disorders are NA/5-HT uptake or MAO inhibitors, under the assumption that the RESV isomers exhibit a similar behaviour in humans in vivo, our results suggest that these natural polyphenols may be of value as structural templates for the design and development of new antidepressant drugs with two important biochemical activities combined in the same chemical structure: NA/5-HT uptake and MAO inhibitory activity.  相似文献   

4.
J H Hurst  E C Kulakowski 《Life sciences》1986,39(16):1471-1477
CGP 6085 A [4-(5,6-dimethyl-2-benzofuranyl)piperidine] HCl, a known serotonin inhibitor, also inhibits rat brainstem monoamine oxidase A (MAO-A) and monoamine oxidase B (MAO-B) in both in vivo and in vitro experiments. Serotonin (5-HT) deamination by MAO-A is inhibited 35% at a dose of 100 mg/kg i.p. in vivo. Similar experiments show a maximal 20% decrease in phenylethylamine (PEA) deamination by MAO-B at a dosage of 30 mg/kg i.p. Over the range of 0.1 to 10 mg/kg i.p., CGP 6085 A decreases 5-HIAA levels in the brainstem. This in vivo inhibition of MAO activity is confirmed by in vitro experiments. In vitro studies in rat brainstem mitochondrial preparations show a dose-dependent, reversible, inhibition of MAO using tyramine as the substrate for the enzyme reaction. With an in vitro IC50 of 2-3 microM, the potency of CGP 6085 A is comparable to pargyline.  相似文献   

5.
The ability of moclobamide and other benzamide derivatives to inhibit the activity of monoamine oxidase in the rat brain was studied. Distinct effects of these compounds on the deamination of serotonin and norepinephrine (MAO-A substrates); 2-phenylethylamine (selective MAO-B substrate); tyramine and dopamine (MAO-A and MAO-B substrates) are shown. It was demonstrated that among all the compounds studied moclobamide appeared to be the most active and selective inhibitor of MAO-A: at a concentration of 100 microM it caused a 100% inhibition of serotonin and norepinephrine deamination, which might be explained by the presence of C1 atom in the para-position of benzene ring in moclobamide molecule. Other benzamide derivatives were less active in inhibiting MAO-A and had but a negligible effect on dopamine- and 2-phenylethylamine deamination.  相似文献   

6.
Two amphetamine metabolites, p-hydroxyamphetamine (p-OHA) and p-hydroxynorephedrine (p-OHN), selectively inhibited the A form of monoamine oxidase (MAO) in rat and mouse forebrain homogenates. Of these two metabolites, p-OHA inhibited MAO-A more strongly than p-OHN. This MAO-A-selective inhibition by p-OHA or p-OHN was found to be competitive with respect to deamination of its substrate, 5-hydroxytryptamine (5-HT). The degree of MAO-A inhibition was not changed by 90 min of preincubation of the enzyme preparations with either metabolite, and the activity inhibited by p-OHA after the preincubation recovered completely to the control level after repeated washing. Uptake of 5-HT or dopamine into mouse forebrain synaptosomes was highly reduced by both p-OHA and p-OHN. Both metabolites were more potent in reducing dopamine uptake than in reducing 5-HT uptake. In reduction of 5-HT and of dopamine uptake, p-OHA was more potent than p-OHN. These results indicate that p-OHA is a more selective inhibitor of brain MAO-A activity and 5-HT uptake than its subsequent metabolite, p-OHN. These two actions of p-OHA might, together with possible 5-HT efflux into the synaptic cleft, greatly contribute to head twitch, a brain 5-HT-mediated animal behavior induced by p-OHA.  相似文献   

7.
Summary In the mammalian pineal gland, serotonin (5-HT) is located both in the pinealocytes and in the noradrenergic nerve terminals. Pineal 5-HT can be metabolized by three different routes, one of these being its deamination, catalized by monoamine oxidase (MAO). MAO is known to exist as two isozymes, MAO-A and MAO-B. Using two different cytochemical methods at the ultrastructural level, we have localized the presence of MAO in the pineal gland of the rat. The use of selective inhibitors of A-type (clorgyline) and B-type (deprenyl) has shown that MAO-A is localized in the noradrenergic nerve terminals, while pinealocytes contain MAO-B. Taking into account that 5-HT is only deaminated by MAO-A, the specific association of each MAO isozyme with a defined cell type implicates that two cellular compartments are needed in the pineal gland for the biosynthesis of 5-methoxytryptophol and 5-methoxyindole acetic acid, while for the synthesis of melatonin and 5-methoxytryptamine just one cellular compartment, the pinealocyte, is appropriate.  相似文献   

8.
Effects of a selective monoamine oxidase (MAO)--A inhibitor, clorgyline, a selective MAO-B inhibitor, deprenyl, and a non-selective MAO inhibitor, nialamide, were investigated on footshock-induced aggression (FIA) in paired rats. The doses and pretreatment times of the inhibitors used were based on an earlier reported in vivo dose-response and time-course study. In addition, apomorphine, a dopaminergic receptor agonist, and beta-phenylethylamine, a preferred substrate for MAO-B, were also used to garner corroborative evidence. The results of the study indicate that selective MAO-A inhibitors are likely to attenuate FIA by augmenting central serotonergic activity, while selective MAO-B inhibitors accentuate the behaviour by facilitating dopaminergic activity. A permissive role for noradrenaline could not be delineated by the available data.  相似文献   

9.
Monoamine oxidase in the vervet monkey showed greater variations in activity in six brain regions when tyramine or phenylethylamine was used as the substrate (3.8- to 4.1-fold differences) than when serotonin was the substrate (1.8-fold differences). With phenylethylamine and tyramine as substrates, the highest MAO specific activities were found in the hypothalamus and the lowest in the cerebellum and cortex. With serotonin as the substrate, the highest specific activities were in the mesencephalon and cortex. The inhibition of tyramine deamination by clorgyline and deprenyl yielded biphasic plots indicative of the presence of MAO-A and MAO-B enzyme forms in the vervet brain. On the basis of these inhibitor curves, the vervet brain could be estimated to contain approximately 85% MAO-B and 15% MAO-A, in contrast to rat brain which contains 45% MAO-B and 55% MAO-A. The inhibition of serotonin deamination by deprenyl in vervet brain yielded a biphasic plot, suggesting that some serotonin deamination in the vervet is accomplished by the MAO-B enzyme form. Estimations of the relative amounts of MAO-A and MAO-B based on inhibitor curves or based on substrate ratios yielded proportionate results which were in close agreement across the different brain regions, supporting the validity of these approaches to estimating MAO-A and MAO-B activities.  相似文献   

10.
Although it is known that substrate specificities differ with species and within each species with the tissues, in the rat heart no natural substrate was found for MAO-B. beta-phenylethylamine (beta-PEA) has always been considered the "endogenous" substrate of MAO B. We thought worthwide to evaluate the effect of Ro 41-1049 and lazabemide, both members of a class of highly selective, mechanism-based and reversible inhibitors for MAO-A and MAO B, respectively on the metabolization of beta-PEA by the rat heart. Also the lack of molecular data on rat heart MAOs, prompted us to better characterize rat heart MAOs, both kinetically and using molecular biology techniques. K(m) values for deamination of beta-PEA in the rat heart were 13-fold those in the kidney, by contrast, K(m) values for deamination of 5-HT were quite similar in both tissues. Unexpectedly, the selective MAO-A inhibitor Ro 41-1049 was by far the most potent inhibitor of beta-PEA (20 microM) deamination in the rat heart, while clorgyline, another MAO A inhibitor, and lazabemide, a MAO B inhibitor, had intermediate efficacy; selegiline was found unable to inhibit deamination of beta-PEA. In the rat renal cortex lazabemide and selegiline both inhibited beta-PEA deamination. The reduction of beta-PEA concentration to just 200 nM, the use of heart membranes instead of tissue homogenates or the use of heart membranes pre-treated with 1% digitonine failed to change this pattern of inhibition. Semicarbazide was found not to alter deamination of beta-PEA. Western blot showed the presence of both isoforms (55 kd and 61 kd) in the renal cortex. In the heart there was a predominance of the A form, the B form being undetected. The RT-PCR products for both MAO-A and MAO-B, were found to have the expected sizes. In conclusion, we found mRNA for MAO-B but were unable to detect the protein itself or its activity when using beta-PEA as the substrate.  相似文献   

11.
Several multifunctional iron chelators have been synthesized from hydroxyquinoline pharmacophore of the iron chelator, VK-28, possessing the monoamine oxidase (MAO) and neuroprotective N-propargylamine moiety. They have iron chelating potency similar to desferal. M30 is a potent irreversible rat brain mitochondrial MAO-A and -B inhibitor in vitro (IC50, MAO-A, 0.037 +/- 0.02; MAO-B, 0.057 +/- 0.01). Acute (1-5 mg/kg) and chronic [5-10 mg/kg intraperitoneally (i.p.) or orally (p.o.) once daily for 14 days]in vivo studies have shown M30 to be a potent brain selective (striatum, hippocampus and cerebellum) MAO-A and -B inhibitor. It has little effects on the enzyme activities of the liver and small intestine. Its N-desmethylated derivative, M30A is significantly less active. Acute and chronic treatment with M30 results in increased levels of dopamine (DA), serotonin(5-HT), noradrenaline (NA) and decreases in DOPAC (dihydroxyphenylacetic acid), HVA (homovanillic acid) and 5-HIAA (5-hydroxyindole acetic acid) as determined in striatum and hypothalamus. In the mouse MPTP (N-methy-4-phenyl-1,2,3,6-tetrahydropyridine) model of Parkinson's disease (PD) it attenuates the DA depleting action of the neurotoxin and increases striatal levels of DA, 5-HT and NA, while decreasing their metabolites. As DA is equally well metabolized by MAO-A and -B, it is expected that M30 would have a greater DA neurotransmission potentiation in PD than selective MAO-B inhibitors, for which it is being developed, as MAO-B inhibitors do not alter brain dopamine.  相似文献   

12.
The oxidative deamination of serotonin (5-HT) to 5-hydroxyindoleacetic acid (5-HIAA) by rat primary astrocyte cultures was investigated in intact cells using HPLC. All detectable 5-HIAA accumulated in the extracellular medium, and its rate of production was proportional to the 5-HT concentration over the tested range of 5 x 10(-7) to 10(-4) M. At 5 x 10(-7) M 5-HT, intracellular 5-HT was detectable only in astrocytes treated with monoamine oxidase (MAO) inhibitors. These findings are consistent with the idea that 5-HT taken up into astrocytes is not stored for re-release, but is rapidly metabolized to 5-HIAA, which is then extruded from the cell. At 5 x 10(-7) M 5-HT, 5-HIAA formation in intact cells was blocked 63% by the selective high-affinity 5-HT uptake inhibitor fluoxetine. 5-HT oxidation to 5-HIAA is carried out principally by MAO-A, because clorgyline was more effective at inhibiting the production of 5-HIAA than was pargyline. Radioenzymatic determinations of MAO activity in cell homogenates supported these findings, because under these conditions clorgyline was 1,000-fold more effective than pargyline at inhibiting MAO activity toward 14C-labelled 5-HT. However, the relatively selective MAO-B substrate beta-phenylethylamine (PEA) was also oxidized, showing that these cultures also contained MAO-B activity; the Km values for MAO-A oxidation of 5-HT and MAO-B oxidation of PEA were 135 and 45 microM, and Vmax values were 88 and 91 nmol/mg of total cell protein/h, respectively. Higher concentrations of PEA (greater than 20 microM) were oxidized by both MAO-A and MAO-B isozymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Miklya I  Knoll J 《Life sciences》2003,72(25):2915-2921
Endogenous and synthetic enhancer substances enhance in low concentration the impulse propagation mediated release of transmitters from the catecholaminergic and serotonergic neurons in the brain. The purpose of this study was to see whether uptake or MAO inhibition or agonists have similar enhancing prospectives as the enhancer substances. We measured the electrical stimulation induced release of [3H]-norepinephrine or [3H]-dopamine or [3H]-serotonin from the isolated brain stem of rats. (-)-1-Benzofuran-2-yl)-2-propylaminopentane HCl [(-)-BPAP] was used as a prototype of the enhancer compounds. 50 ng/ml (-)-BPAP was the most effective concentration in enhancing the nerve stimulation induced release of [3H]-norepinephrine and [3H]-dopamine, 10 ng/ml (-)-BPAP was highly effective in enhancing the release of [3H]-serotonin. In contrast, 250 ng/ml desmethylimipramine (DMI), a selective inhibitor of the uptake of norepinephrine, did not change significantly the nerve stimulation induced release of [3H]-norepinephrine and 50 ng/ml fluoxetine, a selective inhibitor of the uptake of serotonin, did not change the release of [3H]-serotonin. Neither 250 ng/ml clorgyline, a selective inhibitor of MAO-A, nor 250 ng/ml lazabemide, a selective inhibitor MAO-B, was capable to significantly increase the nerve stimulation induced release of either [3H]-serotonin or [3H]-norepinephrine. The potent dopamine receptor agonists, pergolide and bromocriptine did not change significantly the release of [3H]-dopamine in 50 ng/ml concentration, which is sufficient to stimulate the dopamine receptors. The results prove that stimulation of catecholaminergic and serotonergic neurons in the brain via the enhancing mechanism is clearly different from influencing uptake or MAO.  相似文献   

14.
Abstract: Cis-3-(3, 4-dichlorophenyl)-2- N , N -dirnethylaminomethyl-bi-cyclo-[2, 2, 2]-octane hydrochloride (LR5182) inhibited the uptake of dopamine by a synaptosomal fraction of corpus striatum of rat brain with an inhibitor constant (Ki value) of 6 nM. Kinetics analysis according to the methods of Lineweaver-Burk and Dixon revealed a competitive inhibition of dopamine uptake of LR5182. When the uptake of dopamine by the noradrenergic terminals in the synaptosomal fraction of cerebral cortex was selectively abolished by desipramine, LR5182 competitively inhibited the uptake of dopamine by the dopaminergic terminals with a Ki value of 19 nM. LR5182 was also a competitive inhibitor of noradrenaline uptake by synaptosomes of hypothalamus and cerebral cortex with, however, one-third to one-tenth the effectiveness, as indicated by the larger Ki values, 52 and 58 nM, respectively. Structure-activity studies with LR5182 and related compounds supported the idea that the uptake sites of dopamine favored a gauche conformer.  相似文献   

15.
Dimebone was shown to inhibit monoamine oxidase (MAO) deaminating dopamine and serotonin, decrease dopamine metabolism in the basal ganglia of the rat brain, increase noradrenaline level and depress dopamine deamination in the hypothalamus. Dimebone first increased and then diminished the release of dopamine in the cortex, with the concomitant MAO activation and the increase in dopamine and noradrenaline levels. The in vitro experiments have demonstrated that dimebone (10(-4)) preferentially inhibited MAO activity, type B and dopamine deamination in homogenates of different rat brain structures. The role of MAO inhibition in the mechanism of dimebone action on the catecholamine metabolism in the brain structures and its stimulating effect on CNS are discussed.  相似文献   

16.
Monoamine oxidase (MAO) type A and type B were measured using kynuramine, 3,4-dihydroxyphenylethylamine (dopamine, DA), and 5-hydroxytryptamine (5-HT, serotonin) in 20 brain areas. The highest activities were found in the striatum (caudate nucleus, putamen, globus pallidus, and substantia nigra), hypothalamus, and c-mammilare. The ratio of DA to 5-HT deamination varied in the different regions, being in favor of DA in the striatum. With kynuramine as the substrate IC50 values of a number of inhibitors indicated that l-deprenyl was far more potent an inhibitor of human brain MAO than clorgyline or harmaline. N-Desmethylpropargylindane hydrochloride (AGN 1135) was also shown to have MAO-B inhibitory selectivity similar to that of l-deprenyl. Brains obtained at autopsy from l-deprenyl-treated Parkinsonian patients showed that, whereas MAO-B was fully inhibited by the therapeutic doses of l-deprenyl, substantial MAO-A activity was still evident. These results are matched by the significant increases of DA noted in caudate nucleus, globus pallidus, putamen, and substantia nigra and the unaltered 5-HT and 5-hydroxyindoleacetic acid (5-HIAA) in the same regions. These data indicate that the therapeutic actions of l-deprenyl may lie in its selective inhibition of MAO-B resulting in increased brain levels of DA formed from L-dihydroxyphenylacetic acid (L-DOPA).  相似文献   

17.
Abstract

The substrate- and inhibitor-related characteristics of monoamine oxidase (MAO) were studied for catfish brain and liver. The kinetic constants for MAO in both tissues were determined using 5-hydroxytryptamine (5-HT), tyramine and β-phenylethylamine (PEA) as substrates. For both tissues, the Vmax values were highest with 5-HT and lowest with PEA. The Km value for the brain was highest with 5-HT, followed by tyramine and PEA; but for the liver its value was highest with PEA, followed by 5-HT and tyramine, although all values were in the same order of magnitude. The inhibition of MAO by clorgyline and deprenyl by use of 5-HT, tyramine and PEA as substrates showed that the MAO-A inhibitor clorgyline was more effective than the MAO-B inhibitor deprenyl for both catfish tissues; a single form was present since inhibition by clorgyline or deprenyl with 1000 μM PEA showed single phase sigmoid curves. It is concluded that catfish brain and liver contain a single form of MAO, relatively similar to mammalian MAO-A.  相似文献   

18.
Monoamine oxidase (MAO), catalysing oxidative deamination of biogenic monoamines, has been detected in adult Ascaridia galli. MAO was present in mitochondria and deaminated noradrenaline at the maximal rate, although serotonin, adrenaline, tyramine and dopamine were also degraded but more slowly. Of the organs studied, the body wall, female reproductive organ and intestine, the body wall (containing neuronal structures) showed highest MAO activity. Km value for chick ascarid mitochondrial MAO using tyramine as substrate was 1.66 X 10(-3) M and it was most active at 2.5 mM tyramine concentration, pH 7.5 and 40 degrees C. MAO of A. galli appeared to be thermolabile as nearly 80% of its activity was lost when the incubation temperature was increased 5 degrees above optimum.  相似文献   

19.
Serotonin (or 5-hydroxytryptamine; 5-HT) and monoamine oxidase (MAO) are involved in several physiological functions and pathological conditions. We show that the serotonergic system and its development in zebrafish are similar to those of other vertebrates rendering zebrafish a good model to study them. Development of MAO expression followed a similar time course as the 5-HT system. MAO expression and activity were located in or adjacent to serotonergic nuclei and their targets, especially in the ventral hypothalamus. MAO mRNA was detected in the brain from 24 h post-fertilization and histochemical enzyme activity from 42 h post-fertilization. Deprenyl (100 μM) decreased MAO activity 34–74% depending on the age. Inhibition of MAO by deprenyl strongly increased 5-HT but not dopamine and noradrenaline levels. Deprenyl decreased 5-HT-immunoreactivity in serotonergic neurons and induced novel ectopic 5-HT-immunoreactivity neurons in the diencephalon in a manner dependent on 5-HT uptake. Deprenyl administration decreased locomotion, altered vertical positioning and increased heart rate. Treatment with p -chlorophenylalanine normalized 5-HT levels and rescued the behavioral alteration, indicating that the symptoms were 5-HT dependent. These findings suggest that zebrafish MAO resembles mammalian MAO A more than MAO B, metabolizing mainly 5-HT. Applications of this model of hyperserotonergism include pharmacological and genetic screenings.  相似文献   

20.
The effects of 5-hydroxytryptophan (5-HTP) and serotonin (5-HT) on dopamine synthesis and release in rat brain striatal synaptosomes have been examined and compared to the effects of tyramine and dopamine. Serotonin inhibited dopamine synthesis from tyrosine, with 25% inhibition occurring at 3 μM-5-HT and 60% inhibition at 200 μM. Dopamine synthesis from DOPA was also inhibited by 5-HT, with 30% inhibition occurring at 200 μ. At 200 μM-5-HTP, dopamine synthesis from both tyrosine and DOPA was inhibited about 70%. When just the tyrosine hydroxylation step was measured in the intact synaptosome, 5-HT, 5-HTP, tyramine and dopamine all caused significant inhibition, but only dopamine inhibited soluble tyrosine hydroxylase [L-tyrosine 3-monooxygenase; L-tyrosine, tetrahydropteridine oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2] prepared from lysed synaptosomes. Particulate tyrosine hydroxylase was not inhibited by 10 μM-5-HT, but was about 20% inhibited by 200 μM-5-HT and 5-HTP. At 200 μM both 5-HT and 5-HTP stimulated endogenous dopamine release. These experiments suggest that exposure of dopaminergic neurons to 5-HT or 5-HTP leads to an inhibition of dopamine synthesis, mediated in part by an intraneuronal displacement of dopamine from vesicle storage sites, leading to an increase in dopamine-induced feedback inhibition of tyrosine hydroxylase, and in part by a direct inhibition of DOPA decarboxylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号