首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently we have shown that heparin and related sulfated polyanions are low-affinity ligands of the kringle domain in the amino-terminal region (ATF) of human urokinase (u-PA), and proposed that this may facilitate loading of u-PA onto its receptor at the focal contacts between adherent cells and their matrix. We have now tested other components of the cell matrix (fibronectin, vitronectin, thrombospondin and laminin-nidogen) for u-PA binding, and found that laminin-nidogen is also a ligand of the u-PA ATF. Direct binding assays and competition binding assays with defined fragments of laminin-nidogen showed that there are u-PA binding sites in fragment E4 of laminin as well as in nidogen. The long-arm terminal domain of laminin (fragment E3), which contains a heparin-binding site, competed for binding of u-PA to immobilised heparin. However nidogen, which does not bind to heparin, also inhibited binding of u-PA to heparin, and this effect was also observed with recombinant nidogen and with a fragment of nidogen lacking the carboxy-terminal domain. Direct binding assays confirmed that u-PA binds to nidogen through a site in the u-PA ATF. We conclude that u-PA binds to laminin-nidogen by interactions involving the ATF region of u-PA, the E4 domain of laminin and the rod or amino-terminal regions of nidogen. Since nidogen is suggested to be an important bridging molecule in the maintenance of the supramolecular organization in basement membranes, the presence of a binding site for u-PA in nidogen indicates a role for plasminogen activation in basement membrane remodelling.  相似文献   

2.
A large, low-density form of heparan sulfate proteoglycan was isolated from the Engelbreth-Holm-Swarm (EHS) tumor and demonstrated to bind in immobilized-ligand assays to laminin fragment E3, collagen type IV, fibronectin and nidogen. The first three ligands mainly recognize the heparan sulfate chains, as shown by inhibition with heparin and heparan sulfate and by the failure to bind to the proteoglycan protein core. Nidogen, obtained from the EHS tumor or in recombinant form, binds exclusively to the protein core in a heparin-insensitive manner. Studies with other laminin fragments indicate that the fragment E3 possesses a unique binding site of laminin for the proteoglycan. A major binding site of nidogen was localized to its central globular domain G2 by using overlapping fragments. This allows for the formation of ternary complexes between laminin, nidogen and proteoglycan, suggesting a key role for nidogen in basement-membrane assembly. Evidence is provided for a second proteoglycan-binding site in the C-terminal globule G3 of nidogen, but this interaction prevents the formation of such ternary complexes. Therefore, the G3-mediated nidogen binding to laminin and proteoglycan are mutually exclusive.  相似文献   

3.
We have examined the molecular interactions of avian neural crest cells with fibronectin and laminin in vitro during their initial migration from the neural tube. A 105-kDa proteolytic fragment of fibronectin encompassing the defined cell-binding domain (65 kDa) promoted migration of neural crest cells to the same extent as the intact molecule. Neural crest cell migration on both intact fibronectin and the 105-kDa fragment was reversibly inhibited by RGD-containing peptides. The 11.5-kDa fragment containing the RGDS cell attachment site was also able to support migration, whereas a 50-kDa fragment corresponding to the adjacent N-terminal portion of the defined cell-binding domain was unfavorable for neural crest cell movement. In addition to the putative "cell-binding domain," neural crest cells were able to migrate on a 31-kDa fragment corresponding to the C-terminal heparin-binding (II) region of fibronectin, and were inhibited in their migration by exogenous heparin, but not by RGDS peptides. Heparin potentiated the inhibitory effect of RGDS peptides on intact fibronectin, but not on the 105-kDa fragment. On substrates of purified laminin, the extent of avian neural crest cell migration was maximal at relatively low substrate concentrations and was reduced at higher concentrations. The efficiency of laminin as a migratory substrate was enhanced when the glycoprotein occurred complexed with nidogen. Moreover, coupling of the laminin-nidogen complex to collagen type IV or the low density heparan sulfate proteoglycan further increased cell dispersion, whereas isolated nidogen or the proteoglycan alone were unable to stimulate migration and collagen type IV was a significantly less efficient migratory substrate than laminin-nidogen. Neural crest cell migration on laminin-nidogen was not affected by RGDS nor by YIGSR-containing peptides, but was reduced by 35% after addition of heparin. The predominant motility-promoting activity of laminin was localized to the E8 domain, possessing heparin-binding activity distinct from that of the N-terminal E3 domain. Migration on the E8 fragment was reduced by greater than 70% after addition of heparin. The E1' fragment supported a minimal degree of migration that was RGD-sensitive and heparin-insensitive, whereas the primary heparin-binding E3 fragment and the cell-adhesive P1 fragment were entirely nonpermissive for cell movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Some 12 new nidogen and laminin fragments were purified from elastase, thrombin and trypsin digests and characterized by their sizes (22 kDa to greater than 300 kDa), subunit patterns on electrophoresis, partial amino acid sequences, content of specific epitopes and their binding to laminin or nidogen structures in radioligand assays. This permitted the various fragments to be ordered along the dumbbell-shaped structure of nidogen and to compare them with previously described nidogen fragments arising by endogenous proteolysis. Two nidogen fragments (E-50, E-90; 50 kDa and 90 kDa) remain associated with a large laminin fragment in elastase digests of the complex and could be dissociated with 2 M guanidine.HCl. Recombination studies demonstrated Kd = 10-20 nM for this interaction. Nidogen fragments devoid of binding activity included the tryptic peptide T-40 (40 kDa) corresponding to the rod-like domain and several larger fragments extending more to the N-terminus of nidogen. An N-terminal thrombin fragment of about 50 kDa was also inactive. Together the data show a lack of laminin binding to the N-terminal globule and rod of nidogen and provide indirect evidence that this activity is located within or close to its C-terminal globular domain. Nidogen-binding structures of laminin were obtained as two large fragments (greater than 300 kDa), P1X and E1X. They correspond to the short arm structure of laminin with one (E1X) or two (P1X) arms decreased in size to the inner rod-like segment. Shortening in E1X is mainly due to the B1 chain segment including the central globular domain which was identified as a new laminin fragment E10. Binding of E1X and P1X to nidogen was comparable to that of laminin while much lower activity was found for other laminin fragments. A 10-fold lower binding potential was also observed for the laminin-nidogen complex whose structure can now be defined in more precise molecular terms.  相似文献   

5.
A monoclonal antibody was produced against purified nidogen extracted from a mouse basement-membrane-producing tumor. This antibody reacted with a determinant on Nd-40, a rod which separates the globular domains of nidogen. Antigenicity depends on intrachain disulfide bonds within this rod. The monoclonal antibody was used to detect nidogen fragments after proteolytic cleavage of isolated nidogen, and nidogen complexed to laminin. The data indicate that thrombin and thermolysin generated very different patterns of degradation, but in both cases no differences were found between isolated and complexed nidogen. In contrast, nidogen in the laminin-nidogen complex was much less degraded by trypsin than isolated nidogen, indicating that an interaction between these basement membrane components reduces the susceptibility of nidogen to trypsin digestion. Immunofluorescent studies, using the monoclonal antibody on sections of the EHS tumor after proteolytic digestion, showed that the retention or disappearance of the Nd-40 determinant correlated with the in vitro digestion pattern of the laminin-nidogen complex.  相似文献   

6.
The molecular interactions of laminin with several tumor cell lines and skin fibroblasts were investigated by radioligand binding studies and cell attachment assays using laminin, the laminin-nidogen complex, and laminin fragments as substrates and also domain-specific antibodies as inhibitors of cell attachment. The majority of cells showed a dual binding pattern for fragments 1 and 8 which originate from short-arm or long-arm structures of laminin, respectively. Both of these fragments in solution bind to suspended cells with high affinity (KD = 1-10 nM), with the receptor numbers for each fragment depending on the cell type. Competition studies and independent variation of receptor numbers demonstrated that the cell-binding structures on each fragment are different, implicating the existence of two distinct cellular receptors for laminin. The ability of these fragments to act as substrates for cell adhesion correlated with the presence of high affinity binding sites on the cells. However, only antibodies to fragment 8 were able to block cell adhesion to laminin, despite the presence of binding sites for fragment 1. A few cells had very low numbers of high affinity receptors for either fragment 1 or 8. The latter cell type was used to demonstrate that complex formation between laminin and nidogen, which binds to fragment 1 structures, reduces the potential of laminin for cell binding.  相似文献   

7.
Recombinant mouse nidogen and two fragments were produced in mammalian cells and purified from culture medium without resorting to denaturing conditions. The truncated products were fragments Nd-I (positions 1-905) comprising the N-terminal globule and rod-like domain and Nd-II corresponding mainly to the C-terminal globule (position 906-1217). Recombinant nidogen was indistinguishable from authentic nidogen obtained by guanidine dissociation from tumor tissue with respect to size, N-terminal sequence, CD spectra and immunochemical properties. They differed in protease stability and shape indicating that the N-terminal domain of the more native, recombinant protein consists of two globules connected by a flexible segment. This established a new model for the shape of nidogen consisting of three globes of variable mass (31-56 kDa) connected by either a rod-like or a thin segment. Recombinant nidogen formed stable complexes (Kd less than or equal to 1 nM) with laminin and collagen IV in binding assays with soluble and immobilized ligands and as shown by electron microscopy. Inhibition assays demonstrated different binding sites on nidogen for both ligands with different specificities. This was confirmed in studies with fragment Nd-I binding to collagen IV and fragment Nd-II binding to laminin fragment P1. In addition, recombinant nidogen but not Nd-I was able to bridge between laminin or P1 and collagen IV. Formation of such ternary complexes implicates a similar role for nidogen in the supramolecular organization of basement membranes.  相似文献   

8.
The nidogen-laminin interaction is proposed to play a key role in basement membrane (BM) assembly. However, though there are similarities, the phenotypes in mice lacking nidogen 1 and 2 (nidogen double null) differ to those of mice lacking the nidogen binding module (γ1III4) of the laminin γ1 chain. This indicates different cell- and tissue-specific functions for nidogens and their interaction with laminin and poses the question of whether the phenotypes in nidogen double null mice are caused by the loss of the laminin-nidogen interaction or rather by other unknown nidogen functions. To investigate this, we analyzed BMs, in particular those in the skin of mice lacking the nidogen binding module. In contrast to nidogen double null mice, all skin BMs in γ1III4-deficient mice appeared normal. Furthermore, although nidogen 1 deposition was strongly reduced, nidogen 2 appeared unchanged. Mice with additional deletion of the laminin γ3 chain, which contains a γ1-like nidogen binding module, showed a further reduction of nidogen 1 in the dermoepidermal BM; however, this again did not affect nidogen 2. This demonstrates that in vivo only nidogen 1 deposition is critically dependent on the nidogen binding modules of the laminin γ1 and γ3 chains, whereas nidogen 2 is independently recruited either by binding to an alternative site on laminin or to other BM proteins.  相似文献   

9.
Large quantities of intact laminin-nidogen complex could be extracted from a mouse tumor basement membrane with a physiological buffer containing EDTA. Analysis of the purified complex demonstrated that the two proteins occur in an equimolar ratio and that anchoring of these complexes to the extracellular matrix requires divalent cations. Reversible dissociation of the complex was achieved with 2 M guanidine X HCl and has been used for purification of the individual components. Electron microscopy and binding studies using laminin fragments demonstrated that nidogen interacts specifically with the center of the cross-shaped laminin molecule as represented by the short-arm structure fragment 1. The complex was also useful to confirm and refine a previously proposed dumb-bell structure of nidogen and to prepare and characterize the cell-binding fragment 8 from the long arm of laminin.  相似文献   

10.
Binding of laminin to type IV collagen: a morphological study   总被引:18,自引:14,他引:4       下载免费PDF全文
A mixture of laminin and type IV collagen was analyzed by rotary shadowing using carbon/platinum and electron microscopy. Laminin was found to form distinct complexes with type IV collagen: one site of interaction is located 140 nm from the COOH-terminal, noncollagenous (NC1) domain and the other is located within the NH2-terminal region. The isolated NC1 fragment of type IV collagen does not appear to interact with laminin, while pepsin-treated type IV collagen, which lacks the NC1 domain, retains its ability to form complexes with laminin. Analysis of the laminin-type IV complexes indicates that laminin binds to type IV collagen via the globular regions of either of its four arms. This finding is supported by experiments using fragment P1 of laminin which lacks the globular regions and which does not bind to type IV collagen in a specific way. In addition, after heat-denaturation of laminin no specific binding is observed.  相似文献   

11.
Molecular architecture of basement membranes   总被引:49,自引:0,他引:49  
Basement membranes are specialized extracellular matrices with support, sieving, and cell regulatory functions. The molecular architectures of these matrices are created through specific binding interactions between unique glycoprotein and proteoglycan protomers. Type IV collagen chains, using NH2-terminal, COOH-terminal, and lateral association, form a covalently stabilized polygonal framework. Laminin, a four-armed glycoprotein, self-assembles through terminal-domain interactions to form a second polymer network, Entactin/nidogen, a dumbbell-shaped sulfated glycoprotein, binds laminin near its center and interacts with type IV collagen, bridging the two. A large heparan sulfate proteoglycan, important for charge-dependent molecular sieving, is firmly anchored in the basement membrane and can bind itself through a core-protein interaction to form dimers and oligomers and bind laminin and type IV collagen through its glycosaminoglycan chains. Heterogeneity of structure and function occur in different tissues, in development, and in response to different physiological needs. The molecular architecture of these matrices may be regulated during or after primary assembly through variations in compositions, isoform substitutions, and the modifying influence of exogenous macromolecules such as heparin and heparan sulfate.  相似文献   

12.
Anchoring functions of collagen VII depend on its ability to form homotypic fibrils and to bind to other macromolecules to form heterotypic complexes. Biosensor-based binding assays were employed to analyze the kinetics of the NC1 domain-mediated binding of collagen VII to laminin 5, collagen IV, and collagen I. We showed that collagen VII interacts with laminin 5 and collagen IV with a Kd value of 10(-9) M. In contrast, the NC1-mediated binding to collagen I was weak with a Kd value of 10(-6) M. Binding assays also showed that the NC1 domain utilizes the same region to bind to both laminin 5 and collagen IV. We postulate that the ability of the NC1 domains to bind with high affinities to laminin 5 and collagen IV facilitates stabilization of the structure of the basement membrane itself and that the NC1-collagen I interaction may be less important for stabilization of the dermal-epidermal junction.  相似文献   

13.
The laminin-nidogen complex, a major component of basement membranes, incorporates [3H]putrescine and monodansylcadaverine in the presence of guinea pig liver transglutaminase. Label was detected in nidogen in the isolated, as well as in the complexed form, but not in laminin. The incorporation proceeds in a time-dependent manner at a rate similar to that achieved with N,N-dimethylcasein, a well characterized transglutaminase substrate. Saturation of incorporation site(s), as well as comparison with the incorporation level in reference proteins, indicated the presence of one high affinity amine acceptor site in nidogen. Electron microscopy of the reaction products showed that the laminin-nidogen complexes become stabilized in a head-to-head arrangement, characteristic of Ca(2+)-induced self-aggregation. Indirect immunofluorescence and detection of transglutaminase activity on unfixed cryosections revealed an extracellular distribution of tissue transglutaminase. Intensive staining was observed in collagen-rich connective tissue. Codistribution with nidogen was not a ubiquitous feature, but was observed in many locations.  相似文献   

14.
Nidogens are two ubiquitous basement membrane proteins produced mainly by mesenchymal cells. Nidogen-mediated interactions, in particular with laminin, collagen IV, and perlecan have been considered important in the formation and maintenance of the basement membrane. However, whereas mice lacking both nidogen isoforms or carrying mutations in the high affinity nidogen-binding site upon the laminin gamma1 chain have specific basement membrane defects in certain organs, particularly in the lung, characterization of these mice has also shown that basement membrane formation per se does not need nidogens or the laminin-nidogen interaction. Limb development requires the complex interplay of numerous growth factors whose expression is dependent upon the apical ectodermal ridge. Here, we show that lack of nidogen-1 and -2 results in a specific and time-limited failure in the ectodermal basement membrane of the limb bud. The absence of this basement membrane leads to aberrant apical ectodermal ridge formation. It also causes altered distribution of growth factors, such as fibroblast growth factors and leads to a fully penetrant soft tissue syndactyly caused by the dysregulation of interdigital apoptosis. Further, in certain animals more severe changes in bone formation occur, providing evidence for the interplay between growth factors and the extracellular matrix.  相似文献   

15.
Basement membrane complexes with biological activity   总被引:123,自引:0,他引:123  
We have studied the reconstitution of basement membrane molecules from extracts prepared from the basement membrane of the EHS tumor. Under physiological conditions and in the presence of added type IV collagen and heparan sulfate proteoglycan, gellike structures form whose ultrastructure appears as interconnected thin sheets resembling the lamina dense zone of basement membrane. The major components of the reconstituted structures include laminin, type IV collagen, heparan sulfate proteoglycan, entactin, and nidogen. These components polymerize in constant proportions on reconstitution, suggesting that they interact in defined proportions. Molecular sieve studies on the soluble extract demonstrate that laminin, entactin, and nidogen are associated in large but dissociable complexes which may be a necessary intermediate in the deposition of basement membrane. The reconstituted matrix was biologically active and stimulated the growth and differentiation of certain cells.  相似文献   

16.
17.
Rotary shadowing electron microscopy was used to examine complexes formed by incubating combinations of the basement membrane components: type IV collagen, laminin, large heparan sulfate proteoglycan and fibronectin. Complexes were analyzed by length measurement from the globular (COOH) domain of type IV collagen, and by examination of the four arms of laminin and the two arms of fibronectin. Type IV collagen was found to contain binding sites for laminin, heparan sulfate proteoglycan and fibronectin. With laminin the most frequent site was centered approximately 81 nm from the carboxy end of type IV collagen. Less frequent sites appeared to be present at approximately 216 nm and approximately 291 nm, although this was not apparent when the sites were expressed as a fraction of the length of type IV collagen to which they were bound. For heparan sulfate proteoglycan the most frequent site occurred at approximately 206 nm with a less frequent site at approximately 82 nm. For fibronectin, a single site was present at approximately 205 nm. Laminin bound to type IV collagen through its short arms, particularly through the end of the lateral short arms and to heparan sulfate proteoglycan mainly through the end of its long arm. Fibronectin bound to type IV collagen through the free end region of its arms. Using a computer graphics program, the primary laminin binding sites of two adjacent type IV collagen molecules were found to align in the "polygonal" model of type IV collagen, whereas with the "open network" model, a wide meshed matrix is predicted. It is proposed that basement membrane may consist of a lattice of type IV collagen coated with laminin, heparan sulfate proteoglycan and fibronectin.  相似文献   

18.
Binding domain for laminin on type IV collagen   总被引:1,自引:0,他引:1  
Binding of type IV collagen to laminin was studied by attaching one member of the ligand pair to a solid phase. When laminin was bound to a solid phase, type IV collagen exhibited saturable binding. Digestion of type IV collagen with high concentrations of pepsin destroyed the laminin binding activity. Type IV collagen was also found to bind to fibronectin but the binding activity was not destroyed by pepsin treatment. Rotary shadowing electron microscopy of the pepsin digested type IV collagen indicated that the carboxy terminal end region of about 100 nm is cleaved. Rotary shadowing electron microscopy studies demonstrate that the carboxy terminal end of type IV collagen has a major laminin binding site.  相似文献   

19.
 There is evidence that basement membrane components control differentiation of liver sinusoids and bile ducts. These processes occur in humans in the 9th gestational week (GW). Distribution of laminin, nidogen, and type IV collagen was studied during human liver development between the 6th and the 10th GW. Laminin and nidogen lined intrahepatic microvessels in the 6th and 7th GW decreasing in quantity at the beginning of the fetal period (9th–10th GW). Type IV collagen was detected in microvessels only from the 9th GW onward. In the early periportal matrix (9th–10th GW) laminin, nidogen, and type IV collagen were diffusely distributed. At these stages, basement membrane zones of larger portal vessels and of early bile ducts were also stained for all three glycoproteins. These results show that laminin and nidogen are localized in microvessels during early human liver development and decrease in concentration at the developmental stage during which microvessels become discontinuous. In contrast, type IV collagen is not present in early microvessels but occurs when laminin and nidogen disappear. The three glycoproteins occur together only in those areas of the developing liver in which, from the 9th GW onward, the differentiation of immature liver cells into biliary epithelium takes place. Accepted: 20 August 1998  相似文献   

20.
Soluble and reconstituted 5'-nucleotidase were used in the binding assays to the laminin/nidogen complex. They both are shown to interact specifically and in a saturable manner with the laminin/nidogen complex using a solid-phase binding assay. Dissociation constants in the region of 10(-8) M were determined for the association of soluble and membrane-bound 5'-nucleotidase. Scatchard analysis of the binding data indicate a stoichiometry of about 2.7 of the homodimeric soluble 5'-nucleotidase to the laminin/nidogen complex. The association of 5'-nucleotidase with laminin/nidogen occurs in the absence of divalent metal ions and does not require N-linked carbohydrate moieties of both laminin/nidogen and 5'-nucleotidase. 5'-Nucleotidase also associates with isolated laminin although with reduced affinity. No binding to isolated nidogen was observed. Peptides containing the RGD sequence did not influence the binding reaction. Monoclonal and polyclonal antibodies directed against 5'-nucleotidase and laminin specifically perturb the association of the reconstituted enzyme to laminin/nidogen. Sulfated polysaccharides such as heparinsulfate and dermatansulfate modulate the interaction of 5'-nucleotidase and laminin/nidogen in a complex biphasic manner and might also regulate the binding reaction in vivo. Immunohistochemistry shows a close spatial correlation of 5'-nucleotidase and laminin also in the epithelium of the small intestine pointing to an in vivo interaction of both glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号