首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Simplified Gō models, where only native contacts interact favorably, have proven useful to characterize some aspects of the folding of small proteins. The success of these models is limited by the fact that all residues interact in the same way so that the folding features of a protein are determined only by the geometry of its native conformation. We present an extended version of a Calpha-based Gō model where different residues interact with different energies. The model is used to calculate the thermodynamics of three small proteins (Protein G, Src-SH3, and CI2) and the effect of mutations (DeltaDeltaGU-N, DeltaDeltaGdouble dagger-N, DeltaDeltaGdouble dagger-U, and phi-values) on the wild-type sequence. The model allows us to investigate some of the most controversial areas in protein folding, such as its earliest stages and the nature of the unfolded state, subjects that have lately received particular attention.  相似文献   

2.
The first computational study of the folding and dynamics of a hydrophobic β-hairpin containing a central heterochiral diproline segment is reported. Linear hydrophobic sequences containing centrally positioned diproline motifs, heterochiral (DL/LD) and homochiral (LL/DD)), are investigated for their ability to form β-hairpins. Heterochiral diproline motifs (LD/DL) reveal the formation of stable β-hairpins with the backbone adopting β-turn conformation and the formation of backbone hydrogen bonds with antiparallel cross-strand registry, whereas the homochiral diproline (LL/DD) containing sequences tend to adopt PPII helix conformation. The competition between the β-turn formation and the backbone H-bond ladder of the antiparallel β-strands in heterochiral diproline containing sequences is employed to validate the hypothesis that β-turn formation precedes inter-strand registry in the folding of a β-hairpin (“zipper” mechanism). The observation of noncanonical hydrogen bonds leads to a folded β-hairpin-like conformation and points to the existence of relatively stable transition state intermediates, between the unfolded (extended) and folded (β-hairpin) states. The MD simulations are in excellent agreement with the experimental studies on the model system and constitute the very first computational investigation of the folding and dynamics of a completely hydrophobic synthetic β-hairpin containing heterogeneous residues of mixed chirality.  相似文献   

3.
Abstract

Increasing evidence shows that the formation of misfolded aggregates amyloid-β (Aβ) peptide is associated with the Alzheimer’s disease (AD). Recent experiments reveal a significant correlation of the amount of trimer species bound to neurons with increasing neuro-toxicity. Our previous computational study demonstrated that carbon nanotubes (CNT) can inhibit effectively the formation of β-sheet-rich oligomers of Aβ(16-22) – a hydrophobic peptide essential for Aβ fibrillization. However, the influence of CNT on the oligomers formed by full-length Aβ remains elusive. In this study, we have investigated the conformational dynamics of Aβ(1-42) trimer, built from an NMR structure of α-helical monomer, in the absence and presence of a single-walled carbon nanotube (SWCNT). Our simulations demonstrate that SWCNT can significantly hinder the trimerisation and prevents the secondary structure formation of Aβ(1-42) peptide. Hydrophobic and aromatic stacking interactions between SWCNT and Aβ play important roles in the secondary structure formation of the Aβ trimer. This study reveals a complete picture of the detailed preventable mechanism of full-length Aβ(1-42) by SWCNT, providing theoretical insights into the development of drug candidates of AD.  相似文献   

4.
Conformational rearrangements of peroxysome proliferator activated receptor (PPARγ) ligand-binding domain (LBD) that accompany the release and binding of ligands are not well understood. To determine the major events associated with the escape of the partial agonist GW0072, molecular dynamic (MD) simulations were performed using two different methods: reversed targeted molecular dynamics (TMD−1) and time-dependent distance restraints (TDR) using as restraints either the root mean square deviation from a reference structure (TMD−1) or the distance between the geometrical centers of the binding pocket and of the ligand (TDR). Both methods do not assume any a priori route for ligand extraction. To avoid artifacts, different initial simulation conditions were used and particular attention was paid for giving time to the protein to relax during the extraction process by running 10–12 ns simulations within explicit water. Two distinct exit gates A and B were found, independently of initial conditions and method. During the exit process no interaction between GW0072 and the transactivation AF-2 helix was observed. Our results suggest that the ligand uses the intrinsic flexibility of the protein to move within the receptor. Paths A and B are very similar to those found for other nuclear receptors, suggesting that these routes are a common characteristics of nuclear receptors that are used by different kinds of ligands. Finally, the knowledge of entry/exit pathways of a receptor should be very useful in discriminating between different ligands that could have been favorably docked in the binding pocket by introducing docking along these pathways into computational drug design protocols.  相似文献   

5.
The cold shock protein from the hyperthermophile Thermotoga maritima (Tm-Csp) exhibits significantly higher thermostability than its homologue from the thermophile Bacillus caldolyticus (Bc-Csp). Experimental studies have shown that the electrostatic interactions unique to Tm-Csp are responsible for improving its thermostability. In the present work, the favorable charged residues in Tm-Csp were grafted into Bc-Csp by a double point mutation of S48E/N62H, and the impacts of the mutation on the thermostability and unfolding/folding behavior of Bc-Csp were then investigated by using a modified Gō model, in which the electrostatic interactions between charged residues were considered in the model. Our simulation results show that this Tm-Csp-like charged residue mutation can effectively improve the thermostability of Bc-Csp without changing its two-state folding mechanism. Besides that, we also studied the unfolding kinetics and unfolding/folding pathway of the wild-type Bc-Csp and its mutant. It is found that this charged residue mutation obviously enhanced the stability of the C-terminal region of Bc-Csp, which decreases the unfolding rate and changes the unfolding/folding pathway of the protein. Our studies indicate that the thermostability, unfolding kinetics and unfolding/folding pathway of Bc-Csp can be artificially changed by introducing Tm-Csp-like favorable electrostatic interactions into Bc-Csp.
Graphical abstract Tertiary structure of wild-type cold shock protein from the thermophile Bacillus caldolyticus
  相似文献   

6.
The structures of partially folded states appearing during the folding of a (βα)8 TIM barrel protein, the indole-3-glycerol phosphate synthase from Sulfolobus solfataricus (sIGPS), was assessed by hydrogen exchange mass spectrometry (HX-MS) and Gō model simulations. HX-MS analysis of the peptic peptides derived from the pulse-labeled product of the sub-millisecond folding reaction from the urea-denatured state revealed strong protection in the (βα)4 region, modest protection in the neighboring (βα)1-3 and (βα)5β6 segments and no significant protection in the remaining N and C-terminal segments. These results demonstrate that this species is not a collapsed form of the unfolded state under native-favoring conditions nor is it the native state formed via fast-track folding. However, the striking contrast of these results with the strong protection observed in the (βα)2-5β6 region after 5 s of folding demonstrates that these species represent kinetically distinct folding intermediates that are not identical as previously thought. A re-examination of the kinetic folding mechanism by chevron analysis of fluorescence data confirmed distinct roles for these two species: the burst-phase intermediate is predicted to be a misfolded, off-pathway intermediate, while the subsequent 5 s intermediate corresponds to an on-pathway equilibrium intermediate. Comparison with the predictions using a Cα Gō model simulation of the kinetic folding reaction for sIGPS shows good agreement with the core of the structure offering protection against exchange in the on-pathway intermediate(s). Because the native-centric Gō model simulations do not explicitly include sequence-specific information, the simulation results support the hypothesis that the topology of TIM barrel proteins is a primary determinant of the folding free energy surface for the productive folding reaction. The early misfolding reaction must involve aspects of non-native structure not detected by the Gō model simulation.  相似文献   

7.
Estimating the Young’s modulus of a structure in the nanometer size range is a difficult task. The reliable determination of this parameter is, however, important in both basic and applied research. In this study, by combining molecular dynamics (MD) simulations and continuum shell theory, we designed a new approach to determining the Young’s modulus values of different spherical fullerenes. The results indicate that the Young’s modulus values of fullerene molecules decrease nonlinearly with increasing molecule size and understandably tend to the Young’s modulus of an ideal flat graphene sheet at large molecular radii. To the best of our knowledge, this is first time that a combined atomistic–continuum method which can predict the Young’s modulus values of fullerene molecules with high precision has been reported.  相似文献   

8.
The detailed mechanism of the pathology of α-synuclein in the Parkinson’s disease has not been clearly elucidated. Recent studies suggested a possible chaperone-like role of the acidic C-terminal region of α-synuclein in the formation of amyloid fibrils. It was also previously demonstrated that the α-synuclein amyloid fibril formation is accelerated by mutations of proline residues to alanine in the acidic region. We performed replica exchange molecular dynamics simulations of the acidic and nonamyloid component (NAC) domains of the wild type and proline-to-alanine mutants of α-synuclein under various conditions. Our results showed that structural changes induced by a change in pH or an introduction of mutations lead to a reduction in mutual contacts between the NAC and acidic regions. Our data suggest that the highly charged acidic region of α-synuclein may act as an intramolecular chaperone by protecting the hydrophobic domain from aggregation. Understanding the function of such chaperone-like parts of fibril-forming proteins may provide novel insights into the mechanism of amyloid formation.  相似文献   

9.
The interaction of a model Lys flanked α-helical peptides K2-X24-K2, (X = A,I,L,L+A,V) with lipid bilayers composed of dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) both, in a gel and in a liquid-crystalline state, has been studied by molecular dynamics simulations. It has been shown that these peptides cause disordering of the lipid bilayer in the gel state but only small changes have been monitored in a liquid-crystalline state. The peptides affect ordering of the surrounding lipids depending on the helix stability which is determined by amino acid side chains – their volume, shape, etc. We have shown that the helix does not keep the linear shape in all simulations but often bends or breaks. During some simulations with a very small difference between hydrophobic length of peptide and membrane thickness the peptide exhibits negligible tilt. At the same time changes in peptide conformations during simulations resulted in appearance of superhelix.  相似文献   

10.
Protein folding remains an unsolved problem as main-chain, side-chain, and solvent interactions remain entangled and have been hard to resolve. Polyalanines are promising models to analyze protein folding initiation and propagation structurally as well as energetically. In the present work, the effect of chain-length and N-terminal residue stereochemistry in polyalanine peptides are investigated for their role in the nucleation of α-helical conformation. The end-protected polyalanine peptides, tetra-alanine, Ac-LAla4-NHMe (Ia) and Ac-DAla-LAla3-NHMe (Ib), hexa-alanine, Ac-LAla6-NHMe (IIa) and Ac-DAla-LAla5-NHMe (IIb), and octa-alanine, Ac-LAla8-NHMe (IIIa) and Ac-DAla-LAla7-NHMe (IIIb), are assessed as chain-length and stereochemical-structure perturbed models. The appreciable variations in the sampling of α-helical conformation, including a sampling of α-helix folds, due to the cooperative effect of chain-length and N-terminal residue stereochemistry have been noted. The electrostatics of α-helical conformation rather than the conformational entropy of the main-chain appear to be decisive in the initiation of α-helix folding. The results of the present work will enhance our understanding on the nucleation of α-helical conformation in short peptides and aid in the design of novel peptides with α-helical structure that can modulate disease-related protein–protein interactions.  相似文献   

11.
The conformation of the tridecapeptide α-melanocyte stimulating hormone in the presence of a double water-membrane interface was studied by molecular dynamics simulation, using the computational package THOR. In this program the solvent is represented by a continuous medium with dielectric constant ɛ, and the interface between different media is simulated by a surface of discontinuity of the dielectric constant. The electrostatic image method was used to write down the terms, added to the force field, that describe the polarisation effects induced in the interface by the atomic charges. The program was further improved by the introduction of a second surface, parallel to the first one, to mimic the membrane. A conformational search using the software Prelude was employed to find an initial geometry for the peptide in water. The molecular dynamics simulation performed during 10 ns showed that the peptide structure is flexible in water, without stabilisation of any preferential conformation. In the presence of the model membrane, the peptide moved to the medium representing the interior of the membrane. Inside the low dielectric constant medium, the structure of the peptide showed a turn in the central sequence of amino acids and a packed conformation remained stabilised during more than 7.0 ns of simulation. Received: 27 November 1998 / Revised version: 11 March 1999 / Accepted: 8 April 1999  相似文献   

12.
Peb4 from Campylobacter jejuni is an intertwined dimeric, periplasmic holdase, which also exhibits peptidyl prolyl cis/trans isomerase (PPIase) activity. Peb4 gene deletion alters the outer membrane protein profile and impairs cellular adhesion and biofilm formation for C. jejuni. Earlier crystallographic study has proposed that the PPIase domains are flexible and might form a cradle for holding the substrate and these aspects of Peb4 were explored using sub-microsecond molecular dynamics simulations in solution environment. Our simulations have revealed that PPIase domains are highly flexible and undergo a large structural change where they move apart from each other by 8 nm starting at .5 nm. Further, this large conformational change renders Peb4 as a compact protein with crossed-over conformation, forms a central cavity, which can “cradle” the target substrate. As reported for other chaperone proteins, flexibility of linker region connecting the chaperone and PPIase domains is key to forming the “crossed-over” conformation. The conformational transition of the Peb4 protein from the X-ray structure to the crossed-over conformation follows the “mother’s arms” chain model proposed for the FkpA chaperone protein. Our results offer insights into how Peb4 and similar chaperones can use the conformational heterogeneity at their disposal to perform its much-revered biological function.  相似文献   

13.
Chen P  Evans CL  Hirst JD  Searle MS 《Biochemistry》2011,50(1):125-135
The PB1 domain of NBR1 folds via a single pathway mechanism involving two sequential energy barriers separated by a high-energy intermediate. The structural ensemble representing each of the two transition states (TS1 and TS2) has been calculated using experimental Φ values and biased molecular dynamics simulations. Both TS1 and TS2 represent compact states (β(TS1) = 0.71, and β(TS2) = 0.93) but are defined by quite different distributions of Φ values, degrees of structural heterogeneity, and nativelike secondary structure. TS1 forms a heterogeneous ensemble of dynamic structures, representing a global collapse of the polypeptide chain around a set of weak nativelike contacts. In contrast, TS2 has a high proportion of nativelike secondary structure, which is reflected in an extensive distribution of high Φ values. Two snapshots along the folding pathway of the PB1 domain reveal insights into the malleability, the solvent accessibility, and the timing of nativelike core packing that stabilizes the folded state.  相似文献   

14.
Model tetrapeptide system was designed to investigate the cis/trans isomerization of peptidyl-prolyl imide bond of Ser–Pro motif. To establish the side-chain O-phosphorylation effect in regulating the peptides conformations, molecular dynamics (MD) simulations where carried out on the designed tetrapeptides and their corresponding phosphorylated forms by MD Insight II Discovery3 approach. The most stable configurations and the statistic cis/trans concentration distribution demonstrated that the phosphorylation evidently influences the peptidyl-prolyl imide bond isomerization and works as a key effect in regulating the peptide conformations. The charge state and the site provided for the charge of the phosphate moiety might be an important key. The results also demonstrated that phosphorylation changes the cis conformation ratio of the peptide and the maximum cis value is obtained when the phosphate group has no negative charge.  相似文献   

15.
Water molecules play a critical role in stabilising the three-dimensional architecture, dynamics and function of biological macromolecules. Comparative analysis of structurally similar proteins has shown that there are water molecules conserved in the same relative positions and make similar hydrogen bonds with proteins in all crystal structures. These invariant water molecules are essential for the maintenance of the native structure of proteins. The present study explores the role of invariant water molecules to maintain the active site geometry of β-lactamase enzyme. Thirteen crystal structures of class-A β-lactamase from Staphylococcus aureus have been used in this study. Molecular dynamics simulations of the protein structures were performed in hydrated as well as in dehydrated conditions. The analysis showed that significant changes occur in the active site geometry due to dehydration. These changes can be attributed to the removal of water molecules at the active site.  相似文献   

16.
All atom molecular dynamics simulations of the 18-residue β-hairpin antimicrobial peptide protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR-NH2) in a fully hydrated dilauroylphosphatidylcholine (DLPC) lipid bilayer have been implemented. The goal of the reported work is to investigate the structure of the peptide in a membrane environment (previously solved only in solution [R.L. Fahrner, T. Dieckmann, S.S.L. Harwig, R.I. Lehrer, D. Eisenberg, J. Feigon, Solution structure of protegrin-1, a broad-spectrum antimicrobial peptide from porcine leukocytes. Chemistry and Biology, 3 (1996) 543-550]), and to delineate specific peptide-membrane interactions which are responsible for the peptide's membrane binding properties. A novel, previously unknown, “kick” shaped conformation of the peptide was detected, where a bend at the C-terminal β-strand of the peptide caused the peptide backbone at residues 16-18 to extend perpendicular to the β-hairpin plane. This bend was driven by a highly persistent hydrogen-bond between the polar peptide side-chain of TYR7 and the unshielded backbone carbonyl oxygen atom of GLY17. The H-bond formation relieves the unfavorable free energy of insertion of polar groups into the hydrophobic membrane core. PG-1 was anchored to the membrane by strong electrostatic binding of the protonated N-terminus of the peptide to the lipid head group phosphate anions. The orientation of the peptide in the membrane, and its influence on bilayer structural and dynamic properties are in excellent agreement with solid state NMR measurements [S. Yamaguchi, T. Hong, A. Waring, R.I. Lehrer, M. Hong, Solid-State NMR Investigations of Peptide-Lipid Interaction and Orientation of a b-Sheet Antimicrobial Peptide, Protegrin, Biochemistry, 41 (2002) 9852-9862]. Importantly, two simulations which started from different initial orientations of the peptide converged to the same final equilibrium orientation of the peptide relative to the bilayer. The kick-shaped conformation was observed only in one of the two simulations.  相似文献   

17.
Do Gō-type model potentials provide a valid approach for studying protein folding? They have been widely used for this purpose because of their simplicity and the speed of simulations based on their use. The essential assumption in such models is that only contact interactions existing in the native state determine the energy surface of a polypeptide chain, even for non-native configurations sampled along folding trajectories. Here we use an all-atom molecular mechanics energy function to investigate the adequacy of Gō-type potentials. We show that, although the contact approximation is accurate, non-native contributions to the energy can be significant. The assumed relation between residue-residue interaction energies and the number of contacts between them is found to be only approximate. By contrast, individual residue energies correlate very well with the number of contacts. The results demonstrate that models based on the latter should give meaningful results (e.g., as used to interpret phi values), whereas those that depend on the former are only qualitative, at best.  相似文献   

18.
Cytosolic insect theta class glutathione S-transferases (GSTs) have not been studied completely and their physiological roles are unknown. A detailed understanding of Anopheles gambiae GST (Aggst1-2) requires an accurate structure, which has not yet been determined. A high quality model structure of Aggst1-2 was constructed using homology modeling and the ligand–protein complex was obtained by the docking method. Molecular dynamics (MD) simulations were carried out to study conformational changes and to calculate binding free energy. The results of MD simulation indicate that Aggst1-2 undergoes small conformational changes after ligands dock to the protein, which facilitate the catalytic reaction. An essential hydrogen bond was found between the sulfur atom of glutathione (GSH) and the hydrogen atom of hydroxyl group in Ser9, which was in good agreement with experimental data. A π–π interaction between Phe204 and CDNB ligand was also found. This interaction seems to be important in stabilization of the ligand. Further study of binding free energy decomposition revealed a van der Waals interaction between two ligands that may play a key role in nucleophilic addition reaction. This work will be a good starting point for further determination of the biological role of cytosolic insect theta class GSTs and will aid the design of structure-based inhibitors.  相似文献   

19.
Abstract

To examine the intrinsic nature of the bead–spring Kremer–Grest (KG) model, long-time molecular dynamics simulations are performed. Certain scaling laws for representative polymer properties are compared with theoretical predictions. The results for static properties satisfy the expected static Gaussian nature, irrespective of the chain length. In contrast, the results for the dynamic properties of short chains show a clear discrepancy from theoretical predictions that assume ideal chain motion. This is clear evidence that the Gaussian nature of the dynamics of short chains is not necessarily established for the actual KG model, despite it being designed to have Gaussian characteristics by virtue of its stochastic equations of motion. This intrinsic nature of the KG model should be considered carefully when using this model for applications that involve relatively short chains.  相似文献   

20.
Abstract

The development of pathogenic microbial resistance toward antibiotics has become a global clinical concern. New Delhi metallo-β-lactmase-1 (NDM-1) and its variants have recently drawn immense attention for its biological ability to catalyze the hydrolysis of almost all of β-lactam antibiotics including the Carbapenems which are generally considered as the last-resort antibiotics. Also, the horizontal gene transfer is expediting the rapid spread of NDM-1 in bacteria. In the wake of this serious antibiotic resistance problem it becomes imperative to find inhibitors which can render the present antibiotics functional and useful. In the present study, we have used Molecular docking and Molecular Dynamics (MD) simulation approach to find out suitable inhibitors against NDM-1 from an array of different natural compounds. We have screened unique natural compounds from ZINC database and also a set of standard antibiotics and inhibitors. Based upon the highest binding affinity demonstrated by docking with NDM-1, the best binding antibiotic Meropenem and the top five natural compounds, viz., Withaferin A, Beta-Sitosterol, Aristolochic acid, Diosgenin and Guggulsterone E were selected and subjected to MD simulations study. The docked NDM-1 complex with withaferin A, beta-sitosterol and diosgenin were found to be more stable as compared to the one with meropenem throughout the MD simulation process with the relative RMSD and RMSF in acceptable range. In conclusion, these compounds can be readily tested in vitro and in vivo to fully establish and confirm their inhibition potentiality and can also serve as lead molecules for the development of future functional inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号