首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several models for interactions between trifluoroethanol (TFE) and peptides and proteins have recently been proposed, but none have been able to rationalize the puzzling observations that on the one hand TFE can stabilize some hydrophobic interactions in secondary structures, but on the other can also melt the hydrophobic cores of globular proteins. The former is illustrated in this paper by the effect of TFE on a short elastin peptide, GVG(VPGVG)(3), which forms type II beta-turns stabilized by hydrophobic interactions between two intra-turn valine side chains. This folding, driven by increasing the entropy of bulk water, is stimulated in TFE-water mixtures and/or by raising the temperature. To explain these apparently contradictory observations, we propose a model in which TFE clusters locally assist the folding of secondary structures by first breaking down interfacial water molecules on the peptide and then providing a solvent matrix for further side chain--side chain interactions. This model also provides an explanation for TFE-induced transitions between secondary structures, in which the TFE clusters may redirect non-local to local interactions.  相似文献   

2.
The hereditary bone disorder osteogenesis imperfecta is often caused by missense mutations in type I collagen that change one Gly residue to a larger residue and that break the typical (Gly-Xaa-Yaa)(n) sequence pattern. Site-directed mutagenesis in a recombinant bacterial collagen system was used to explore the effects of the Gly mutation position and of the identity of the residue replacing Gly in a homogeneous collagen molecular population. Homotrimeric bacterial collagen proteins with a Gly-to-Arg or Gly-to-Ser replacement formed stable triple-helix molecules with a reproducible 2 °C decrease in stability. All Gly replacements led to a significant delay in triple-helix folding, but a more dramatic delay was observed when the mutation was located near the N terminus of the triple-helix domain. This highly disruptive mutation, close to the globular N-terminal trimerization domain where folding is initiated, is likely to interfere with triple-helix nucleation. A positional effect of mutations was also suggested by trypsin sensitivity for a Gly-to-Arg replacement close to the triple-helix N terminus but not for the same replacement near the center of the molecule. The significant impact of the location of a mutation on triple-helix folding and conformation could relate to the severe consequences of mutations located near the C terminus of type I and type III collagens, where trimerization occurs and triple-helix folding is initiated.  相似文献   

3.
Bhate M  Wang X  Baum J  Brodsky B 《Biochemistry》2002,41(20):6539-6547
The collagen model peptide T1-892 includes a C-terminal nucleation domain, (Gly-Pro-Hyp)(4), and an N-terminal (Gly-X-Y)(6) sequence taken from type I collagen. In osteogenesis imperfecta (OI) and other collagen diseases, single base mutations often convert one Gly to a larger residue, and T1-892 homologues modeling such mutations were synthesized with Gly to Ala substitutions in either the (Gly-Pro-Hyp)(4) domain, Gly25Ala, or the (Gly-X-Y)(6) domain, Gly10Ala. CD and NMR studies show the Gly10Ala peptide forms a normal triple-helix at the C-terminal end and propagates from the C- to the N-terminus until the Gly --> Ala substitution is encountered. At this point, triple-helix folding is terminated and cannot be reinitiated, leaving a nonhelical N-terminus. A decreased thermal stability is observed as a result of the shorter length of the triple-helix. In contrast, introduction of the Gly to Ala replacement at position 25, in the nucleation domain, shifts the monomer/trimer equilibrium toward the monomer form. The increased monomer and lower trimer populations are reflected in the dramatic decrease in triple-helix content and stability. Unlike the Ala replacement at position 10, the Ala substitution in the (Gly-Pro-Hyp)(4) region can still be incorporated into a triple-helix, but at a greatly decreased rate of folding, since the original efficient nucleation site is no longer operative. The specific consequences of Gly to Ala replacements in two distinctive sequences in this triple-helical peptide may help clarify the variability in OI clinical severity resulting from mutations at different sites along type I collagen chains.  相似文献   

4.
Xu Y  Bhate M  Brodsky B 《Biochemistry》2002,41(25):8143-8151
Peptide T1-892 is a triple-helical peptide designed to include two distinct domains: a C-terminal (Gly-Pro-Hyp)(4) sequence, together with an N-terminal 18-residue sequence from the alpha1(I) chain of type I collagen. Folding experiments of T1-892 using CD spectroscopy were carried out at varying concentrations and temperatures, and fitting of kinetic models to the data was used to obtain information about the folding mechanism and to derive rate constants. Proposed models include a heterogeneous population of monomers with respect to cis-trans isomerization and a third-order folding reaction from competent monomer to the triple helix. Fitting results support a nucleation domain composed of all or most of the (Gly-Pro-Hyp)(4) sequence, which must be in trans form before the monomer is competent to initiate triple-helix formation. The folding of competent monomer to a triple helix is best described by an all-or-none third-order reaction. The temperature dependence of the third-order rate constant indicates a negative activation energy and provides information about the thermodynamics of the trimerization step. These CD studies complement NMR studies carried out on the same peptide at high concentrations, illustrating how the rate-limiting folding step is affected by changes in concentration. This sequence preference of repeating Gly-Pro-Hyp units for the initiation of triple-helix formation in peptide T1-892 may be related to features in the triple-helix folding of collagens.  相似文献   

5.
Folding abnormalities of the triple helix have been demonstrated in collagen diseases such as osteogenesis imperfecta in which the mutation leads to the substitution of a single Gly in the (Gly-X-Y)n sequence pattern by a larger residue. Model peptides can be used to clarify the details of normal collagen folding and the consequences of the interruption of that folding by a Gly substitution. NMR and CD studies show that placement of a (GPO)4 nucleation domain at the N terminus rather than the C terminus of a native collagen sequence allows the formation of a stable triple helix but alters the folding mechanism. Although C- to N-terminal directional folding occurs when the nucleation domain is at the C terminus, there is no preferential folding direction when the nucleation domain is at the N terminus. The lack of zipper-like directional folding does not interfere with triple-helix formation, and when a Gly residue is replaced by Ser to model an osteogenesis imperfecta mutation, the peptide with the N-terminal (GPO)4 domain can still form a good triple helix N-terminal to the mutation site. These peptide studies raise the possibility that mutant collagen could fold in a C to N direction in a zipper-like manner up to the mutation site and that completion of the triple helix N-terminal to the mutation would involve an alternative mechanism.  相似文献   

6.
The protein folding problem represents one of the most challenging problems in computational biology. Distance constraints and topology predictions can be highly useful for the folding problem in reducing the conformational space that must be searched by deterministic algorithms to find a protein structure of minimum conformational energy. We present a novel optimization framework for predicting topological contacts and generating interhelical distance restraints between hydrophobic residues in alpha-helical globular proteins. It should be emphasized that since the model does not make assumptions about the form of the helices, it is applicable to all alpha-helical proteins, including helices with kinks and irregular helices. This model aims at enhancing the ASTRO-FOLD protein folding approach of Klepeis and Floudas (Journal of Computational Chemistry 2003;24:191-208), which finds the structure of global minimum conformational energy via a constrained nonlinear optimization problem. The proposed topology prediction model was evaluated on 26 alpha-helical proteins ranging from 2 to 8 helices and 35 to 159 residues, and the best identified average interhelical distances corresponding to the predicted contacts fell below 11 A in all 26 of these systems. Given the positive results of applying the model to several protein systems, the importance of interhelical hydrophobic-to-hydrophobic contacts in determining the folding of alpha-helical globular proteins is highlighted.  相似文献   

7.
Xu Y  Hyde T  Wang X  Bhate M  Brodsky B  Baum J 《Biochemistry》2003,42(29):8696-8703
Protein folding is determined by molecular features in the unfolded state, as well as the native folded structure. In the unfolded state, imino acids both restrict conformational space and present cis-trans isomerization barriers to folding. Because of its high proline and hydroxyproline content, the collagen triple-helix offers an opportunity to characterize the impact of imino acids on the unfolded state and folding kinetics. Here, NMR and CD spectroscopy are used to characterize the role of imino acids in a triple-helical peptide, T1-892, which contains an 18-residue sequence from type I collagen and a C-terminal (Gly-Pro-Hyp)(4) domain. The replacement of Pro or Hyp by an Ala in the (Gly-Pro-Hyp)(4) region significantly decreases the folding rate at low but not high concentrations, consistent with less efficient nucleation. To understand the molecular basis of the decreased folding rate, changes in the unfolded as well as the folded states of the peptides were characterized. While the trimer states of the peptides are all similar, NMR dynamics studies show monomers with all trans (Gly-Pro-Hyp)(4) are less flexible than monomers containing Pro --> Ala or Hyp --> Ala substitutions. Nucleation requires all trans bonds in the (Gly-Pro-Hyp)(4) domain and the constrained monomer state of the all trans nucleation domain in T1-892 increases its competency to initiate triple-helix formation and illustrates the impact of the unfolded state on folding kinetics.  相似文献   

8.
Missense mutations, which replace one Gly with a larger residue in the repeating sequence of the type I collagen triple helix, lead to the hereditary bone disorder osteogenesis imperfecta (OI). Previous studies suggest that these mutations may interfere with triple-helix folding. NMR was used to investigate triple-helix formation in a series of model peptides where the residue replacing Gly, as well as the local sequence environment, was varied. NMR measurement of translational diffusion coefficients allowed the identification of partially folded species. When Gly was replaced by Ala, the Ala residue was incorporated into a fully folded triple helix, whereas replacement of Gly by Ser or Arg resulted in the presence of some partially folded species, suggesting a folding barrier. Increasing the triple-helix stability of the sequence N-terminal to a Gly-to-Ser replacement allowed complete triple-helix folding, whereas with the substitution of Arg, with its large side chain, the peptide achieved full folding only after flexible residues were introduced N-terminal to the mutation site. These studies shed light on the factors important for accommodation of Gly mutations within the triple helix and may relate to the varying severity of OI.  相似文献   

9.
10.
There is currently a great deal of interest in the early events in protein folding. Two issues that have generated particular interest are the nature of the unfolded state under native conditions and the role of local interactions in folding. Here, we report the results of a study of a set of peptides derived from a small two-helix protein, the peripheral subunit-binding domain of the pyruvate dehydrogenase multienzyme complex. Five peptides of overlapping sequence were prepared, including sequences corresponding to each of the helices and to the region connecting them. The peptides were characterized by CD and, where possible, nmr. A peptide corresponding to the second helix is between 12 and 17% helical at neutral pH. CD also indicates a lower percentage of helical structure in the peptide corresponding to the first alpha-helix, although the values of the alpha-proton chemical shifts suggest some preference for nonrandom structure. Peptides corresponding to the interhelical loop, which in the full domain contains two overlapping beta-turns and a 5-residue 3(10)-helix, are less structured. There is no significant change in the helicity of any of these peptides with pH. To test for fragment complementation, CD spectra of the two peptides derived from each helix and the long connecting peptide were compared to the spectra of each possible pair, as well as to a mixture containing all three. No increase in structure was observed. We complement our peptide studies by characterizing a point mutant, D34V, which disrupts a critical hydrogen bonding network. This mutant is unable to fold and provides a useful model of the denatured state. The mutant is between 9 and 16% helical as judged by CD. The modest amount of helical structure formed in some of the peptide fragments and in the point mutant suggests that the denatured state of the peripheral subunit binding domain is not completely unstructured. This may contribute to the very rapid folding observed for the intact protein.  相似文献   

11.
12.
Partial 'turn-helix' type modules comprised of LD and DL chiral beta-turns serving as potential helix nucleators have been connected with a view to designing a nascent 'helix-turn-helix' type structure. Conformation of the resultant peptide Boc-(D)Glu-Ala-Aib-Lys-Val-Pro-(D)Asp-Leu-Leu-NHMe has been described in both DMSO and water.  相似文献   

13.
Antimicrobial peptides (AMPs) are found in various classes of organisms as part of the innate immune system. Despite high sequence variability, they share common features such as net positive charge and an amphipathic fold when interacting with biologic membranes. Esculentin-1b is a 46-mer frog-skin peptide, which shows an outstanding antimicrobial activity. Experimental studies revealed that the N-terminal fragment encompassing the first 18 residues, Esc(1-18), is responsible for the antimicrobial activity of the whole peptide, with a negligible toxicity toward eukaryotic cells, thus representing an excellent candidate for future pharmaceutical applications. Similarly to most of the known AMPs, Esc(1-18) is expected to act by destroying/permeating the bacterial plasma-membrane but, to date, its 3D structure and the detailed mode of action remains unexplored. Before an in-depth investigation on peptide/membranes interactions could be undertaken, it is necessary to characterize peptide's folding propensity in solution, to understand what is intrinsically due to the peptide sequence, and what is actually driven by the membrane interaction. Circular dichroism and nuclear magnetic resonance spectroscopy were used to determine the structure adopted by the peptide, moving from water to increasing amounts of trifluoroethanol. The results showed that Esc(1-18) has a clear tendency to fold in a helical conformation as hydrophobicity of the environment increases, revealing an intriguing amphipathic structure. The helical folding is adopted only by the N-terminal portion of the peptide, while the rest is unstructured. The presence of a hydrophobic cluster of residues in the C-terminal portion suggests its possible membrane-anchoring role.  相似文献   

14.
Recognition of protein fold from amino acid sequence is a challenging task. The structure and stability of proteins from different fold are mainly dictated by inter-residue interactions. In our earlier work, we have successfully used the medium- and long-range contacts for predicting the protein folding rates, discriminating globular and membrane proteins and for distinguishing protein structural classes. In this work, we analyze the role of inter-residue interactions in commonly occurring folds of globular proteins in order to understand their folding mechanisms. In the medium-range contacts, the globin fold and four-helical bundle proteins have more contacts than that of DNA-RNA fold although they all belong to all-alpha class. In long-range contacts, only the ribonuclease fold prefers 4-10 range and the other folding types prefer the range 21-30 in alpha/beta class proteins. Further, the preferred residues and residue pairs influenced by these different folds are discussed. The information about the preference of medium- and long-range contacts exhibited by the 20 amino acid residues can be effectively used to predict the folding type of each protein.  相似文献   

15.
Zhou Y  Linhananta A 《Proteins》2002,47(2):154-162
Predicting the folding mechanism of the second beta-hairpin fragment of the Ig-binding domain B of streptococcal protein G is unexpectedly challenging for simplified reduced models because the models developed so far indicated a different folding mechanism from what was suggested from high-temperature unfolding and equilibrium free-energy surface analysis based on established all-atom empirical force fields in explicit or implicit solvent. This happened despite the use of empirical residue-based interactions, multibody hydrophobic interactions, and inclusions of hydrogen bonding effects in the simplified models. This article employs a recently developed all-atom (except nonpolar hydrogens) model interacting with simple square-well potentials to fold the peptide fragment by molecular dynamics simulation methods. In this study, 193 out of 200 trajectories are folded at two reduced temperatures (3.5 and 3.7) close to the transition temperature T* approximately 4.0. Each simulation takes <7 h of CPU time on a Pentium 800-MHz PC. Folding of the new all-atom model is found to be initiated by collapse before the formation of main-chain hydrogen bonds. This verifies the mechanism proposed from previous all-atom unfolding and equilibrium simulations. The new model further predicts that the collapse is initiated by two nucleation contacts (a hydrophilic contact between D46 and T49 and a hydrophobic contact between Y45 and F52), in agreement with recent NMR measurements. The results suggest that atomic packing and native contact interactions play a dominant role in folding mechanism.  相似文献   

16.
Toxoplasma gondii parasites must actively invade host cells to propagate. Secretory microneme proteins have been shown to be important for both gliding motility and active invasion. MIC2-M2AP is a protein complex that is essential for productive motility and rapid invasion by binding to host cell surface receptors. To investigate the architecture of the MIC2 and M2AP complex, we identified the minimal domains sufficient for interaction and solved the NMR solution structure of the globular domain of M2AP. We found that M2AP adopts a modified galectin fold similar to the C-terminal domain of another microneme protein, MIC1. NMR and immunoprecipitation analyses implicated hydrophobic residues on one face of the M2AP galectin fold in binding to the membrane proximal sixth thrombospondin type I repeat domain of MIC2. Our findings provide a second example of a galectin fold adapted for microneme protein-protein interactions and suggest a conserved strategy for the assembly and folding of diverse protein complexes.  相似文献   

17.
A distinct three-dimensional shape of rRNA inside the ribosome is required for the peptidyl transfer activity of its peptidyltransferase center (PTC). In contrast, even the in vitro transcribed PTC RNA interacts with unfolded protein(s) at about five sites to let them attain their native states. We found that the same set of conserved nucleotides in the PTC interact identically with nascent and chemically unfolded proteins in vivo and in vitro, respectively. The time course of this interaction, difficult to follow in vivo, was observed in vitro. It suggested nucleation of folding of cytosolic globular proteins vectorially from hydrophilic N to hydrophobic C termini, consistent with our discovery of a regular arrangement of cumulative hydrophobic indices of the peptide segments of cytosolic proteins from N to C termini. Based on this observation, we propose a model here for the nucleation of folding of the nascent protein chain by the PTC.  相似文献   

18.
V I Lim 《Biofizika》1991,36(3):441-454
On the basis of the available experimental data on structure, biosynthesis and secretion of globular proteins it is concluded that an alpha-helix is a starting conformation at formation of the native structure of any globular protein (alpha-helical model for initiation of protein folding). The structural invariant (clusterization of hydrophobic side chains on the alpha-helix surface) in the amino acid sequences of globular proteins is found which is predicted by alpha-helical model for the initiation of protein folding. The model predicts the pyramidization of the atoms C and N of peptide groups during the formation of spatial structure of proteins and a number of other effects that can be put to the experimental test. In the work the mechanism for protein translocation across membrane lipid bilayer is also suggested.  相似文献   

19.
Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase whose focal adhesion targeting (FAT) domain interacts with other focal adhesion molecules in integrin-mediated signaling. Localization of activated FAK to focal adhesions is indispensable for its function. Here we describe a solution structure of the FAT domain bound to a peptide derived from paxillin, a FAK-binding partner. The FAT domain is composed of four helices that form a "right-turn" elongated bundle; the globular fold is mainly maintained by hydrophobic interactions. The bound peptide further stabilizes the structure. Certain signaling events such as phosphorylation and molecule interplay may induce opening of the helix bundle. Such conformational change is proposed to precede departure of FAK from focal adhesions, which starts focal adhesion turnover.  相似文献   

20.
Lu HM  Liang J 《Proteins》2008,70(2):442-449
To study protein nascent chain folding during biosynthesis, we investigate the folding behavior of models of hydrophobic and polar (HP) chains at growing length using both two-dimensional square lattice model and an optimized three-dimensional 4-state discrete off-lattice model. After enumerating all possible sequences and conformations of HP heteropolymers up to length N = 18 and N = 15 in two and three-dimensional space, respectively, we examine changes in adopted structure, stability, and tolerance to single point mutation as the nascent chain grows. In both models, we find that stable model proteins have fewer folded nascent chains during growth, and often will only fold after reaching full length. For the few occasions where partial chains of stable proteins fold, these partial conformations on average are very similar to the corresponding parts of the final conformations at full length. Conversely, we find that sequences with fewer stable nascent chains and sequences with native-like folded nascent chains are more stable. In addition, these stable sequences in general can have many more point mutations and still fold into the same conformation as the wild type sequence. Our results suggest that stable proteins are less likely to be trapped in metastable conformations during biosynthesis, and are more resistant to point-mutations. Our results also imply that less stable proteins will require the assistance of chaperone and other factors during nascent chain folding. Taken together with other reported studies, it seems that cotranslational folding may not be a general mechanism of in vivo protein folding for small proteins, and in vitro folding studies are still relevant for understanding how proteins fold biologically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号