首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Several members of the RNase A superfamily are endowed with antitumor activity, showing selective cytotoxicity toward tumor cell lines. One of these is onconase, the smallest member of the superfamily, which at present is undergoing phase-III clinical trials as an antitumor drug. Our investigation focused on other interesting features of the enzyme, such as its unusually high denaturation temperature, its low catalytic activity, and its renal toxicity as a drug. We used differential scanning calorimetry, circular dichroism, fluorescence measurements, and limited proteolysis to investigate the molecular determinants of the stability of onconase and of a mutant, (M23L)-ONC, which is catalytically more active than the wild-type enzyme, and fully active as an antitumor agent. The determination of the main thermodynamic parameters of the protein led to the conclusion that onconase is an unusually stable protein. This was confirmed by its resistance to proteolysis. On the basis of this analysis and on a comparative analysis of the (M23L)-ONC variant of the protein, which is less stable and more sensitive to proteolysis, a model was constructed in line with available data. This model supports a satisfactory hypothesis of the molecular basis of onconase stability and low-catalytic activity.  相似文献   

2.
Several members of the RNase A superfamily are endowed with antitumor activity, showing selective cytotoxicity toward several tumor cell lines. One of these is onconase, the smallest member of the RNase A superfamily, which is at present undergoing phase III clinical trials. We report here the expression of recombinant onconase in Escherichia coli inclusion bodies, the correct processing of the protein, followed by its purification in high yields. The recombinant protein has biological and catalytic properties identical to those of the natural enzyme.  相似文献   

3.
Onconase is a small globular protein of the pancreatic ribonuclease superfamily. It is an important molecule because it possesses a selective antitumor activity. The interesting finding is that onconase has a high thermal stability, with a denaturation temperature close to 90d`C at pH 6.0. A detailed comparison between the tertiary structures of onconase and bovine pancreatic ribonuclease has been accomplished in order to identify the molecular determinants of the high stability. The results of differential scanning calorimetry measurements confirm that the mutant forms of onconase, designed to be less stable than the parent enzyme, exhibit lower denaturation temperatures. In particular, the disulfide bridge at the C-terminus of onconase seems to play a pivotal role in stability.  相似文献   

4.
Onconase, a member of the pancreatic type ribonuclease family, is currently used as a chemotherapeutic agent for the treatment of different types of cancer. It is widely accepted that one of the properties that renders this enzyme cytotoxic is its ability to evade the cytosolic ribonuclease inhibitor (RI). In the present work, we produced and characterized an onconase variant that lacks the disulfide bond C30/C75. This variant mimics the stable unfolding intermediate des(30-75) produced in the reductive unfolding pathway of onconase. We found that the reduction of the C30/C75 disulfide bond does not significantly alter the cytotoxic properties of onconase, although the variant possesses a notably reduced conformational stability. Interestingly, both its catalytic activity and its ability to evade RI are comparable to wild-type onconase under mild reductive conditions in which the three disulfide containing intermediate des(30-75) is present. These results suggest that the C30/C75 disulfide bond could easily be reduced under physiological redox conditions.  相似文献   

5.
One of the key questions in protein folding is whether polypeptide chains require unique nucleation sites to fold to the native state. In order to identify possible essential polypeptide segments for folding, we have performed a complete circular permutation analysis of a protein in which the natural termini are in close proximity. As a model system, we used the disulfide oxidoreductase DsbA from Escherichia coli, a monomeric protein of 189 amino acid residues. To introduce new termini at all possible positions in its polypeptide chain, we generated a library of randomly circularly permuted dsbA genes and screened for active circularly permuted variants in vivo. A total of 51 different active variants were identified. The new termini were distributed over about 70 % of the polypeptide chain, with the majority of them occurring within regular secondary structures. New termini were not found in approximately 30 % of the DsbA sequence which essentially correspond to four alpha-helices of DsbA. Introduction of new termini into these "forbidden segments" by directed mutagenesis yielded proteins with altered overall folds and strongly reduced catalytic activities. In contrast, all active variants analysed so far show structural and catalytic properties comparable with those of DsbA wild-type. We suggest that random circular permutation allows identification of contiguous structural elements in a protein that are essential for folding and stability.  相似文献   

6.
Onconase, a member of the ribonuclease superfamily, is a potent cytotoxic agent that is undergoing phase II/III human clinical trials as an antitumor drug. Native onconase from Rana pipiens and its amphibian homologs have an N-terminal pyroglutamyl residue that is essential for obtaining fully active enzymes with their full potential as cytotoxins. When expressed cytosolically in bacteria, Onconase is isolated with an additional methionyl (Met1) residue and glutaminyl instead of a pyroglutamyl residue at position 1 of the N-terminus and is consequently inactivated. The two reactions necessary for generating the pyroglutamyl residue have been monitored by MALDI-TOF MS. Results show that hydrolysis of Met(-1), catalyzed by Aeromonas aminopeptidase, is optimal at a concentration of >or= 3 m guanidinium-chloride, and at pH 8.0. The intramolecular cyclization of glutaminyl that renders the pyroglutamyl residue is not accelerated by increasing the concentration of denaturing agent or by strong acid or basic conditions. However, temperature clearly accelerates the formation of pyroglutamyl. Taken together, these results have allowed the characterization and optimization of the onconase activation process. This procedure may have more general applicability in optimizing the removal of undesirable N-terminal methionyl residues from recombinant proteins overexpressed in bacteria and providing them with biological and catalytic properties identical to those of the natural enzyme.  相似文献   

7.
The structure of onconase C30A/C75A double mutant has been determined at 1.12Å resolution. The structure has high structural homology to other onconase structures. The changes being results of mutation are relatively small, distributed asymmetrically around the two mutated positions, and they are observed not only in the mutation region but expanded to entire molecule. Different conformation of Lys31 side chain that influences the hydrogen bonding network around catalytic triad is probably responsible for lower catalytic efficiency of double mutant. The decrease in thermal stability observed for the onconase variant might be explained by a less dense packing as manifested by the increase of the molecular volume and the solvent accessible surface area. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 454–460, 2014.  相似文献   

8.
The role of DNA dependent protein kinase in synapsis of DNA ends   总被引:9,自引:3,他引:6       下载免费PDF全文
DNA dependent protein kinase (DNA-PK) plays a central role in the non-homologous end-joining pathway of DNA double strand break repair. Its catalytic subunit (DNA-PKCS) functions as a serine/threonine protein kinase. We show that DNA-PK forms a stable complex at DNA termini that blocks the action of exonucleases and ligases. The DNA termini become accessible after autophosphorylation of DNA-PKCS, which we demonstrate to require synapsis of DNA ends. Interestingly, the presence of DNA-PK prevents ligation of the two synapsed termini, but allows ligation to another DNA molecule. This alteration of the ligation route is independent of the type of ligase that we used, indicating that the intrinsic architecture of the DNA-PK complex itself is not able to support ligation of the synapsed DNA termini. We present a working model in which DNA-PK creates a stable molecular bridge between two DNA ends that is remodeled after DNA-PK autophosphorylation in such a way that the extreme termini become accessible without disrupting synapsis. We infer that joining of synapsed DNA termini would require an additional protein factor.  相似文献   

9.
Abstract

Liposome encapsulation of doxorubicin can dramatically alter its biological activity, resulting in decreased toxicity and equivalent or increased antitumor potency. Since the physical characteristics of the liposome carrier system (size, lipid composition, and lipid dose) can have profound effects on the pharmacologic properties of vesicles administered intravenously, it may be expected that the therapeutic activity of liposomal doxorubicin will be sensitive to these properties. To determine the influence of these variables on the toxicity and efficacy properties of liposomal doxorubicin, transmembrane pH gradient-dependent active encapsulation techniques have been utilized to generate liposomal doxorubicin preparations in which the vesicle size, lipid composition, and drug to lipid ratio can be independently varied. these studies indicate that the toxicity of liposomal doxorubicin is related to the stability of the preparation in the circulation. This property is dictated primarily by vesicle lipid composition, although the drug to lipid ratio can also exert an influence. In contrast, the antitumor activity of liposomal doxorubicin appears most sensitive to the size of the vesicle system. Specifically, antitumor drug potency increases as the vesicle size is decreased. these studies demonstrate that manipulating the physical characteristics of liposomal anticancer pharmaceuticals can lead to preparations with optimized therapeutic activity.  相似文献   

10.
Cytotoxic ribonucleases with antitumor activity are mainly found in the oocytes and early embryos of frogs. Native RC-RNase 4 (RNase 4), consisting of 106 residues linked with four disulfide bridges, is a cytotoxic ribonuclease isolated from oocytes of bullfrog Rana catesbeiana. RNase 4 belongs to the bovine pancreatic ribonuclease (RNase A) superfamily. Recombinant RC-RNase 4 (rRNase 4), which contains an additional Met residue and glutamine instead of pyroglutamate at the N terminus, was found to possess less catalytic and cytotoxic activities than RNase 4. Equilibrium thermal and guanidine-HCl denaturation CD measurements revealed that RNase 4 is more thermally and chemically stable than rRNase 4. However, CD and NMR data showed that there is no gross conformational change between native and recombinant RNase 4. The NMR solution structure of rRNase 4 was determined to comprise three alpha-helices and two sets of antiparallel beta-sheets. Superimposition of each structure with the mean structure yielded an average root mean square deviation (RMSD) of 0.72(+/-0.14)A for the backbone atoms, and 1.42(+/-0.19)A for the heavy atoms in residues 3-105. A comparison of the 3D structure of rRNase 4 with the structurally and functionally related cytotoxic ribonuclease, onconase (ONC), showed that the two H-bonds in the N-terminal pyroglutamate of ONC were not present at the corresponding glutamine residue of rRNase 4. We suggest that the loss of these two H-bonds is one of the key factors responsible for the reductions of the conformational stability, catalytic and cytotoxic activities in rRNase 4. Furthermore, the differences of side-chain conformations of subsite residues among RNase A, ONC and rRNase 4 are related to their distinct catalytic activities and base preferences.  相似文献   

11.
In vivo formation and stability of engineered disulfide bonds in subtilisin   总被引:9,自引:0,他引:9  
Computer modeling suggested that a disulfide bond could be built into Bacillus amyloliquefaciens subtilisin between positions 22 (wild-type, Thr) and 87 (Ser) or between positions 24 (Ser) and 87 (Ser). Single cysteines were introduced into this cysteine-free protease at positions 22, 24, or 87 by site-directed mutagenesis of the cloned subtilisin gene. The corresponding double-cysteine mutants were constructed, and recombinant plasmids were expressed in Bacillus subtilis. Double-cysteine mutant enzymes were secreted as efficiently as wild-type, and disulfide bonds were formed quantitatively in vivo. These disulfide bonds were introduced approximately 24 A away from the catalytic site and had no detectable effect on either the specific activities or the pH optima of the mutant enzymes. The equilibrium constants for the reduction of the mutant disulfide bonds by dithiothreitol were determined to be 82 +/- 22 and 20 +/- 5 for Cys22/Cys87 and Cys24/Cys87, respectively. Studies of autoproteolytic inactivation of wild-type subtilisin support a relationship between autolytic stability and conformational stability of the protein. The stabilities of Cys24/Cys87 and wild-type enzymes to autolysis were essentially the same; however, Cys22/Cys87 was actually less stable to autolysis. Reduction of the disulfide cross-bridge lowered the autolytic stability of both double-cysteine mutants relative to their disulfide forms. This correlates with a lowered autolytic stability for the Cys22 and Cys87 single-cysteine mutants, and the fact that an intramolecular hydrogen bond between the hydroxyl groups of Thr22 and Ser87 is likely to be disrupted in the Cys22 and Cys87 single-cysteine mutant proteins.  相似文献   

12.
Identifying independently folding cores or substructures is important for understanding and assaying the structure, function and assembly of large proteins. Here, we suggest mechanical stability as a criterion to identify building blocks of the 366 amino acid maltose-binding protein (MBP). We find that MBP, when pulled at its termini, unfolds via three (meta-) stable unfolding intermediates. Consequently, the MBP structure consists of four structural blocks (unfoldons) that detach sequentially from the folded structure upon force application. We used cysteine cross-link mutations to characterize the four unfoldons structurally. We showed that many MBP constructs composed of those building blocks indeed form stably folded structures in solution. Mechanical unfoldons may provide a new tool for a systematic search for stable substructures of large proteins.  相似文献   

13.
The antitumor effect of ribonucleases was studied with animal ribonucleolytic enzymes, bovine pancreatic RNase A, bovine seminal RNase (BS-RNase), onconase and angiogenin. While bovine pancreatic RNase A exerts a minor antitumor effect, BS-RNase and onconase exert significant effects. Angiogenin, as RNase, works in an opposite way, it initiates vascularization of tumors and subsequent tumor growth. Ribonunclease inhibitors are not able to inhibit the antitumor effectiveness of BS-RNase or onconase. However, they do so in the case of pancreatic RNases. Conjugation of BS-RNase with antibodies against tumor antigens (preparation of immunotoxins) like the conjugation of the enzyme with polymers enhances the antitumor activity of the ribonuclease. After conjugation with polymers, the half-life of BS-RNase in blood is extended and its immunogenicity reduced. Recombinant RNases have the same functional activity as the native enzymes. The synthetic genes have also been modified, some of them with gene sequences typical for the BS-RNase parts. Recent experimental efforts are directed to the preparation of ‘humanized antitumor ribonuclease’ that would be structurally similar to human enzyme with minimal immunogenicity and side effects. The angiogenesis of tumors is attempted to be minimized by specific antibodies or anti-angiogenic substances.  相似文献   

14.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

15.
Selenocysteine (Sec) is found in active sites of several oxidoreductases in which this residue is essential for catalytic activity. However, many selenoproteins have fully functional orthologs, wherein cysteine (Cys) occupies the position of Sec. The reason why some enzymes evolve into selenoproteins if the Cys versions may be sufficient is not understood. Among three mammalian methionine-R-sulfoxide reductases (MsrBs), MsrB1 is a Sec-containing protein, whereas MsrB2 and MsrB3 contain Cys in the active site, making these enzymes an excellent system for addressing the question of why Sec is used in biological systems. In this study, we found that residues, which are uniquely conserved in Cys-containing MsrBs and which are critical for enzyme activity in MsrB2 and MsrB3, were not required for MsrB1, but increased the activity of its Cys mutant. Conversely, selenoprotein MsrB1 had a unique resolving Cys reversibly engaged in the selenenylsulfide bond. However, this Cys was not necessary for activities of either MsrB2, MsrB3, or the Cys mutant of MsrB1. We prepared Sec-containing forms of MsrB2 and MsrB3 and found that they were more than 100-fold more active than the natural Cys forms. However, these selenoproteins could not be reduced by the physiological electron donor, thioredoxin. Yet, insertion of the resolving Cys, which was conserved in MsrB1, into the selenoprotein form of MsrB3 restored the thioredoxin-dependent activity of this enzyme. These data revealed differences in catalytic mechanisms between selenoprotein MsrB1 and non-selenoproteins MsrB2 and MsrB3, and identified catalytic advantages and disadvantages of Sec- and Cys-containing proteins. The data also suggested that Sec- and Cys-containing oxidoreductases require distinct sets of active-site features that maximize their catalytic efficiencies and provide strategies for protein design with improved catalytic properties.  相似文献   

16.
The enediyne antitumor antibiotic chromoproteins are very potent in causing DNA damages. During the drug delivery time course, the stability of the carrier protein becomes an important concern. To simulate conceivably offensive environment in biological contexts, such as cell membrane, we studied structural endurance of aponeocarzinostatin against several denaturants by circular dichroism and nuclear magnetic resonance spectroscopy. For comparison, we also examined proteins known to be stable and similar in size to aponeocarzinostatin. The results highlight the unusual structural stability of aponeocarzinostatin against chemical denaturants, suggesting the potential of aponeocarzinostatin as an inherently superior carrier in drug delivery systems.  相似文献   

17.
A series of 2-hydroxyarylidene-4-cyclopentene-1,3-diones were designed, synthesized, and evaluated with respect to protein tyrosine kinase (PTK) inhibition, mitochondrial toxicity, and antitumor activity. Our results show that the cyclopentenedione-derived TX-1123 is a more potent antitumor tyrphostin and also shows lower mitochondrial toxicity than the malononitrile-derived AG17, a potent antitumor tyrphostin. The O-methylation product of TX-1123 (TX-1925) retained its tyrphostin-like properties, including mitochondrial toxicity and antitumor activities. However, the methylation product of AG17 (TX-1927) retained its tyrphostin-like antitumor activities, but lost its mitochondrial toxicity. Our comprehensive evaluation of these agents with respect to protein tyrosine kinase inhibition, mitochondrial inhibition, antitumor activity, and hepatotoxicity demonstrates that PTK inhibitors TX-1123 and TX-1925 are more promising candidates for antitumor agents than tyrphostin AG17.  相似文献   

18.
One of the primary sources of enzyme instability is protein oxidative modification triggering activity loss or denaturation. We show here that the side chain of Cys108 is the main site undergoing stress-induced oxidation in Trigonopsis variabilis d-amino acid oxidase, a flavoenzyme employed industrially for the conversion of cephalosporin C. High-resolution anion-exchange chromatography was used to separate the reduced and oxidized protein forms, which constitute, in a molar ratio of about 3:1, the active biocatalyst isolated from the yeast. Comparative analysis of their tryptic peptides by electrospray tandem mass spectrometry allowed unequivocal assignment of the modification as the oxidation of Cys108 into cysteine sulfinic acid. Cys108 is likely located on a surface-exposed protein region within the flavin adenine dinucleotide (FAD) binding domain, but remote from the active center. Its oxidized side chain was remarkably stable in solution, thus enabling the relative biochemical characterization of native and modified enzyme forms. The oxidation of Cys108 causes a global conformational response that affects the protein environment of the FAD cofactor. In comparison with the native enzyme, it results in a fourfold-decreased specific activity, reflecting a catalytic efficiency for reduction of dioxygen lowered by about the same factor, and a markedly decreased propensity to aggregate under conditions of thermal denaturation. These results open up unprecedented routes for stabilization of the oxidase and underscore the possible significance of protein chemical heterogeneity for biocatalyst function and stability.  相似文献   

19.
20.
Pin1 catalyses the intrinsically slow process of cis-trans isomerisation and has been identified as a possible drug target in many diseases. Recently, the wild type (WT) and the Cys113Asp mutant of the Pin1 peptidyl-prolyl isomerase (PPIase) domain were determined by nuclear magnetic resonance. In this article, the WT and Cys113Asp mutant of PPIase domain are studied by molecular dynamics simulations. The structural stability analysis shows that the Cys113Asp mutation leads to the higher fluctuation of hydrophobic core in PPIase domain. The intrinsic correlated motions are important for the catalytic function of Pin1, whereas the Cys113Asp mutant system loses pivotal dynamical properties and develops wider conformational states than those in WT system. The intramolecular hydrogen bonds play crucial roles in the structural stability of PPIase domain. The mutated residue Asp113 attracts the side chain of His59 in the Cys113Asp system, which unbalances the internal interactions inside the catalytic tetrad. Meanwhile, the conformational changes of PPIase domain affect the side chain orientations of Lys63 and Arg69, which limit their binding with substrates. The Cys113Asp mutation destabilises the whole binding region of Pin1 PPIase domain, so the catalysis activity is severely reduced. These results are consistent with experimental studies and may help to understand the isomerisation mechanisms of Pin1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号