首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Amylolytic enzymes produced by a strain ofAspergillus niger cultivated on cassava starch in liquid or solid culture were found to be mainly glucoamylases. For the same initial amount of substrate, the glucoamylase activity increased even after 60 h of culture on solid medium whereas it decreased in liquid culture. Some characteristics of the amylases produced in both culture conditions were compared. The pH optima for enzymes produced in solid and liquid cultures were 4.5 and 5.0 respectively. Glucoamylase synthetized in solid cultures was significantly more thermostable than that from liquid culture and was maximally active at 70°C compared to 50°C for the enzyme from liquid cultures. The Km values expressed as mg soluble starch/100 ml were 0.1% for crude enzyme from solid culture and 0.057% for crude enzyme from liquid culture.  相似文献   

2.
The ability of alpha-amylases from different sources to carry out reactions of alcoholysis was studied using methanol as substrate. It was found that while the enzymes from Aspergillus niger and Aspergillus oryzae, two well-studied saccharifying amylases, are capable of alcoholysis reactions, the classical bacterial liquefying alpha-amylases from Bacillus licheniformis and Bacillus stearothermophilus are not. The effect of starch and methanol concentration, temperature and pH on the synthesis of glucosides with alpha-amylase from A. niger was studied. Although methanol may inactivate alpha-amylase, a 90% substrate relative conversion can be obtained in 20% methanol at a high starch concentration (15% w/v) due to a stabilizing effect of starch on the enzyme. As the products of alcoholysis are a series of methyl-oligosaccharides, from methyl-glucoside to methyl-hexomaltoside, alcoholysis was indirectly quantified by high performance liquid chromatography analysis of the total methyl-glucoside produced after the addition of glucoamylase to the alpha-amylase reaction products. More alcoholysis was obtained from intact soluble starch than with maltodextrins or pre-hydrolyzed starch. The biotechnological implications of using starch as substrate for the production of alkyl-glucosides is analyzed in the context of these results.  相似文献   

3.
A 125-kDa starch hydrolysing enzyme of Aspergillus niger characterised by its ability to dextrinise and saccharify starch [Suresh et al. (1999) Appl. Microbiol. Biotechnol. 51, 673-675] was also found to possess activity towards raw starch. Segregation of these activities in the 71-kDa glucoamylase and a 53-kDa alpha-amylase-like enzyme supported by antibody cross-reactivity studies and the isolation of mutants based on assay screens for the secretion of particular enzyme forms revealed the 125-kDa starch hydrolysing enzyme as their precursor. N-terminal sequence analysis further revealed that the 71-kDa glucoamylase was the N-terminal product of the precursor enzyme. Immunological cross reactivity of the 53-kDa amylase with antibodies raised against the precursor enzyme but not with the 71- and 61-kDa glucoamylase antibodies suggested that this enzyme activity is represented by the C-terminal fragment of the precursor. The N-terminal sequence of the 53-kDa protein showed similarity to the reported Taka amylase of Aspergillus oryzae. Antibody cross-reactivity to a 10-kDa non-enzymic peptide and a 61-kDa glucoamylase described these proteins as products of the 71-kDa glucoamylase. Identification of only the precursor starch hydrolysing enzyme in the protein extracts of fungal protoplasts suggested proteolytic processing in the cellular periplasmic space as the cause for the secretion of multiple forms of amylases by A. niger.  相似文献   

4.
The standard method for determination of amylase activity by the falling number was modified by us to study the carbohydrate-amylase complex and time course of starch hydrolysis by amylases from rye grain. The method is based on the use of potato starch as a standard substrate and aqueous extract of grain amylases as an enzyme source.  相似文献   

5.
The standard method for determination of amylase activity by the falling number was modified by us to study the carbohydrate–amylase complex and time course of starch hydrolysis by amylases from rye grain. The method is based on the use of potato starch as a standard substrate and aqueous extract of grain amylases as an enzyme source.  相似文献   

6.
Endoxylanase (EC 3.2.1.8) substrate selectivity, i.e., its relative activity toward water-unextractable arabinoxylan (WU-AX) and water-extractable arabinoxylan (WE-AX) substrates, is important for its functionality in biotechnological processes such as bread-making and gluten starch separation. A screening method for rapidly determining said substrate selectivity was developed. Endoxylanase activity toward WU-AX was estimated by incubation of insoluble chromogenic substrate with a range of enzyme concentrations in microtiter plates, followed by colorimetric measurement of the dye released in the supernatant. A similar approach using soluble substrate and ethanol precipitation of unhydrolysed AX fragments was used to estimate enzyme activity toward WE-AX. A substrate selectivity factor was defined as the ratio of enzyme activity toward insoluble substrate over enzyme activity toward soluble substrate. A Bacillus subtilis and an Aspergillus aculeatus endoxylanase, known to have widely varying relative rates of hydrolysis of WU-AX and WE-AX, varied most in their substrate selectivity, while the endoxylanases of Aspergillus niger, Trichoderma longibrachiatum, and Trichoderma viride displayed intermediate such relative activities.  相似文献   

7.
Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) has unique hydrolyzing activities for pullulan with sequence repeats of alpha-(1,4), alpha-(1,4), and alpha-(1,6) glycosidic linkages, as well as for starch. TVAI mainly hydrolyzes alpha-(1,4) glycosidic linkages to produce a panose, but it also hydrolyzes alpha-(1,6) glycosidic linkages with a lesser efficiency. X-ray structures of three complexes comprising an inactive mutant TVAI (D356N or D356N/E396Q) and a pullulan model oligosaccharide (P2; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]2 or P5; [Glc-alpha-(1,6)-Glc-alpha-(1,4)-Glc-alpha-(1,4)]5) were determined. The complex D356N/P2 is a mimic of the enzyme/product complex in the main catalytic reaction of TVAI, and a structural comparison with Aspergillus oryzaealpha-amylase showed that the (-) subsites of TVAI are responsible for recognizing both starch and pullulan. D356N/E396Q/P2 and D356N/E396Q/P5 provided models of the enzyme/substrate complex recognizing the alpha-(1,6) glycosidic linkage at the hydrolyzing site. They showed that only subsites -1 and -2 at the nonreducing end of TVAI are effective in the hydrolysis of alpha-(1,6) glycosidic linkages, leading to weak interactions between substrates and the enzyme. Domain N of TVAI is a starch-binding domain acting as an anchor in the catalytic reaction of the enzyme. In this study, additional substrates were also found to bind to domain N, suggesting that domain N also functions as a pullulan-binding domain.  相似文献   

8.
Detached ears of sorghum (Sorghum vulgare) were cultured in complete liquid medium containing Ca2+(0, 3, 10 and 30 mM) and effect of this ion on the conversion of sucrose to starch with respect to the activities of amylases, sucrose synthase, sucrose phosphate synthase and soluble invertases were studied in developing grains. Presence of 3 mM Ca2+ in culture medium enhanced both accumulation of starch and activity of alpha-amylase in grain but without having any influence on the activity of beta-amylase. However, with 10 and 30 mM Ca2+, the accumulation of starch and activities of both amylases decreased and with advancement in culturing period, starch accumulation was further decreased. Irrespective of its concentration, Ca2+ enhanced the activities of sucrose synthase (synthesis), sucrose-phosphate synthase, soluble acid invertase and soluble-neutral invertase. Increase in the concentration of Ca2+ in culture medium was concomitant with an elevation in relative proportion of sucrose in the grain reflecting a net balance in per cent increase with Ca2+ in the activities of sucrose-synthesizing enzymes over sucrose-hydrolysing ones. Based on the results, it is suggested that assimilation of Ca2+ by grain is essential for maintaining high activity of alpha-amylase to generate starch primers required for the conversion of sucrose to starch during grain filling in sorghum.  相似文献   

9.
The hyperthermophilic eubacterium Thermotoga maritima uses starch as a substrate, without releasing amylase activity into the culture medium. The enzyme is associated with the 'toga'. Its expression level is too low to allow the isolation of the pure enzyme. Using cycloheptaamylose and acarbose affinity chromatography and common chromatographic procedures, two enzyme fractions are obtained. They differ in specificity, pH-optimum, temperature dependence and stability. Substrate specificity and Ca2+ dependence indicate alpha-, beta- and gluco-amylase activity. Compared with alpha-amylase from Bacillus licheniformis (Tmax = 75 degrees C), the amylases from Thermotoga maritima show exceedingly high thermal stability with an upper temperature limit at 95 degrees C. Significant turnover occurs only between 70 and 100 degrees C, i.e. in the range of viability of the microorganism.  相似文献   

10.
Two kinds of metalloendopeptidases from the fruiting bodies of Tricholoma saponaceum (TSMEP1 and TSMEP2) have been purified, and TSMEP1 has been characterized based on their fibrinolytic activity. The enzymes have the same N-terminal amino acid sequence, Ala-Leu-Tyr-Val-Gly-X-Ser-Pro-X-Gln-Gln-Ser-Leu-Leu-Val, but slightly different molecular weights of 18,147 and 17,947, as measured by matrix assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. The N-terminal sequence do not match with any known protein or open reading frame. TSMEP1 hydrolyzes fibrinogen as well as fibrin, but does not show any proteolytic activity for other blood proteins such as thrombin, human albumin, human IgG, hemoglobin, or urokinase. The enzyme hydrolyzes both A alpha and B beta subunits of human fibrinogen with equal efficiency but didn't show any reactivity for the gamma form of human fibrinogen. The enzymatic activity is strongly inhibited by EDTA and 1,10-phenanthroline, indicating that the enzymes are metalloproteases. No inhibition was found with phenylmethylsulfonyl fluoride (PMSF), L-trans-epoxysuccinyl leucylamido-(4-guanidino)-butane (E-64), pepstatin and 2-mercaptoethanol. The activity of the purified enzyme was increased by Mg2+, Fe2+, Zn2+, and Co2+, and slightly decreased by Ca2+, but the enzyme activity was dramatically decreased by Cu2+, and totally inhibited by Hg2+. It has broad substrate specificity for synthetic peptides, and keep the high activity from pH 7.5 to 9, suggesting that the purified enzyme was a basic protease. The enzyme was stable up to 30 degrees C and the maximum fibrinolytic activity was at 55 degrees C.  相似文献   

11.
Protoplasts of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 were prepared using cellulose and snail enzyme with 0.6 M NaCl as osmotic stabilizer. Protoplast fusion has been performed using 35% polyethylene glycol 4.000 with 0.01 mM CaCl2. The fused protoplasts have been regenerated on regeneration medium and fusants were selected for further studies. An intracellular beta-glucosidase (EC 3.2.1.21) was purified from the protoplast fusant of Aspergillus oryzae 3.481 and Aspergillus niger 3.316 and characterized. The enzyme was purified 138.85-fold by ammonium sulphate precipitation, DE-22 ion exchange and Sephadex G-150 gel filtration chromatography with a specific activity of 297.14 U/mg of protein. The molecular mass of the purified enzyme was determined to be about 125 kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The enzyme had an optimum pH of 5.4 and temperature of 65 degrees C, respectively. This enzyme showed relatively high stability against pH and temperature and was stable in the pH range of 3.0-6.6. Na+, K+, Ca2+, Mg2+ and EDTA completely inhibited the enzyme activity at a concentration of 10 mM. The enzyme activity was accelerated by Fe3+. The enzyme activity was strongly inhibited by glucose, the end product ofglucoside hydrolysis. The K(m) and V(max) values against salicin as substrate were 0.035 mM and 1.7215 micromol min(-1), respectively.  相似文献   

12.
This study reports on the determination of the depolymerization kinetics of amylose, amylopectin, and soluble starch by Aspergillus oryzae alpha-amylase using flow-injection analysis with fluorescence detection and 2-p-toluidinylnaphthalene-6-sulfonate as the fluorescent probe. The experimental data points, corresponding to the evolution of the concentration of "detectable" substrate with depolymerization time, were fit to a single exponential decay curve in the case of amylose and to a double exponential decay curve in the cases of amylopectin and soluble starch. For all the assayed substrates, the determined depolymerization rates at time zero correlated well with the initial enzyme and substrate concentrations through the usual Michaelis-Menten hyperbola. Therefore, this methodology allows the determination of alpha-amylase activity using any of these substrates. For amylopectin and soluble starch, the value of the total depolymerization rate at any depolymerization time was the result of the additive contribution of two partial depolymerization rates. In contrast, the total depolymerization rate for amylose was always a single value. These results, in conjunction with the relative time evolution of the two partial depolymerization rates (for amylopectin and soluble starch), are in good agreement with a linear molecular structure for amylose, a "grape-like" cluster molecular structure for amylopectin, and an extensively degraded grape-like cluster structure for soluble starch.  相似文献   

13.
Isoamylases are debranching enzymes that hydrolyze alpha-1,6 linkages in alpha-1,4/alpha-1,6-linked glucan polymers. In plants, they have been shown to be required for the normal synthesis of amylopectin, although the precise manner in which they influence starch synthesis is still debated. cDNA clones encoding three distinct isoamylase isoforms (Stisa1, Stisa2, and Stisa3) have been identified from potato. The expression patterns of the genes are consistent with the possibility that they all play roles in starch synthesis. Analysis of the predicted sequences of the proteins suggested that only Stisa1 and Stisa3 are likely to have hydrolytic activity and that there probably are differences in substrate specificity between these two isoforms. This was confirmed by the expression of each isoamylase in Escherichia coli and characterization of its activity. Partial purification of isoamylase activity from potato tubers showed that Stisa1 and Stisa2 are associated as a multimeric enzyme but that Stisa3 is not associated with this enzyme complex. Our data suggest that Stisa1 and Stisa2 act together to debranch soluble glucan during starch synthesis. The catalytic specificity of Stisa3 is distinct from that of the multimeric enzyme, indicating that it may play a different role in starch metabolism.  相似文献   

14.
A hyperthermophilic archaeon, Thermococcus profundus DT5432, produced extracellular thermostable amylases. One of the amylases (amylase S) was purified to homogeneity by ammonium sulfate precipitation, DEAE-Toyopearl chromatography, and gel filtration on Superdex 200HR. The molecular weight of the enzyme was estimated to be 42,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The amylase exhibited maximal activity at pH 5.5 to 6.0 and was stable in the range of pH 5.9 to 9.8. The optimum temperature for the activity was 80(deg)C. Half-life of the enzyme was 3 h at 80(deg)C and 15 min at 90(deg)C. Thermostability of the enzyme was enhanced in the presence of 5 mM Ca(sup2+) or 0.5% soluble starch at temperatures above 80(deg)C. The enzyme activity was inhibited in the presence of 5 mM iodoacetic acid or 1 mM N-bromosuccinimide, suggesting that cysteine and tryptophan residues play an important role in the catalytic action. The amylase hydrolyzed soluble starch, amylose, amylopectin, and glycogen to produce maltose and maltotriose of (alpha)-configuration as the main products. Smaller amounts of larger maltooligosaccharides were also produced with a trace amount of glucose. Pullulan; (alpha)-, (beta)-, and (gamma)-cyclodextrins; maltose; and maltotriose were not hydrolyzed.  相似文献   

15.
A Butyrivibrio fibrisolvens H17c glgB gene, was isolated by direct selection for colonies that produced clearing on starch azure plates. The gene was expressed in Escherichia coli from its own promoter. The glgB gene consisted of an open reading frame of 1,920 bp encoding a protein of 639 amino acids (calculated Mr, 73,875) with 46 to 50% sequence homology with other branching enzymes. A limited region of 12 amino acids showed sequence similarity to amylases and glucanotransferases. The B. fibrisolvens branching enzyme was not able to hydrolyze starch but stimulated phosphorylase alpha-mediated incorporation of glucose into alpha-1,4-glucan polymer 13.4-fold. The branching enzyme was purified to homogeneity by a simple two-step procedure; N-terminal sequence and amino acid composition determinations confirmed the deduced translational start and amino acid sequence of the open reading frame. The enzymatic properties of the purified enzyme were investigated. The enzyme transferred chains of 5 to 10 (optimum, 7) glucose units, using amylose and amylopetin as substrates, to produce a highly branched polymer.  相似文献   

16.
嗜热栖热菌HB8耐热α—葡萄糖苷酶的提纯和性质   总被引:4,自引:0,他引:4  
  相似文献   

17.
The leaffooted bug, Leptoglossus zonatus (Hemiptera: Coreidae) is an emerging pest of several crops around the World and up to now very little is known of its digestive system. In this article, glycoside hydrolase (carbohydrase) activities in the adult midgut cells and in the luminal contents of L. zonatus adult females were studied. The results showed the distribution of digestive carbohydrases in adults of this heteropteran species in the different intestinal compartments. Determination of the spatial distribution of α‐glucosidase activity in L. zonatus midgut showed only one major molecular form, which was not equally distributed between soluble and membrane‐bound isoforms, being more abundant as a membrane‐bound enzyme. The majority of digestive carbohydrases were found in the soluble fractions. Activities against starch, maltose and the synthetic substrate NPαGlu were found to show the highest levels of activity, followed by enzymes active against galactosyl oligosaccharides. Based on ion‐exchange chromatography elution profiles and banding patterns in mildly denaturing electrophoresis, both midgut α‐amylases and α‐galactosidases showed at least two isoforms. The data suggested that the majority of carbohydrases involved in initial digestion were present in the midgut lumen, whereas final digestion of starch and of galactosyl oligosaccharides takes place partially within the lumen and partially at the cell surface. The complex of carbohydrases here described was qualitatively appropriate for the digestion of free oligosaccharides and oligomaltodextrins released by α‐amylases acting on maize seed starch granules.  相似文献   

18.
A 43 kDa α-amylase was purified from Tinospora cordifolia by glycogen precipitation, ammonium sulfate precipitation, gel filtration chromatography, and HPGPLC. The enzyme was optimally active in pH 6.0 at 60 °C and had specific activity of 546.2 U/mg of protein. Activity was stable in the pH range of 4-7 and at temperatures up to 60 °C. PCMB, iodoacetic acid, iodoacetamide, DTNB, and heavy metal ions Hg2+ > Ag+ > Cd2+ inhibited enzyme activity while Ca2+ improved both activity and thermostability. The enzyme was a thiol amylase (3 SH group/mole) and DTNB inhibition of activity was released by cysteine. N-terminal sequence of the enzyme had poor similarity (12-24%) with those of plant and microbial amylases. The enzyme was equally active on soluble starch and amylopectin and released maltose as the major end product.  相似文献   

19.
Extracellular alpha-amylase from Lactobacillus fermentum (FERMENTA) was purified by glycogen precipitation and ion exchange chromatography. The purification was approximately 28-fold with a 27% yield. The FERMENTA molecular mass (106,000 Da) is in the same range as the ones determined for L. amylovorus (AMYLOA), L. plantarum (PLANTAA) and L. manihotivorans (MANIHOA) alpha-amylases. The amino acid composition of FERMENTA differs from the other lactobacilli considered here, but however, indicates that the peptidic sequence contains two equal parts: the N-terminal catalytic part; and the C-terminal repeats. The isoelectric point of FERMENTA, PLANTAA, MANIHOA are approximately the same (3.6). The FERMENTA optimum pH (5.0) is slightly more acidic and the optimum temperature is lower (40 degrees C). Raw starch hydrolysis catalyzed by all three amylases liberates maltotriose and maltotretaose. Maltose is also produced by FERMENTA and MANIHOA. Maltohexaose FERMENTA catalyzed hydrolysis produces maltose and maltotriose. Finally, kinetics of FERMENTA, PLANTAA and MANIHOA using amylose as a substrate and acarbose as an inhibitor, were carried out. Statistical analysis of kinetic data, expressed using a general velocity equation and assuming rapid equilibrium, showed that: (1) in the absence of inhibitor k(cat)/Km are, respectively, 1x10(9), 12.6x10(9) and 3.2x10(9) s(-1) M(-1); and (2) the inhibition of FERMENTA is of the mixed non-competitive type (K(1i)=5.27 microM; L(1i)=1.73 microM) while the inhibition of PLANTAA and MANIHOA is of the uncompetitive type (L(1i)=1.93 microM and 1.52 microM, respectively). Whatever the inhibition type, acarbose is a strong inhibitor of these Lactobacillus amylases. These results indicate that, as found in porcine and barley amylases, Lactobacillus amylases contain in addition to the active site, a soluble carbohydrate (substrate or product) binding site.  相似文献   

20.
Maltogenic amylases (MAases), a subclass of cyclodextrin (CD)-hydrolyzing enzymes belonging to glycoside hydrolase family 13, have been studied extensively, but their physiological roles in microbes and evolutionary relationships with other amylolytic enzymes remain unclear. Here, we report the biochemical properties of a thermostable archaeal MAase from Thermoplasma volcanium GSS1 (TpMA) for the first time. The primary structure and catalytic properties of TpMA were similar to those of MAases, such as possession of an extra domain at its N-terminal and preference for CD over starch. TpMA showed high thermostability and optimal activity at 75 degrees C and 80 degrees C for beta-CD and soluble starch, respectively. The recombinant TpMA exists as a high oligomer in a solution and the oligomeric TpMA was dissociated into dimer and monomer mixture by a high concentration of NaCl. The substrate preference and thermostability of TpMA were significantly dependent on the oligomeric state of the enzyme. However, TpMA exhibited distinguishable characteristics from those of bacterial MAases. The transglycosylation pattern of TpMA was opposite to that of bacterial MAases. TpMA formed more alpha-1,4-glycosidic linked transfer product than alpha-1,6-linked products. Like as alpha-amylases, notably, TpMA has a longer subsite structure than those of other CD-degrading enzymes. Our findings in this study suggest that TpMA, the archaeal MAase, shares characteristics of both bacterial MAases and alpha-amylases, and locates in the middle of the evolutionary process between alpha-amylases and bacterial MAases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号