首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Postnatal development and function of testicular Sertoli cells are regulated primarily by FSH. During this early period of development, estrogens play a role in proliferation of somatic cells, which contributes significantly to testicular development. Growth factors like epidermal growth factor (EGF) are produced in the testis and play a role in regulation of estradiol production and male fertility. Although these divergent factors modulate gonadal function, little is known about their mechanism of action in Sertoli cells. The present study investigates the intracellular events that take place down-stream of FSH and EGF receptors in Sertoli cells isolated from immature (10-d-old) rats, and examines which intracellular signals may be involved in their effects on aromatase activity and estradiol production in immature rat Sertoli cells. Primary cultures of rat Sertoli cells were treated with FSH in combination with EGF and signaling pathway-specific inhibitors. Levels of estradiol production, aromatase mRNA (Cyp19a1), and aromatase protein (CYP19A1) were determined. Western blot analysis was performed to determine the effects of FSH and EGF on levels of activated (phosphorylated) AKT1 and p42 ERK2 and p44 ERK1, also named MAPK1 and MAPK3, respectively. The stimulatory actions of FSH on aromatase mRNA, aromatase protein, and estradiol production were blocked by inhibition of the phosphatidylinositol 3-kinase/AKT1 signaling pathway. In contrast, inhibition of ERK signaling augmented the stimulatory effects of FSH on estradiol production, aromatase mRNA, and protein levels. Furthermore, EGF inhibited the expression of aromatase mRNA and protein in response to FSH, and these inhibitory effects of EGF were critically dependent on the activation of the ERK signaling pathway. We conclude that an active phosphatidylinositol 3-kinase /AKT signaling pathway is required for the stimulatory actions of FSH, whereas an active ERK/MAPK pathway inhibits estradiol production and aromatase expression in immature Sertoli cells.  相似文献   

2.
In the present study we examined the involvement of interleukin (IL)-1alpha, -1beta, FSH, and lipopolysaccharide (LPS) in the regulation of IL-1alpha and -1beta production by Sertoli cells under in vitro conditions. Sertoli cell cultures from immature mice produced constitutively basal levels of intracellular IL-1alpha. Stimulation of Sertoli cell cultures with LPS (5 microgram/ml) resulted in a maximal production of intracellular IL-1alpha 2 h after the stimulation. Thereafter, these levels decreased but remained significantly higher within 24 h after stimulation than those in control cultures. The effect of LPS on IL-1alpha production was dose dependent. FSH did not show any effect on intracellular IL-1alpha production by Sertoli cells. IL-1alpha could not be detected in supernatants of unstimulated or stimulated Sertoli cell cultures. Sertoli cell cultures stimulated with recombinant IL-1alpha induced optimal intracellular levels of IL-1alpha within 2 h of stimulation. These levels remained high 24 h after stimulation. However, stimulation of Sertoli cell cultures with IL-1beta induced a peak of IL-1alpha production 8 h after stimulation. These levels decreased 24 h after the stimulation but were still found to be significantly higher than those in control cultures. The addition of IL-1 receptor antagonist (IL-1ra) to Sertoli cell cultures did not significantly alter their capacity to produce IL-1alpha. However, the stimulatory effects of recombinant IL-1alpha on IL-1alpha production by Sertoli cell cultures were reversed by the concomitant addition of recombinant IL-1ra. No immunoreactive IL-1beta could be detected in lysates or conditioned media of immature murine Sertoli cells under any of the stimulatory conditions outlined. Our results may suggest the involvement of physiological (IL-1) and pathophysiological factors (LPS) in the regulation of spermatogenesis and spermiogenesis processes and male fertility.  相似文献   

3.
The levels of IL-1alpha, IL-1beta and IL-1Ra were higher in homogenates of testicular tissue from sexually immature than those from mature mice. Immunohistochemical staining of testicular tissues from sexually immature and adult mice show that differentiated germ cells express higher levels of IL-1alpha compared to Sertoli cells and Leydig cells/interstitial cells. Peritubular cells of sexually immature and adult mice did not express IL-1alpha. Testicular tissue cells of adult mice showed high levels of expression of IL-1beta, mainly in the cytoplasm and nucleus of the spermatogonia and in spermatocytes. Sertoli cells and Leydig/interstitial cells were also highly stained for IL-1beta. However, peritubular cells did not express IL-1beta. On the other hand, testicular tissue cells from sexually immature mice, showed high levels of IL-1beta, mainly in spermatocytes. Spermatogonia showed low levels of IL-1beta expression. Also, high levels of IL-1beta expression were detected in Leydig/interstitial cells. Peritubular cells clearly showed IL-1beta expression. Testicular tissue cells from adult mice, showed IL-1Ra expression in spermatogonia, Sertoli and Leydig/interstitial cells. IL-1Ra expression was clearly present in the Golgi apparatus of spermatogonia and Sertoli cells. However, peritubular cells did not show IL-1Ra expression. Testicular tissue cells from sexually immature mice, also showed high levels of IL-1Ra expression mainly in the cytoplasm and nucleus of the spermatogonia and Sertoli cells. In addition, Leydig/interstitial cells and peritubular cells also expressed IL-1Ra. Our results demonstrate, for the first time, the expression of IL-1beta in germ and Sertoli cells, and IL-1Ra in Leydig/interstitial cells of testicular tissues from adult and sexually immature mice, under in vivo conditions. In addition, the relative elevated levels of the IL-1 system in the testis of immature mice compared to mature mice may indicate its involvement in the spermatogenesis.  相似文献   

4.
AIDS-associated Kaposi's sarcoma (KS) is a cytokine-mediated tumor, at least in the early stages of this disease; however, there is at present no definitive consensus regarding the exact role of intracellular signaling pathways involved in growth of KS cells. We found that KS cell growth factors oncostatin M, sIL-6R/IL-6, TNFalpha, and IL-1beta all activate ERK1/2, and selective blockage of this kinase by PD98059 resulted in a profound inhibition of the cytokine-induced KS cell growth. Concurrently with activation of ERK1/2, these growth factors phosphorylated and activated p38MAPK. The selective inhibition of p38MAPK by SB203580 prominently enhanced the cytokine-induced proliferation of KS cells, thereby indicating that p38MAPK has a negative feedback on mitogenic signals. As these KS cell growth factors lead to simultaneous activation of ERK1/2 and p38MAPK signaling pathways, the concerted effects of these kinase activities may well determine the intensity of cellular proliferative responses to these growth factors.  相似文献   

5.
6.
Endothelin-1 (ET-1) is a potent vasoconstrictor peptide with mitogenic actions linked to activation of tyrosine kinase signaling pathways. ET-1 induces cyclooxygenase-2 (COX-2), an enzyme that converts arachidonic acid to pro-inflammatory eicosanoids. Activation of each of the three major mitogen-activated protein kinase (MAPK) pathways, ERK1/2, JNK/SAPK, and p38 MAPK (p38), have been shown to enhance the expression of COX-2. Negative regulation of MAPK may occur via a family of dual specificity phosphatases referred to as mitogen-activated protein kinase phosphatases (MKP). The goal of this work was to test the hypothesis that wild type MKP-1 regulates the expression of ET-1-induced COX-2 expression by inhibiting the activation of p38 in cultured glomerular mesangial cells (GMC). An adenovirus expressing both wild type and a catalytically inactive mutant of MKP-1 (MKP-1/CS) were constructed to study ET-1-regulated MAPK signaling and COX-2 expression in cultured GMC. ET-1 stimulated the phosphorylation of ERK and p38 alpha MAPK and induced the expression of COX-2. Expression of COX-2 was partially blocked by U0126, a MEK inhibitor, and SB 203580, a p38 MAPK inhibitor. Adenoviral expression of MKP-1/CS augmented basal and ET-1-induced phosphorylation of p38 alpha MAPK with less pronounced effects on ERK1/2 phosphorylation. Ectopic expression of wild type MKP-1 blocked the phosphorylation of p38 alpha MAPK by ET-1 but increased the phosphorylation of p38 gamma MAPK. Co-precipitation studies demonstrated association of MKP-1 with p38 alpha MAPK and ERK1/2. Immunofluorescent image analysis demonstrated trapping of phospho-p38 MAPK in the cytoplasm by MKP-1/CS/green fluorescent protein. ET-1-stimulated expression of COX-2 was increased in MKP-1/CS versus LacZ or green fluorescent protein-infected control cells. These results indicate that MKP-1 demonstrates a relative selectivity for p38 alpha MAPK versus p38 gamma MAPK in GMC and is likely to indirectly regulate the expression of COX-2.  相似文献   

7.
Several recent studies indicate that interleukin-1 (IL-1) may be one of the major regulators of spermatogenesis. In the present work, the effects of various agents on rat Sertoli cell IL-1 production were investigated in vitro at different ages. In control cultures the IL-1 production by Sertoli cells from immature rats (20 days) was barely detectable; it markedly increased with the advancing age of the donors (35 and 45 days). Lipopolysaccharide and latex beads, two inducers of monocyte-macrophage IL-1 production, were able to stimulate the release of IL-1 by Sertoli cells at all ages studied; a decrease in the relative response to these inducers was noted as the age of the Sertoli cell donors increased. Under all the experimental conditions tested it appeared that the IL-1 produced was IL-1 alpha, not IL-1 beta. Whereas pachytene spermatocytes and early spermatids had no effect on IL-1 alpha production, residual bodies/cytoplasts from elongated spermatids dramatically stimulated Sertoli cell IL-1 production. In addition, FSH had no effect on IL-1 alpha levels. It is concluded that Sertoli cell IL-1 secretion can be stimulated in vitro by well known monocyte-macrophage activators. Furthermore, Sertoli cell IL-1 production is most probably crucially dependent on the phagocytosis of residual bodies in vivo.  相似文献   

8.
In the testis, FSH has been shown to induce the expression and secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) from Sertoli cells in vitro. This study was performed to elucidate further the cellular origin of testicular TIMP-1 and its expression by hormonal and paracrine factors. This is the first report on the expression of testicular TIMP-1 in vivo. TIMP-1 mRNA in whole testis was decreased after hypophysectomy and strongly increased by the injection of FSH-S17 to hypophysectomized rats. Primary cultures of both peritubular and Sertoli cells showed basal expression of TIMP-1 mRNA. In contrast, we were unable to detect TIMP-1 mRNA in Leydig cells, freshly isolated immature germ cells (primary spermatocytes and spermatids), or residual bodies. We further show that treatment of Sertoli cells with 8-(4-chlorophenyl)thio-cAMP (8-CPTcAMP) in combination with 12-O-tetradecanoylphorbol 13-acetate (TPA) or Ca(2+) inducers (calcium ionophore A23187 or thapsigargin) had additive (TPA) and synergistic effects (Ca(2+)) on the level of TIMP-1 mRNA and secreted protein. We also show that both the level of TIMP-1 mRNA and secreted protein from Sertoli cells were strongly increased by residual bodies, as well as by the cytokine interleukin-1alpha. TIMP-1 was not up-regulated by either 8-CPTcAMP or interleukin-1alpha in peritubular cells. In contrast to the regulated secretory fraction of TIMP-1, we also detected constitutively expressed immunoreactive TIMP-1 in the nucleus of Sertoli cells, suggesting a role of nuclear TIMP-1 in these cells. In conclusion, our data show that secretion of TIMP-1 from Sertoli cells is highly regulated by hormonal and local processes in the testis, indicating that TIMP-1 is of physiological importance during both testicular development and spermatogenesis.  相似文献   

9.
Activin A, a member of the transforming growth factor (TGF)-beta superfamily, is involved in the regulation of erythroid differentiation. Previous studies have shown that activin A inhibited the colony-forming activity of mouse Friend erythroleukemia cells, however, the mechanism remains unknown. First, we show herein that activin A induced the expression and activated the promoters of alpha-globin and zeta-globin in K562 cells, confirming that activin A induces erythroid differentiation in K562 cells. The p38 mitogen activated protein kinase (MAPK) inhibitor, SB203580, inhibited and the extracellular signal regulated kinase (ERK) inhibitor, PD98059, enhanced the expression and promoter activities of alpha-globin and zeta-globin by activin A, indicating that p38 MAPK and ERK are crucial for activin A-induced erythroid genes expression. Second, SB203580 inhibited the inhibitory effect of activin A on the colony-forming activity of K562 cells using the methylcellulose colony assay, indicating that activin A inhibits K562 colony formation by activating p38 MAPK. In addition, mitogenic cytokines SCF, IL-3, and GM-CSF induced colony formation of K562 cells that could be inhibited by PD98059 or enhanced by SB203580, respectively, indicating that these mitogenic cytokines induce K562 colony formation by activating ERK and inactivating p38 MAPK. Furthermore, activin A reduced the induction effect of these mitogenic cytokines on K562 colony formation in a dose-dependent manner. The inhibition of p38 MAPK reverted the inhibitory effect of activin A on mitogenic cytokine-mediated K562 colony formation. We conclude that activin A can regulate the same pathway via p38 MAPK to coordinate cell proliferation and differentiation of K562 cells.  相似文献   

10.
11.
Post-natal testicular development is dependent on gonadotrophin and androgen stimulation. Follicle stimulating hormone (FSH) acts through receptors (FSHR) on the Sertoli cell to stimulate spermatogenesis while androgens promote testis growth through receptors (AR) on the Sertoli cells, Leydig cells and peritubular myoid cells. In this study we have examined the effects on testis development of ablating FSHRs (FSHRKO mice) and/or ARs ubiquitously (ARKO mice) or specifically on the Sertoli cells (SCARKO mice). Cell numbers were measured using stereological methods. In ARKO mice Sertoli cell numbers were reduced at all ages from birth until adulthood. FSHR ablation also caused small reductions in Sertoli cell numbers up to day 20 with more marked effects seen in the adult. Germ cell numbers were unaffected by FSHR and/or AR ablation at birth. By day 20 ubiquitous AR or FSHR ablation caused a marked reduction in germ cell numbers with a synergistic effect of losing both receptors (germ cell numbers in FSHRKO.ARKO mice were 3% of control). Germ cell numbers in SCARKO mice were less affected. By adulthood, in contrast, clear synergistic control of germ cell numbers had become established between the actions of FSH and androgen through the Sertoli cells. Leydig cell numbers were normal on day 1 and day 5 in all groups. By day 20 and in adult animals total AR or FSHR ablation significantly reduced Leydig cell numbers but Sertoli cell specific AR ablation had no effect. Results show that, prior to puberty, development of most testicular parameters is more dependent on FSH action than androgen action mediated through the Sertoli cells although androgen action through other cells types is crucial. Post-pubertally, germ cell numbers and spermatogenesis are dependent on FSH and androgen action through the Sertoli cells.  相似文献   

12.
In most target cells, activation of the type 1 CRH receptor (CRH-R1) by CRH or urocortin (UCN I) leads to stimulation of the Gs-protein/adenylyl cyclase/protein kinase A cascade. Signal transduction of CRH-R1 also involves alternative pathways such as phosphorylation of ERK1/2 and p38 MAPK, two members of the MAPK family that mediate important pathophysiological responses. The intracellular pathways by which CRH-R1 activates these MAPK are only partially understood; here we characterized further signaling mechanisms and molecules involved in CRH-R1-mediated ERK1/2 and p38 MAPK activation. In human embryonic kidney 293 cells overexpressing recombinant CRH-R1alpha, UCN I induced ERK1/2 and p38 MAPK activation was dependent on signaling molecules involved in agonist-induced CRH-R1alpha trafficking and endocytosis. Furthermore, time course studies and use of selective inhibitors demonstrated that ERK1/2 activation occured within 5 min, was sustained for at least 60 min, and was dependent on both phosphatidylinositol 3-kinase (PI3-K)/Akt activation and epidermoid growth factor receptor transactivation involving matrix metelloproteinases. UCN I effect on p38 MAPK phosphorylation was more transient, returned to basal within 40 min and was dependent on epidermoid growth factor receptor transactivation, but not PI3-K/Akt activation. Overexpression of G(alpha-)transducin, showed that G(betagamma)-subunit activation is only partially required for ERK1/2 phosphorylation and does not play a role in p38 MAPK phosphorylation, whereas overexpression of a dominant-negative Ras (Ras N17) attenuated both ERK and p38 MAPK activation. In conclusion, a complex signaling network appears to mediate CRH-R1alpha-MAPK interactions; PI3-K might play a critical role in the regulation of CRH-R1alpha signaling selectivity and cellular responses.  相似文献   

13.
The synthesis of prostanoids by the Sertoli cell was assessed as part of a study on the role of vitamin E in maintaining spermatogenesis. Analyses of eicosanoid synthesis from endogenous substrate were carried out using freshly isolated Sertoli-cell-enriched preparations from both pre-pubertal and adult rats fed purified diets with and without vitamin E, as well as cells carried in primary culture. Freshly isolated cells from both the immature and fully differentiated adult testes produced PGI2 (prostaglandin I2) and PGE2, but PGF2 alpha was produced only by cells of the adult vitamin E-deficient rat. Cells from adult controls synthesized PGF2 alpha after primary culture. In contrast with other hormone responses of this cell, which are refractory in the adult, FSH (follitropin) potentiated prostaglandin production by freshly isolated cells of both immature and adult rats. The FSH response of Sertoli cells from immature animals did not change after primary culture. Adult cells were refractory to the hormone after culture, but the total amounts of prostaglandins produced by these cells were 10-fold higher than by either freshly isolated or cells of the immature in culture. Analogues of cyclic AMP did not potentiate prostaglandin synthesis. However, mepacrine, a phospholipase inhibitor, blocked the FSH effect. The finding that Sertoli cells synthesize prostaglandins and FSH enhances prostaglandin production implicates a potential role for eicosanoids in spermatogenesis and suggests that vitamin E may affect intratesticular regulators.  相似文献   

14.
IL-2 stimulates extracellular signal-regulated protein kinase (ERK) and p38 mitogen-activated protein kinase (MAPK) in various immune cell populations. The functional roles that these kinases play are still unclear. In this study, we examined whether MAPK kinase (MKK)/ERK and p38 MAPK pathways are necessary for IL-2 to activate NK cells. Using freshly isolated human NK cells, we established that an intact MKK/ERK pathway is necessary for IL-2 to activate NK cells to express at least four known biological responses: LAK generation, IFN-gamma secretion, and CD25 and CD69 expression. IL-2 induced ERK activation within 5 min. Treatment of NK cells with a specific inhibitor of MKK1/2, PD98059, during the IL-2 stimulation blocked in a dose-dependent manner each of four sequelae, with inhibition of lymphokine-activated killing induction being least sensitive to MKK/ERK pathway blockade. Activation of p38 MAPK by IL-2 was not detected in NK cells. In contrast to what was observed by others in T lymphocytes, SB203850, a specific inhibitor of p38 MAPK, did not inhibit IL-2-activated NK functions. This data indicate that p38 MAPK activation was not required for IL-2 to activate NK cells for the four functions examined. These results reveal selective signaling differences between NK cells and T lymphocytes; in NK cells, the MKK/ERK pathway and not p38 MAPK plays a critical positive regulatory role during activation by IL-2.  相似文献   

15.
16.
The protein kinase TAK1 (transforming growth factor-beta-activated kinase 1), which has been implicated in the activation of MAPK (mitogen-activated protein kinase) cascades and the production of inflammatory mediators by LPS (lipopolysaccharide), IL-1 (interleukin 1) and TNF (tumour necrosis factor), comprises the catalytic subunit complexed to the regulatory subunits, termed TAB (TAK1-binding subunit) 1 and either TAB2 or TAB3. We have previously identified a feedback-control mechanism by which p38alpha MAPK down-regulates TAK1 and showed that p38alpha MAPK phosphorylates TAB1 at Ser(423) and Thr(431). In the present study, we identified two IL-1-stimulated phosphorylation sites on TAB2 (Ser(372) and Ser(524)) and three on TAB3 (Ser(60), Thr(404) and Ser(506)) in human IL-1R cells [HEK-293 (human embryonic kidney) cells that stably express the IL-1 receptor] and MEFs (mouse embryonic fibroblasts). Ser(372) and Ser(524) of TAB2 are not phosphorylated by pathways dependent on p38alpha/beta MAPKs, ERK1/2 (extracellular-signal-regulated kinase 1/2) and JNK1/2 (c-Jun N-terminal kinase 1/2). In contrast, Ser(60) and Thr(404) of TAB3 appear to be phosphorylated directly by p38alpha MAPK, whereas Ser(506) is phosphorylated by MAPKAP-K2/MAPKAP-K3 (MAPK-activated protein kinase 2 and 3), which are protein kinases activated by p38alpha MAPK. Studies using TAB1(-/-) MEFs indicate important roles for TAB1 in recruiting p38alpha MAPK to the TAK1 complex for the phosphorylation of TAB3 at Ser(60) and Thr(404) and in inhibiting the dephosphorylation of TAB3 at Ser(506). TAB1 is also required to induce TAK1 catalytic activity, since neither IL-1 nor TNFalpha was able to stimulate detectable TAK1 activity in TAB1(-/-) MEFs. Surprisingly, the IL-1 and TNFalpha-stimulated activation of MAPK cascades and IkappaB (inhibitor of nuclear factor kappaB) kinases were similar in TAB1(-/-), MEKK3(-/-) [MAPK/ERK (extracellular-signal-regulated kinase) kinase kinase 3] and wild-type MEFs, suggesting that another MAP3K (MAPK kinase kinase) may mediate the IL-1/TNFalpha-induced activation of these signalling pathways in TAB1(-/-) and MEKK3(-/-) MEFs.  相似文献   

17.
The role of reactive oxygen species (ROS) in regulating the expression of the inducible nitric oxide synthase (iNOS) was studied in rat aortic vascular smooth muscle cells (VSMC). We hypothesized that ROS regulate iNOS expression through the mitogen-activated protein kinases ERK and p38(MAPK). We found that interleukin-1beta (IL-1beta) stimulated the production of hydrogen peroxide (H2O2) which could be inhibited by loading the cells with the H2O2-scavenging enzyme catalase. Inhibition of the upstream ERK1,2 activator MEK1,2 with U0126 prevented IL-1beta-stimulated iNOS expression, while the p38MAPK inhibitor SB03580 potentiated iNOS expression. Loading the cells with catalase enhanced ERK activation and iNOS expression but had no effect on p38MAPK activation or PDGF-induced ERK activation. These data indicated that H2O2 negatively regulates iNOS expression through ERK inhibition independently of p38MAPK. The present results outline a novel role for H2O2 in suppressing signaling pathways leading to gene expression such as iNOS in VSMC in response to cytokines.  相似文献   

18.
We discovered that a shift between the state of tumorigenicity and dormancy in human carcinoma (HEp3) is attained through regulation of the balance between two classical mitogen-activated protein kinase (MAPK)-signaling pathways, the mitogenic extracellular regulated kinase (ERK) and the apoptotic/growth suppressive stress-activated protein kinase 2 (p38(MAPK)), and that urokinase plasminogen activator receptor (uPAR) is an important regulator of these events. This is a novel function for uPAR whereby, when expressed at high level, it enters into frequent, activating interactions with the alpha5beta1-integrin, which facilitates the formation of insoluble fibronectin (FN) fibrils. Activation of alpha5beta1-integrin by uPAR generates persistently high level of active ERK necessary for tumor growth in vivo. Our results show that ERK activation is generated through a convergence of two pathways: a positive signal through uPAR-activated alpha5beta1, which activates ERK, and a signal generated by the presence of FN fibrils that suppresses p38 activity. When fibrils are removed or their assembly is blocked, p38 activity increases. Low uPAR derivatives of HEp3 cells, which are growth arrested (dormant) in vivo, have a high p38/ERK activity ratio, but in spite of a similar level of alpha5beta1-integrin, they do not assemble FN fibrils. However, when p38 activity is inhibited by pharmacological (SB203580) or genetic (dominant negative-p38) approaches, their ERK becomes activated, uPAR is overexpressed, alpha5beta1-integrins are activated, and dormancy is interrupted. Restoration of these properties in dormant cells can be mimicked by a direct re-expression of uPAR through transfection with a uPAR-coding plasmid. We conclude that overexpression of uPAR and its interaction with the integrin are responsible for generating two feedback loops; one increases the ERK activity that feeds back by increasing the expression of uPAR. The second loop, through the presence of FN fibrils, suppresses p38 activity, further increasing ERK activity. Together these results indicate that uPAR and its interaction with the integrin should be considered important targets for induction of tumor dormancy.  相似文献   

19.
20.
Collagenase-1 is a protease expressed by active fibroblasts that is involved in remodeling of the extracellular matrix (ECM). In this study, we characterize the intracellular signaling mechanism of collagenase-1 production by IL-1alpha in subcultured normal fibroblasts (NF) from uninjured normal corneas, compared to that in repair wound fibroblasts (WF). In NF, collagenase-1 was induced specifically after the exogenous addition of IL-1alpha via activation of ERK and p38MAPK. Collagenase-1 expression was strongly suppressed upon treatment with either a MEK or p38MAPK inhibitor. In contrast, repair WF constitutively synthesized both IL-1alpha and collagenase-1. Combined treatment with both mitogen-activated protein kinase (MAPK) inhibitors dramatically reduced collagenase-1 synthesis, while individual MEK1 or p38 inhibitors weakly modulated the collagenase-1 level. The results indicate that both pathways are crucial in the regulation of collagenase-1 synthesis. Furthermore, an IL-1alpha receptor antagonist (IL-1ra) could not abolish constitutive collagenase-1 synthesis, even at high doses, suggesting that other cytokines/factors are additionally involved in this process. We propose that induction of collagenase-1 by IL-1alpha in both WF and NF depends on a unique combination of cell type-specific signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号