首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
3.
4.
A series of mutations comprising single and multiple substitutions, deletions, and extensions within the carboxy-terminal domain of the bacteriophage lambda Cro repressor have been constructed. These mutations generally affect the affinity of repressor for specific and nonspecific DNA. Additionally, substitution of the carboxy-terminal alanine with several amino acids capable of hydrogen-bonding interactions leads to improved specific binding affinities. A mutation is also described whereby cysteine links the two Cro monomers by a disulfide bond. As a consequence, a significant improvement in nonspecific binding and a concomitant reduction in specific binding are observed with this mutant. These results provide evidence that the carboxy terminus of Cro repressor is an important DNA binding domain and that a flexible connection between the two repressor monomers is a critical factor in modulating the affinity of wild-type repressor for DNA.  相似文献   

5.
Post-translational import of the F1-ATPase beta-subunit precursor into isolated mitochondria requires both an energized inner membrane and nucleoside triphosphate hydrolysis on the organelle surface. Nested internal deletions of the F1 beta-precursor which progressively move a 128-residue carboxyl-terminal domain of the protein closer to the amino terminus reveal an abrupt transition between residues 122 and 144 to a form of the protein which is imported in the absence of added ATP. This transition region of the F1 beta-precursor is the same sequence which we have defined in earlier studies is required for formation of a tetramer following in vitro translation of the F1 beta-precursor. These data indicate that part of the requirement for ATP in the import of mitochondrial precursors may be involved in the reorganization of oligomeric species on the membrane surface which are formed following their translation.  相似文献   

6.
7.
8.
Ether-a-go-go potassium channels have large intracellular regions containing ‘Per-Ant-Sim’ (PAS) and cyclic nucleotide binding (cNBD) domains at the N- and C-termini, respectively. In heag1 and heag2 channels, recent studies have suggested that the N- and C-terminal domains interact, and affect activation properties. Here, we have studied the effect of mutations of residues on the surfaces of PAS and cNBD domains. For this, we introduced alanine and lysine mutations in heag1 channels, and recorded currents by two-electrode voltage clamp. In both the PAS domain and the cNBD domain, contiguous areas of conserved residues on the surfaces of these domains were found which affected the activation kinetics of the channel. Next, we investigated possible effects of mutations on domain interactions of PAS and cNBD proteins in heag2 by co-expressing these domain proteins followed by analysis with native gels and western blotting. We found oligomeric association between these domains. Mutations F30A and A609K (on the surfaces of the PAS and cNBD domains, respectively) affected oligomeric compositions of these domains when proteins for PAS and cNBD domains were expressed together. Taken together, the data suggest that the PAS and cNBD domains form interacting oligomers that have roles in channel function.  相似文献   

9.
10.
Virulent mutations in the bacteriophage Mu repressor gene were isolated and characterized. Recombination and DNA sequence analysis have revealed that virulence is due to unusual frameshift mutations which change several C-terminal amino acids. The vir mutations are in the same repressor region as the sts amber mutations which, by eliminating several C-terminal amino acids, suppress thermosensitivity of repressor binding to the operators by its N-terminal domain (J. L. Vogel, N. P. Higgins, L. Desmet, V. Geuskens, and A. Toussaint, unpublished data). Vir repressors bind Mu operators very poorly. Thus the Mu repressor C terminus, either by itself or in conjunction with other phage or host proteins, tunes the DNA-binding properties at the repressor N terminus.  相似文献   

11.
12.
13.
Comparison of both the DNA and protein sequences of catabolite gene activator protein (CAP) with the sequences of lac and gal repressors shows significant homologies between a sequence that forms a two alpha-helix motif in CAP and sequences near the amino terminus of both repressors. This two-helix motif is thought to be involved in specific DNA sequence recognition by CAP. The region in lac repressor to which CAP is homologous contains many i-d mutations that are defective in DNA binding. Less significant sequence homologies between CAP and phage repressors and activators are also shown. The amino acid residues that are critical to the formation of the two-helix motif are conserved, while those residues expected to interact with DNA are variable. These observations suggest the lac and gal repressors also have a two alpha-helix structural motif which is involved in DNA binding and that this two helix motif may be generally found in many bacterial and phage repressors. We conclude that one major mechanism by which proteins can recognize specific base sequences in double stranded DNA is via the amino acid side chains of alpha-helices fitting into the major groove of B-DNA.  相似文献   

14.
15.
BRCT domains, present in a large number of proteins that are involved in cell cycle regulation and/or DNA replication or repair, are primarily thought to be involved in protein-protein interactions. The large (p140) subunit of replication factor C contains a sequence of approximately 100 amino acids in the N-terminal region that binds DNA and is distantly related to known BRCT domains. Here we show that residues 375-480, which include 28 amino acids N-terminal to the BRCT domain, are required for 5'-phosphorylated double-stranded DNA binding. NMR chemical shift analysis indicated that the N-terminal extension includes an alpha-helix and confirmed the presence of a conserved BRCT domain. Sequence alignment of the BRCT region in the p140 subunit of replication factor C from various eukaryotes has identified very few absolutely conserved amino acid residues within the core BRCT domain, whereas none were found in sequences immediately N-terminal to the BRCT domain. However, mapping of the limited number of conserved, surface-exposed residues that were found onto a homology model of the BRCT domain, revealed a clustering on one side of the molecular surface. The cluster, as well as a number of amino acids in the N-terminal alpha-helix, were mutagenized to determine the importance for DNA binding. To ensure minimal structural changes because of the introduced mutations, proteins were checked using one-dimensional (1)H NMR and CD spectroscopy. Mutation of weakly conserved residues on one face of the N-terminal alpha-helix and of residues within the cluster disrupted DNA binding, suggesting a likely binding interface on the protein.  相似文献   

16.
G Cho  J Kim  H M Rho    G Jung 《Nucleic acids research》1995,23(15):2980-2987
To localize the DNA binding domain of the Saccharomyces cerevisiae Ars binding factor 1 (ABF1), a multifunctional DNA binding protein, plasmid constructs carrying point mutations and internal deletions in the ABF1 gene were generated and expressed in Escherichia coli. Normal and mutant ABF1 proteins were purified by affinity chromatography and their DNA binding activities were analyzed. The substitution of His61, Cys66 and His67 respectively, located in the zinc finger motif in the N-terminal region (amino acids 40-91), eliminated the DNA binding activity of ABF1 protein. Point mutations in the middle region of ABF1, specifically at Leu353, Leu399, Tyr403, Gly404, Phe410 and Lys434, also eliminated or reduced DNA binding activity. However, the DNA binding activity of point mutants of Ser307, Ser496 and Glu649 was the same as that of wild-type ABF1 protein and deletion mutants of amino acids 200-265, between the zinc finger region and the middle region (residues 323-496) retained DNA binding activity. As a result, we confirmed that the DNA binding domain of ABF1 appears to be bipartite and another DNA binding motif, other than the zinc finger motif, is situated between amino acid residues 323 and 496.  相似文献   

17.
The repressor of bacteriophage Mu functions in the establishment and maintenance of lysogeny by binding to Mu operator DNA to shut down transposition. A domain at its N terminus functions in DNA binding, and temperature-sensitive mutations in this domain can be suppressed by truncations at the C terminus. To understand the role of the C-terminal tail in DNA binding, a fluorescent probe was attached to the C terminus to examine its environment and its movement with respect to the DNA binding domain. The emission spectrum of this probe indicated that the C terminus was in a relatively hydrophobic environment, comparable to the environment of the probe attached within the DNA-binding domain. Fluorescence of two tryptophan residues located within the DNA-binding domain was quenched by the probe attached to the C terminus, indicating that the C terminus is in close proximity to this domain. Addition of DNA, even when it did not contain operator DNA, reduced quenching of tryptophan fluorescence, indicating that the tail moves away from the DNA-binding domain as it interacts with DNA. The presence of the tail also produced a trypsin hypersensitive site within the DNA-binding domain; mutant repressors with an altered or truncated C terminus were relatively resistant to cleavage at this site. Interaction of the wild-type repressor with DNA greatly reduced cleavage at the site. A repressor with a temperature-sensitive mutation in the DNA-binding domain was especially sensitive to cleavage by trypsin even in the presence of DNA, and the C-terminal tail failed to move in the presence of DNA at elevated temperatures. These results indicate that the tail sterically inhibits DNA binding and that it moves during establishment of repression. Such conformational changes are likely to be involved in communication between repressor protomers for cooperative DNA binding.  相似文献   

18.
Heme-mediated regulation, presented in many biological processes, is achieved in part with proteins containing heme regulatory motif. In this study, we demonstrate that FLAG-tagged PpsR isolated from Rhodobacter sphaeroides cells contains bound heme. In vitro heme binding studies with tagless apo-PpsR show that PpsR binds heme at a near one-to-one ratio with a micromolar binding constant. Mutational and spectral assays suggest that both the second Per-Arnt-Sim (PAS) and DNA binding domains of PpsR are involved in the heme binding. Furthermore, we show that heme changes the DNA binding patterns of PpsR and induces different responses of photosystem genes expression. Thus, PpsR functions as both a redox and heme sensor to coordinate the amount of heme, bacteriochlorophyll, and photosystem apoprotein synthesis thereby providing fine tune control to avoid excess free tetrapyrrole accumulation.  相似文献   

19.
V Wittman  H C Lin    H C Wong 《Journal of bacteriology》1993,175(22):7383-7390
The penicillinase repressor (PENI) negatively regulates expression of the penicillinase gene (penP) in Bacillus licheniformis by binding to its operators located within the promoter region of penP.penI codes for a protein with 128 amino acids. Filter-binding analyses suggest that the active form of the repressor is a dimer. Genetic analyses of PENI derivatives showed that the repressor carrying either a 6-amino-acid deletion near the N terminus or a 14-amino-acid deletion at the C terminus was functionally inactive in vivo. A repressor derivative carrying a 6-amino-acid deletion within its N-terminal region was extensively purified and used in DNA footprinting and subunit cross-linking analyses. The results of these studies showed that the repressor derivative had lost its ability to bind operator specifically even though it could dimerize effectively. In similar studies, we demonstrated that an N-terminal portion of PENI with a molecular mass of 10 kDa derived by digestion with papain was able to bind operator specifically but with reduced affinity and had completely lost its ability to dimerize. These data suggest that the repressor has two functional and separable domains. The amino-terminal domain of the repressor is responsible for operator recognition, and the carboxyl-terminal domain is involved in subunit dimerization.  相似文献   

20.
Y Zhao  C Thomas  C Bremer    P Roy 《Journal of virology》1994,68(4):2179-2185
Genome segment 8 (S8) of bluetongue virus serotype 10 (BTV-10) encodes the nonstructural protein NS2. This protein, which has single-stranded RNA (ssRNA) binding capacity, is found in BTV-infected cells in the form of virus inclusion bodies (VIBs). To identify the domain(s) important for RNA binding and oligomerization of the protein, a number of deletions were made in regions of the gene that code for either the amino or carboxy terminus of the protein. The modified genes were cloned into and expressed from baculovirus vectors based on Autographa californica nuclear polyhedrosis virus. Truncated NS2 proteins were individually analyzed for the ability to bind ssRNA and to form VIBs. The results indicated that the carboxy terminus of the protein is involved neither in RNA binding nor in the formation of VIBs. The amino terminus of NS2 was shown to be essential for ssRNA binding but not for NS2 protein oligomerization. Point mutations that involved the substitution of various charged residues at the amino terminus of NS2 were generated and tested for the ability to bind ssRNA. The results showed that the arginines at amino acid residues 6 and 7 and the lysine at residue 4, but not the glutamic acid at residue 2, are involved in ssRNA binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号