首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Azotobacter vinelandii strain ATCC 12837 and A. chroococcum strain H23 (CECT 4435) were able to grow on N-free or NH4Cl-amended chemically-defined (Burk's) media, with protocatechuic acid (1-2 mmol 1(-1)) or sodium p-hydroxybenzoate (1-10 mmol 1(-1)) as sole carbon (C) sources. At a concentration of 2 mmol 1(-1), both substrates supported nitrogen fixation (acetylene reduction assay) at similar or higher rates than bacteria grown in control media amended with 2 mmol 1(-1) sodium succinate as C source. The two strains produced the B-group vitamins niacin, pantothenic acid, thiamine, riboflavin and biotin after 72 h of growth in chemically-defined media with 2 mmol 1(-1) protocatechuic acid, sodium phydroxybenzoate or sodium succinate as sole C source, either in N-free media or in media amended with 0.1% NH4Cl. Quantitative production of all vitamins was affected by the use of the different C and N substrates.  相似文献   

2.
Growth and nitrogenase activity (acetylene reduction) of Azotobacter vinelandii in chemically defined N-free media were studied in the presence of p-hydroxybenzoic, vanillic, p-coumaric, and ferulic acids at concentrations from 0.01 to 1% (w/v). Growth and nitrogenase activity were only detected when the microorganism was cultured on p-hydroxybenzoic acid either as sole carbon source or mixed with other phenolic acids, suggesting that p-hydroxybenzoic acid could be utilized as a carbon source by A. vinelandii for growing under certain environmental conditions.  相似文献   

3.
This study was undertaken to determine the effect of aromatic hydrocarbons on growth and plant growth promoting activities of Azotobacter chroococcum strain JL104. The organism was grown on Jensen’s media without sucrose, supplemented with different concentrations of aromatic hydrocarbons. Azotobacter chroococcum strain JL104 was able to grow in the presence of benzene, toluene, aniline and benzoic acid and was able to utilize these as sole carbon source as well. The culture showed the highest growth in presence of 0.5% concentrations of aniline and benzoic acid and 0.01% concentrations of benzene and toluene. Maximum indole acetic acid (IAA) production and acetylene reduction activity (ARA) were recorded with benzene and benzoic acid, respectively. Among other substituted benzene derivatives such as xylene, p-hydroxybenzoic acid, di-nitrophenol and di-chlorophenol, xylene was observed to be the least toxic and di-nitrophenol the most toxic hydrocarbon. The highest soil survival was found in soil amended with 1% sucrose however, the population of A. chroococccum strain JL104 declined continuously in unamended soil. Amongst various hydrocarbons, 0.1% toluene amended soil supported the maximum survival, indicating it to be least toxic aromatic hydrocarbon carbon in soil.  相似文献   

4.
In order to study the effects of different nitrogen source and concentrationon the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) wascultured in media with different nitrogen sources and concentrations.During the pre-logarithmic phase, the alga grew faster with ammoniumas N source than with nitrate, but the reverse applied during thepost-logarithmic phase. The alga grew poorly in N-free mediumor medium with urea as the sole N source. In the same growth phase,ammonium medium resulted in higher yield of total lipid, but the EPA yielddid not differ significantly different from that using nitrate medium. Themaximum growth rate occurred in medium containing 1.28 mmolL-1 sodium nitrate, while maximum EPA and total lipid contents werereached at 1.92 mmol L-1, when EPA accounted for 27.9% totalfatty acids. The growth rate kept stable when NH4Cl ranged from0.64 to 2.56 mmol L-1, and the maximum content of total lipidand EPA occurred in the medium with 2.56 mmol L-1NH4Cl. The EPA content was higher in the pre- thanpost-logarithmic phase, though the total lipid content was lower. Thehighest EPA content expressed as percent total fatty acid was 27.9% innitrate medium and and 39.0% in ammonium medium.  相似文献   

5.
Magnetite-producing magnetotactic bacteria collected from the oxic–anoxic transition zone of chemically stratified marine environments characterized by O2/H2S inverse double gradients, contained internal S-rich inclusions resembling elemental S globules, suggesting they oxidize reduced S compounds that could support autotrophy. Two strains of marine magnetotactic bacteria, MV-1 and MV-2, isolated from such sites grew in O2-gradient media with H2S or thiosulfate (S2O32–) as electron sources and O2 as electron acceptor or anaerobically with S2O32– and N2O as electron acceptor, with bicarbonate (HCO3)/CO2 as sole C source. Cells grown with H2S contained S-rich inclusions. Cells oxidized S2O32– to sulfate (SO42–). Both strains grew microaerobically with formate. Neither grew microaerobically with tetrathionate (S4O62–), methanol, or Fe2+ as FeS, or siderite (FeCO3). Growth with S2O32– and radiolabeled 14C-HCO3 showed that cell C was derived from HCO3/CO2. Cell-free extracts showed ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity. Southern blot analyses indicated the presence of a form II RubisCO (cbbM) but no form I (cbbL) in both strains. cbbM and cbbQ, a putative post-translational activator of RubisCO, were identified in MV-1. MV-1 and MV-2 are thus chemolithoautotrophs that use the Calvin–Benson–Bassham pathway. cbbM was also identified in Magnetospirillum magnetotacticum. Thus, magnetotactic bacteria at the oxic–anoxic transition zone of chemically stratified aquatic environments are important in C cycling and primary productivity.  相似文献   

6.
The objective of the present work was to determine what impact extremely high nitrogen dosages would have on proline metabolism in order to use this amino acid as a bioindicator of N status of green bean plants (Phaseolus vulgaris L. cv. Strike). In this effort, we identified the most favourable pathway of proline synthesis under our experimental conditions. The N was applied to the nutrient solution in the form of NH4NO3 at 5.4 mmol/L (N1, optimal level), 11.6 mmol/L (N2), 17.4 mmol/L (N3), and 23.2 mmol/L (N4). Our results indicate that the application of high N dosages inPhaseolus is characterized by the accumulation of NO3, NH4+ and proline in root and foliar organs. However, although the enzymes in charge of proline biosynthesis, ornithine-δ-aminotransferase (OAT, EC 2.6.1.13) and Δ1-pyrroline-5-carboxylate synthetase (P5CS, EC 2.7.2.11/1.2.2.41) vary in behaviour depending on the N status, in our experiment, this amino acid appears to be synthesized mainly by the enzyme ornithine-δ-aminotransferase. This suggests predominance of the ornithine pathway over the glutamine pathway. Finally, under our experimental conditions, proline can be defined as a good indicator of N excess of green bean plants.  相似文献   

7.
Summary. Large amounts of amino acids are produced by nitrogen-fixing bacteria such as Azotobacter, Azospirillum, Rhizobium, Mesorhizobium and Sinorhizobium when growing in culture media amended with different carbon and nitrogen sources. This kind of bacteria live in close association with plant roots enhanced plant growth mainly as a result of their ability to fix nitrogen, improving shoot and root development suppression of pathogenic bacteria and fungi, and increase of available P concentration. Also, it has been strongly evidenced that production of biologically substances such as amino acids by these rhizobacteria are involved in many of the processes that explain plant-grown promotion. This paper reviews literature concerning amino acids production by nitrogen-fixing bacteria. The role of amino acids in microbial interactions in the rhizosphere and establishment of plant bacterial association is also discussed.  相似文献   

8.
D(–)-Lactic acid was produced from cellulose by simultaneous saccharification and fermentation (SSF) in media containing cellulolytic enzymes and Lactobacillus coryniformis subsp. torquens ATCC 25600 at 39 °C and pH 5.4, yielding 0.89 g D(–)-lactic acid g–1 cellulose at a mean volumetric productivity of 0.5 g l–1 h–1. No L(+)-lactic acid was found in the medium.  相似文献   

9.
Twenty-eight strains of Rhizobium spp. were tested for their ability to grow in chemically-defined medium lacking growth factors. Two strains, R. meliloti GR4B and Rhizobium spp. ( Acacia ) GRH28, were selected, on the basis of their good growth under the conditions imposed, for further quantification of the production of water-soluble vitamins (thiamine, niacin, riboflavin, pantothenic acid and biotin) in chemically defined media amended with different compounds (mannitol, glucose or sodium succinate) as sole carbon sources. Qualitative and quantitative production of vitamins in chemically-defined media was significantly affected by the use of C sources of a different nature and the age of the cultures. Strain GRH28 produced all the vitamins analysed, and high biological levels of biotin (14 ng ml–1 culture) were detected after 6 d of culture in mineral medium amended with mannitol. Pantothenic acid was the vitamin detected in the highest amounts (up to 1 μg ml–1 of culture) in culture supernatant fluids of strain GR4B grown for 6 d with succinate as sole carbon source.  相似文献   

10.
The Chinese fire-belly newt Cynops orientalis reverts to an aquatic mode of living when sexually mature. Despite living in water, sexually mature C. orientalis maintained high capacity for hepatic urea synthesis. However, it had a lower rate of urea production than other terrestrial amphibians because endogenous ammonia could diffuse out to the external medium as NH3. This conserves cellular energy because urea synthesis is energetically expensive. Simultaneously, C. orientalis also reduced the rate of urea excretion, and excreted 33% of the total nitrogenous waste as ammonia. Upon exposure to land, C. orientalis increased the rate of urea synthesis from accumulating endogenous ammonia. The increased rate of urea synthesis was within the inherent capacity of the hepatic ornithine–urea cycle; there was no induction of hepatic carbamoyl phosphate synthetase or ornithine transcarbamoylase activities and there was no reduction in ammonia production. When exposed to water containing 75 mmol.l–1 NH4Cl, the rates of both urea synthesis and urea excretion increased. Under such experimental conditions, the ornithine–urea cycle may be operating close to its limit; glutamine began to accumulate in the body, and endogenous ammonia production via amino acid catabolism was reduced.Abbreviations CPS carbamoyl phosphate synthetase - FAA free amino acid - OTC ornithine transcarbamoylase - OUC ornithine–urea cycle - TCA trichloroacetic acid Communicated by I.D. Hume  相似文献   

11.
The feasibility of arrowroot (Marantha arundinacea) starch for alkaline protease production using an alkalophilic Bacillus lentus isolate was evaluated in batch fermentations in shake flasks and in a bioreactor under a range of conditions. A new arrowroot starch-casein medium (pH 10.2) was formulated having a composition (%, w/v): arrowroot starch 1, casein 1, sodium succinate 0.25, NH4Cl 0.05, NaCl 0.05, KH2PO4 0.04, K2HPO4 0.03, MgCl2 0.01, yeast extract 0.01 and Na2CO3 1.05. The isolate produced a maximum protease yield (6754.7 U ml–1) in this medium when grown for 72 h at 250 rev/min and 37 °C. Scaling-up studies in a bioreactor showed a 5-fold increase in alkaline protease yields (31899 U ml–1) at a lower production time of 45 h, aeration of 1 v/v/m and agitation of 400 rev/min at 37 °C.  相似文献   

12.
γ-Aminobutyraldehyde dehydrogenase from Escherichia coli K-12 has been purified and characterized from cell mutants able to grow in putrescine as the sole carbon and nitrogen source. The enzyme has an Mr of 195 000±10 000 in its dimeric form with an Mr of 95 000±1000 for each subunit, a pH optimum at 5.4 in sodium citrate buffer, and does not require bivalent cations for its activity. Km values are 31.3±6.8 μM and 53.8±7.4 μM for Δ-1-pyrroline and NAD+, respectively. An inhibitory capacity for NADH is also shown using the purified enzyme.  相似文献   

13.
Addition of NH4Cl at low concentrations to Azotobacter chroococcum cells caused an immediate cessation of nitrate uptake activity, which was restored when the added NH 4 + was exhausted from the medium or by adding an NH 4 + assimilation inhibitor, l-methionine-dl-sulfoximine (MSX) or l-methionine sulfone (MSF). In the presence of such inhibitors the newly-reduced nitrate was released into the medium as NH 4 + . When the artificial electron donor system ascorbate/N-methylphenazinium methylsulfate (PMS), which is a respiratory substrate that was known to support nitrate uptake by A. chroococcum while inhibiting glutamine synthetase activity, was the energy source, externally added NH 4 + had no effect on nitrate uptake. It is concluded that, in A. chroococcum cells, NH 4 + must be assimilated to exert its short-term inhibitory effect on nitrate uptake. A similar proposal was previously made to explain the short-term ammonium inhibition of N2 fixation in this bacterium.Abbreviations MOPS morpholinopropanesulfonic acid - MSX l-methionine-dl-sulfoximine - PMS N-methylphenazinium methylsulfate - MSF l-methionine sulfone  相似文献   

14.
Preparation of new amino acid complex nanoparticles of bismuth and leucine   总被引:1,自引:0,他引:1  
Jia RR  Wu CP  Yang YX  Chen YR  Zhang JR  Jia YQ 《Amino acids》2005,28(4):409-412
Summary. The new amino acid complex nanoparticles of bismuth and leucine can be prepared very easily by a room temperature solid–solid reaction. The various characterizations indicate that the formula of the complex is BiCl[(CH3)2CHCH2CHNH2COO]21.5H2O. The crystal structure of the solid complex belongs to monoclinic system with the lattice parameters: a = 1.6036 nm, b = 1.9903 nm, c = 2.1979 nm and β=108.06°. The new solid complex is nanoparticles with average size about 80 nm.  相似文献   

15.
Summary Pseudomonas putida, isolated from contaminated industrial wastewaters and soil sites, was found to utilize sodium cyanide (NaCN) as a sole source of carbon and nitrogen. Cells, immobilized in calcium alginate beads (1–2 mm diameter) were aerated in air-uplift-type fluidized batch bioreactor containing 100–400 ppm of NaCN. Degradation of NaCN was monitored for 168 h by analyzing gaseous and dissolved ammonia (NH3), CO2, pH and optical density. The results indicated that the alginate-immobilized cells ofP. putida were able to degrade NaCN into NH3 and CO2 in a time-dependent manner.  相似文献   

16.
The novel exopolysaccharide bioflocculant HBF-3 is produced by Halomonas sp. V3a′, which is a mutant strain of the deep-sea bacterium Halomonas sp. V3a. Response surface methodology (RSM) was employed to optimize the production medium for increasing HBF-3 production. Using a Plackett–Burman experimental design to aid in the first step of optimization, edible glucose, MgSO4·7H2O, and NH4Cl were found to be significant factors affecting HBF-3 production. To determine the optimal concentration of each significant variable, a central composite design was employed. Based on response surface and canonical analysis, the optimum concentrations of the critical components were obtained as follows: edible glucose, 16.14 g/l; MgSO4·7H2O, 2.73 g/l; and NH4Cl, 1.97 g/l. HBF-3 production obtained by using the optimized medium was 4.52 g/l, which was in close agreement with the predicted value of 4.55 g/l. By scaling up fermentation from flask to fermenter, HBF-3 production was further increased to 5.58 g/l.  相似文献   

17.
【目的】以标志链带藻(Desmodesmus insignis)为实验材料,研究不同氮源及其浓度对该藻生长、总脂和淀粉(碳水化合物)含量的影响,为该藻在生物能源方面的应用提供一定的理论依据。【方法】以硝酸钠、碳酸氢铵或尿素为氮源,5个氮浓度(3、6、9、12和18 mmol/L)的BG-11培养基培养标志链带藻,采用干重法测定生物质浓度、重量法测定总脂、苯酚-硫酸法测定、总碳水化合物和淀粉的含量。【结果】标志链带藻在3种氮源下均能很好的生长。最高油脂含量出现在3 mmol/L硝酸钠实验组,达到32.61%(d.w)。当18 mmol/L碳酸氢铵作为氮源时,总碳水化合物与淀粉的含量以及产率都达到最高,分别为56.54%(d.w)和55.33%(d.w)、0.24和0.23 g/(L·d)。以尿素为氮源时,其生物质浓度和各组分含量与其它氮源实验组差别不大,均有利于该藻的生长及各生化组分含量的积累。【结论】以该藻种生产生物能源的成本等综合考虑,以18 mmol/L碳酸氢铵和尿素为氮源培养标志链带藻最优。  相似文献   

18.
Optimal growth and PHB accumulation in Bacillus megaterium occurred with 5% (w/v) date syrup or beet molasses supplemented with NH4Cl. When date syrup and beet molasses were used alone without an additional nitrogen source, a cell density of about 3gl–1 with a PHB content of the cells of 50% (w/w) was achieved. NH4NO3 followed by ammonium acetate and then NH4Cl supported cell growth up to 4.8gl–1, whereas PHB accumulation was increased with NH4Cl followed by ammonium acetate, NH4NO3 and then (NH4)2SO4 to a PHB content of nearly 42% (w/w). Cultivation of B.megaterium at 30l scale gave a PHB content of 25% (w/w) of the cells and a cell density of 3.4gl–1 after 14h growth.  相似文献   

19.
Incubation of Azotobacter chroococcum in the presence of micromolar concentrations of MnCl2, but not MgCl2, prevented nitrogenase activity from NH 4 + inhibition. Mg(II), at a 100-fold concentration with respect to Mn(II), counteracted the protective effect of Mn(II) on nitrogenase activity. When Mn(II) was added to cells that had been given NH4Cl, stopping of NH 4 + uptake and recovery of nitrogenase activity took place, and a raise of NH 4 + concentration in medium developed. Furthermore, incubation of A. chroococcum cells with 20 M Mn(II) under air, but not under an argon: oxygen (79%:21%) gas mixture, resulted in NH 4 + excretion to the external medium. The Mn(II)-mediated uncoupling of nitrogen fixation from ammonium assimilation leads us to conclude that Mn(II) may act as a physiological inhibitor of glutamine synthetase.Abbreviations Hepes N-2-Hydroxyethylpiperazine-N-ethanesulfonic acid - Mops 3-(N-Morpholino)propanesulfonic acid  相似文献   

20.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号