首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fate of the P1 plasmid of Escherichia coli was followed by time-lapse photomicroscopy. A GFP-ParB fusion marked the plasmid during partition (segregation) to daughter cells at slow growth rate. The process differs from that previously inferred from statistical analysis of fixed cells. A focus of plasmid copies is captured at the cell centre. Immediately before cell division, the copies eject bidirectionally along the long axis of the cell. Cell division traps one or more plasmid copies in each daughter. They are not directed to a prescribed position but are free to move, associate and disassociate. Later, they are captured to the new cell centre to restart the cycle. A null P1 par mutant associates to form a focus, but it is neither captured nor ejected. A dominant negative ParB protein forms a plasmid focus that attaches to the cell centre but never ejects. It remains captive at the centre and blocks host cell division. The cells elongate. Eventually the intact focus is pushed to one side and the cells divide simultaneously in several places at the same time. This suggests that the wild-type plasmid imposes a regulatory node on the host cell cycle, preventing cell division until its own segregation is completed.  相似文献   

2.
The partition system of the P1 plasmid, P1 par consists of the ParA and ParB proteins and a cis -acting site, parS . It is responsible for the orderly segregation of plasmid copies to daughter cells. Plasmids with null mutations in parA or parB replicate normally, but missegregate. ParB binds specifically to the parS site, but the role of ParA and its ATPase activity in partition is unclear. We describe a novel class of parA mutants that cannot be established or maintained as plasmids unless complemented by the wild-type gene. One, parAM314I , is conditional: it can be maintained in cells in minimal medium but cannot be established in cells growing in L broth. The lack of plasmid propagation in L broth-grown cells was shown to be caused by a ParB-dependent activity of the mutant ParA protein that blocks plasmid propagation by an interaction at the parS site. Thus, ParA acts to modify the ParB– parS complex, probably by binding to it. Partition is thought to involve selection of pairs of plasmids before segregation, either by physical pairing of copies or by binding of copies to paired host sites. We suggest that ParA is involved in this reaction and that the mutant ParA protein forms paired complexes that cannot unpair.  相似文献   

3.
Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids.  相似文献   

4.
5.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:15,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

6.
Summary Multicopy plasmids carrying the sopB gene of the F plasmid inhibit stable inheritance of a coexisting mini-F plasmid. This incompatibility, termed IncG, is found to be caused by excess amounts of the SopB protein, which is essential for accuratepartitioning of plasmid DNA molecules into daughter cells. A sopB-carrying multicopy plasmid that shows the IncG+ phenotype was mutagenized in vitro and IncG negative mutant plasmids were isolated. Among these amber and missense mutants of sopB, mutants with a low plasmid copy number and a mutant in the Shine-Dalgarno sequence for translation of the SopB protein were obtained. These results demonstrate that the IncG phenotype is caused by the SopB protein, and that the incompatibility is expressed only when the protein is overproduced. This suggests that the protein must be kept at appropriate concentrations to ensure stable maintenance of the plasmid.  相似文献   

7.
FtsH is an ATP-dependent protease that is essential for cell viability in Escherichia coli. The essential function of FtsH is to maintain the proper balance of biosynthesis of major membrane components, lipopolysaccharide and phospholipids. F plasmid uses a partitioning system and is localized at specific cell positions, which may be related to the cell envelope, to ensure accurate partitioning. We have examined the effects of ftsH mutations on the maintenance of a mini-F plasmid, and have found that temperature-sensitive ftsH mutants are defective in mini-F plasmid partition, but not replication, at permissive temperature for cell growth. A significant fraction of replicated plasmid molecules tend to localize close together on one side of the cell, which may result in failure to pass the plasmid to one of the two daughter cells upon cell division. By contrast, an ftsH null mutant carrying the suppressor mutation sfhC did not affect partitioning of the plasmid. The sfhC mutation also suppressed defective maintenance in temperature-sensitive ftsH mutants. Using this new phenotype caused by ftsH mutations, we also isolated a new temperature-sensitive ftsH mutant. Mutations in ftsH cause an increase in the lipopolysaccharide/ phospholipid ratio due to stabilization of the lpxC gene product, which is involved in lipopolysaccharide synthesis and is a substrate for proteolysis by the FtsH protease. It is likely that altered membrane structure affects the localization or activity of a putative plasmid partitioning apparatus located at positions equivalent to 1/4 and 3/4 of the cell length.  相似文献   

8.
Structural maintenance of chromosomes (SMC) proteins are found in nearly all organisms. Members of this protein family are involved in chromosome condensation and sister chromatid cohesion. Bacillus subtilis SMC protein (BsSMC) plays a role in chromosome organization and partitioning. To better understand the function of BsSMC, we studied the effects of an smc null mutation on DNA supercoiling in vivo. We found that an smc null mutant was hypersensitive to the DNA gyrase inhibitors coumermycin A1 and norfloxacin. Furthermore, depleting cells of topoisomerase I substantially suppressed the partitioning defect of an smc null mutant. Plasmid DNA isolated from an smc null mutant was more negatively supercoiled than that from wild-type cells. In vivo cross-linking experiments indicated that BsSMC was bound to the plasmid. Our results indicate that BsSMC affects supercoiling in vivo, most likely by constraining positive supercoils, an activity which contributes to chromosome compaction and organization.  相似文献   

9.
Hu B  Yang G  Zhao W  Zhang Y  Zhao J 《Molecular microbiology》2007,63(6):1640-1652
MreB is a bacterial actin that plays important roles in determination of cell shape and chromosome partitioning in Escherichia coli and Caulobacter crescentus. In this study, the mreB from the filamentous cyanobacterium Anabaena sp. PCC 7120 was inactivated. Although the mreB null mutant showed a drastic change in cell shape, its growth rate, cell division and the filament length were unaltered. Thus, MreB in Anabaena maintains cell shape but is not required for chromosome partitioning. The wild type and the mutant had eight and 10 copies of chromosomes per cell respectively. We demonstrated that DNA content in two daughter cells after cell division in both strains was not always identical. The ratios of DNA content in two daughter cells had a Gaussian distribution with a standard deviation much larger than a value expected if the DNA content in two daughter cells were identical, suggesting that chromosome partitioning is a random process. The multiple copies of chromosomes in cyanobacteria are likely required for chromosome random partitioning in cell division.  相似文献   

10.
A pneumococcal recombinant plasmid, pRG2, containing the lytA gene that codes for the pneumococcal N-acetylmuramoyl-L-alanine amidase has been constructed using the pneumococcal plasmid pLS1 as a vector. pRG2 was introduced by genetic transformation into a mutant of Streptococcus pneumoniae (M31) that has a complete deletion of the lytA gene. The transformed strain (M51) grew at a normal growth rate as 'diplo' cells and underwent autolysis at the end of the exponential phase of growth, two properties that had been lost in the deleted mutant M31. M51 lysed very rapidly at the end of the exponential phase when the cells were grown in choline-containing medium probably because of the higher level of amidase activity present in this strain as compared to the lysis-prone strain M11. These findings show that the expression of the plasmid-linked gene was placed under the mechanism(s) of control of the cell during the exponential phase. Our results demonstrate that the physiological role of the pneumococcal amidase was to catalyze the separation of the daughter cells at the end of the cell division to produce diplo cells; in addition we have also confirmed the basic role of this autolysin in the bacteriolytic nature of beta-lactam antibiotics.  相似文献   

11.
The psd gene of Bacillus subtilis Marburg, encoding phosphatidylserine decarboxylase, has been cloned and sequenced. It encodes a polypeptide of 263 amino acid residues (deduced molecular weight of 29,689) and is located just downstream of pss, the structural gene for phosphatidylserine synthase that catalyzes the preceding reaction in phosphatidylethanolamine synthesis (M. Okada, H. Matsuzaki, I. Shibuya, and K. Matsumoto, J. Bacteriol. 176:7456–7461, 1994). Introduction of a plasmid containing the psd gene into temperature-sensitive Escherichia coli psd-2 mutant cells allowed growth at otherwise restrictive temperature. Phosphatidylserine was not detected in the psd-2 mutant cells harboring the plasmid; it accumulated in the mutant up to 29% of the total phospholipids without the plasmid. An enzyme activity that catalyzes decarboxylation of 14C-labeled phosphatidylserine to form phosphatidylethanolamine was detected in E. coli psd-2 cells harboring a Bacillus psd plasmid. E. coli cells harboring the psd plasmid, the expression of which was under the control of the T710 promoter, produced proteins of 32 and 29 kDa upon induction. A pulse-labeling experiment suggested that the 32-kDa protein is the primary translation product and is processed into the 29-kDa protein. The psd gene, together with pss, was located by Southern hybridization to the 238- to 306-kb SfiI-NotI fragment of the chromosome. A B. subtilis strain harboring an interrupted psd allele, psd1::neo, was constructed. The null psd mutant contained no phosphatidylethanolamine and accumulated phosphatidylserine. It grew well without supplementation of divalent cations which are essential for the E. coli pssA null mutant lacking phosphatidylethanolamine. In both the B. subtilis null pss and psd mutants, glucosyldiacylglycerol content increased two- to fourfold. The results suggest that the lack of phosphatidylethanolamine in the B. subtilis membrane may be compensated for by the increases in the contents of glucosyldiacylglycerols by an unknown mechanism.  相似文献   

12.
Bacterial shape is controlled by peptidoglycan assembly along the lateral wall and at the septum site. In contrast to rods at 37°C, the wild-type strain formed coccobacilli at 12°C, indicating a prevailing shift toward septal peptidoglycan synthesis at low temperature. Escherichia coli cold shock protein CsdA is a DEAD-box RNA helicase with an extended variable region at the carboxyl terminus. The csdA null mutant formed elongated cells indicating that CsdA, directly or indirectly, effects an increase in septation and the resultant coccobacillus morphology. Lipoprotein NlpI is suggested for a role in cell division. The presence of a plasmid encoding CsdA or NlpI increased septation and coccobacillus morphology of the csdA null mutant cells. Plasmid-encoded CsdAΔ445 (lacking the C-terminal extension) in the mutant complemented the growth and resulted in the appearance of coccobacillus- and rod-shaped cells. In contrast, a plasmid encoding both NlpI and CsdAΔ445 in the wild-type or mutant resulted in inhibition of growth accompanied with the formation of elongated and misshapen cells. However, a plasmid encoding both NlpI and CsdA resulted in normal growth and coccobacilli. The data indicate that the addition of the C-terminal extension yields an increase in septation and the resultant increased formation of coccobacilli.  相似文献   

13.
The role of RAD52 epistasis group genes on spontaneous mitotic recombination was examined using three different types of spontaneous mitotic recombination in Saccharomyces cerevisiae. The spontaneous recombination between homologous sequences in a plasmid and a chromosome was essentially unaffected by null mutations in any of the RAD52 epistasis group genes. Recombination between genes in separate autonomously replicating plasmids was reduced 833-fold in a rad52 null mutant, but only 2- to at most 20-fold in rad50, 51, 54, 55, 57 null mutants. Recombination between tandemly repeated heteroalleles in an autonomously replicating plasmid was reduced almost 100-fold in a rad52 null mutant, but is either unaffected or slightly increased in rad50, 51, 54, 55, 57 null mutants. The finding that RAD50, 51, 54, 55, 57 are dispensable or marginally involved in these spontaneous recombinations suggests further that spontaneous mitotic recombination in S. cerevisiae might be processed by other than RAD52 epistasis group.  相似文献   

14.
By transformation of dnaA null mutant host cells that are suppressed either by an rnh mutation or by chromosomal integration of a mini-R1 plasmid, it was shown that replication of miniplasmids composed of the NR1 minimal replicon had no absolute dependence upon DnaA protein. In addition, the suppression of the dnaA null mutation by the integrated mini-R1, which is an IncFII relative of NR1, was found to be sensitive to the expression of IncFII-specific plasmid incompatibility. This suggests that the integrative suppression by mini-R1 is under the control of the normal IncFII plasmid replication circuitry. Although NR1 replication had no absolute requirement for DnaA, the copy numbers of NR1-derived miniplasmids were lower in dnaA null mutants, and the plasmids exhibited a much reduced stability of inheritance during subculture in the absence of selection. This suggests that DnaA protein may participate in IncFII plasmid replication in some auxiliary way, such as by increasing the efficiency of formation of an open initiation complex at the plasmid replication origin. Such an auxiliary role for DnaA in IncFII replication would be different from that for replication of most other plasmids examined, for which DnaA has been found to be either essential or unimportant.  相似文献   

15.
When wild-type mouse embryo cells are stably transfected with a plasmid constitutively overexpressing the epidermal growth factor (EGF) receptor (EGFR), the resulting cells can grow in serum-free medium supplemented solely with EGF. Supplementation with EGF also induces in these cells the transformed phenotype (growth in soft agar). However, when the same EGFR expression plasmid is introduced and overexpressed in cells derived from littermate embryos in which the insulin-like growth factor I (IGF-I) receptor genes have been disrupted by homologous recombination, the resulting cells are unable to grow or to be transformed by the addition of EGF. Reintroduction into these cells (null for the IGF-I receptor) of a wild-type (but not of a mutant) IGF-I receptor restores EGF-mediated growth and transformation. Our results indicate that at least in mouse embryo fibroblasts, the EGFR requires the presence of a functional IGF-I receptor for its mitogenic and transforming activities.  相似文献   

16.
Site-directed mutagenesis was used to investigate the functions of the traM gene in plasmid R1-mediated bacterial conjugation. Three mutant alleles, a null mutation, a sense mutation and a stop mutation, were recombined back into the R1-16 plasmid, a transfer-derepressed ( finO  ) variant of plasmid R1. The frequency of conjugative transfer of the traM null mutant derivative of R1-16 was 107-fold lower than that of the isogenic parent plasmid, showing the absolute requirement for this gene in conjugative transfer of plasmid R1. Measurements of the abundance of plasmid specified traJ , traA and traM mRNAs, TraM protein levels, and complementation studies indicated that the traM gene of plasmid R1 has at least two functions in conjugation: (i) positive control of transfer gene expression; and (ii) a function in a process distinct from gene expression. Since expression of the negatively autoregulated traM gene is itself affected positively by the expression of the transfer operon genes, this gene constitutes a decisive element within a regulatory circuit that co-ordinates expression of the genes necessary for horizontal DNA transfer. Based on our studies, we present a novel model for the regulation of the transfer genes of plasmid R1 that might also be applicable to other IncF plasmids.  相似文献   

17.
A mutant of bacteriophage P1 that is defective in plasmid maintenance was isolated. P1 seg-101 carries an amber mutation in a region previously implicated in the control of plasmid maintenance. By use of a host bearing a temperature-sensitive suppressor, the dependence of P1 maintenance on the seg-101+ protein product was established. The rates of segregation of cured cells under various conditions suggest a role for the seg-101+ product in the partition of plasmids to daughter cells rather than in the replication of the plasmid. This hypothesis is supported by the observation that P1 seg-101 can drive host chromosomal DNA replication when integrated into the chromosome of a dnaA host under conditions that are nonpermissive for both the seg-101 and dnaA alleles.  相似文献   

18.
A mutant defective in partitioning of composite plasmid Rms201.   总被引:3,自引:2,他引:1       下载免费PDF全文
Escherichia coli harboring mutant plasmids defective in maintenance stability (from the conjugative plasmid Rms201) showed a wide distribution of ampicillin resistance levels, as well as increased frequency of plasmid loss from the cell. The amounts of covalently closed circular deoxyribonucleic acid of mutant plasmid Rms268 and parental plasmid Rms201 per chromosome were 5.3 and 6.1%, respectively. The beta-lactamase activities of strains W3630(Rms268) and W3630(Rms201) were 0.56 and 0.44 U/mg of protein, respectively. Frequency of plasmid loss from W3630(Rms268) was about 0.8 to 1.2% per cell generation, 100 times more than that of the wild-type strain. Ampicillin resistance levels of the colonies harboring the mutant plasmid showed a wide distribution, from low (100 micrograms/ml) to high (1,600 micrograms/ml). A miniplasmid (pMS268) with a mass of 7 X 10(6) daltons and encoding ampicillin resistance was isolated from Rms268. Frequency of pMS268 loss from W3630(pMS268) was about 0.8 to 1.9% per cell generation. W3630(pMS268) also showed a wide range of distribution in the levels of ampicillin resistance. These results indicated that the copies of Rms268 in E. coli did not segregate evenly between daughter cells at cell division and that the gene involved was located on the miniplasmid.  相似文献   

19.
Summary The seg-3 mutant Escherichia coli does not support the maintenance of mini-F plasmid at 42° C. We cloned the chromosomal DNA segment of the wild-type strain W3110 that complements the Seg phenotype of this mutant. Cleavage mapping of this segment showed that it was derived from the 76-min region of the E. coli chromosome map. Complementation tests using plasmids carrying subcloned DNA segments suggested that the seg-3 mutant carried two mutations that additively affected the maintenance of mini-F plasmid; one was in the ugpA gene and the other was presumably in the rpoH gene. We generated a disrupted ugpA null mutant and found that the mini-F plasmid was unstable in this ugpA null mutant even at 30° C. This suggests that the ugpA gene product is required for the stable maintenance of mini-F plasmid.  相似文献   

20.
Low-copy-number plasmids, such as P1 prophage and the fertility factor F, require a plasmid-encoded replication protein and several host products for replication. Stable maintenance also depends on active partitioning of plasmids into daughter cells. Mini-P1 par+ and par plasmids were found to be destabilized by mutations in the dnaJ, dnaK, and grpE genes of Escherichia coli. The transformation efficiency and stability of mini-F plasmids were also reduced in the mutant strains. These results indicate that heat shock proteins DnaJ, DnaK, and GrpE play roles in the replication of plasmid P1 and probably also in of F.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号