首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipopolysaccharides (LPS) from Corynebacterium autotrophicum were isolated and analyzed. Autotrophically grown cells contained 2–5 mg of partly purified LPS per g dry weight of lyophilized cells. Serological cross reaction with Lipid A antigen of Salmonella minnesota confirmed the presence of LPS in C. autotrophicum. Electron microscopy of negatively stained Polymyxin B-treated cells showed formation of blebs on the Outer Membrane indicating an interaction of Polymyxin B specifically with LPS. Up to now, no Gram-positive organisms are known which contain any LPS. Thus, C. autotrophicum, though giving opposite results when the Gram-staining reaction was applied by several authors, has to be classified into the group of Gram-negative bacteria.Non-Common Abbreviations LPS lipopolysaccharide - KDO 2-keto-3-deoxyoctonate  相似文献   

2.
Hot phenol-water extractions were carried out of cells from 12 strains of the fast-growing rhizobia Rhizobium leguminosarum, Rhizobium phaseoli, Rhizobium trifolii and Rhizobium meliloti. Purified lipopolysaccharide preparations contain neutral sugars, hexosamines, 2-keto-3-deoxyoctonate and uronic acids. Glucose, galactose, mannose, rhamnose and fucose are present in the majority of the LPS-preparations, but in varying proportions. Heptose was only found in some of them. O-methylated sugars are present in small amounts is most preparations, the kind of sugar being characteristic for lipopolysaccharides from different species. The lipid A part of lipopolysaccharides from all strains examined has identical patterns of fatty acids, namely -OH-C14:0, -OH-C15:0 (anteiso branched), -OH-C16:0 and -OH-C18:0. Comparison of the total compositions of Rhizobium lipopolysaccharides shows many differences among different species as among strains of a single species. Nearly identical lipopolysaccharide compositions also exist among certain strains, which constitute the same chemotype and which are also immunologically related. In view of a possible role of surface carbohydrates of Rhizobium in the root nodule symbiosis, the specificity of the binding of legume lectins with exo- and lipopolysaccharides of Rhizobium is discussed.Non-Standard Abbreviations LPS lipopolysaccharide(s) - EPS exopolysaccharides(s) - cetavlon cetyltrimethylammoniumbromide - KDO 2-keto-3-deoxyoctonate - ECL equivalent chain length Part II on Surface Carbohydrates of Rhizobium  相似文献   

3.
A procedure is described to determine 2-keto-3-deoxyoctonate (KDO) present in lipopolysaccharide (LPS) of gram-negative bacteria. The method involves the treatment of LPS with 0.2 n H2SO4 at 100°C for 30 min to release KDO, followed by its reaction with periodic acid, sodium arsenite, and thiobarbituric acid. The red chromophore thus formed is kept in solution at room temperature by adding dimethylsulfoxide to the reaction mixture. The final color is stable for days at room temperature and facilitates accurate determination of KDO in microgram quantities. KDO contents of cell surface antigens and glycolipids from gram-negative bacteria are presented as illustrations of the accuracy and sensitivity of the assay.  相似文献   

4.
The chemical structure of the 2-keto-3-deoxyoctonate (KDO) region of the lipopolysaccharide (LPS) isolated from O1 V. cholerae NIH 41R (Ogawa) was elucidated by dephosphorylation, periodate oxidation and methylation analysis. Methylation analysis of KDO in the dephosphorylated LPS revealed the presence of 5-O-acetyl-1,2,4,6,7,8-hexa-O-methyl-3-deoxy-octitol and 2-keto-3-deoxy-heptulosonic acid was detected in the methanolysate of the periodate-oxidized and dephosphorylated LPS. These results indicated that the site of binding of KDO to the core oligosaccharide is position C5 as in enteric gram-negative bacterial LPS, while only one molecule of the KDO residue carrying phosphate on position C4 is present in the inner core region of the LPS in contrast to enteric gram-negative bacterial LPS in which one molecule of KDO carrying KDO or KDO2----4KDO disaccharide instead of the phosphate group at position C4 is present in its main chain.  相似文献   

5.
Earlier work in our laboratory demonstrated that gliding bacteria of the Cytophaga-Flexibacter group contain, in their cell envelopes, large quantities of unusual sulfonolipids (N-fatty acyl 2-amino-3-hydroxyisoheptadecane-1-sulfonic acids). Recently, it has been shown that these lipids are necessary for the gliding motility of C. johnsonae. As one approach to determining the role of the lipids in motility, methods have now been developed for separating the inner (cytoplasmic) and outer membranes of a strain (ATCC 43786) of this Gram-negative bacterium. Sulfonolipid is at least five times as abundant in the outer membrane as in the inner. The inner membrane has properties similar to those found for other Gram-negative bacteria; it has a buoyant density of 1.14 g/ml and is highly enriched in cytochromes and succinate dehydrogenase. The outer membrane (1.18 g/ml) is enriched in bound carbohydrate and sulfonolipid, but contains little or no 2-keto-3-deoxyoctonate (such as is found in the enterobacteria). The localization of the sulfonolipids in the outer membrane permits focus on the possible roles these unusual substances may play in gliding motility.Abbreviations used IM inner membrane - OM outer membrane - KDO 2-keto-3-deoxyoctonate - EDTA ethylenediaminetetraacetic acid - SDH succinate dehydrogenase  相似文献   

6.
Electron microscopy of ruthenium red-stained ultrathin section of strains of Shigella dysenteriae type 1 grown in the Casamino Acids-yeast extract broth medium showed the presence of an extracellular slime layer. The slime appeared as a dense sheath covering bacteria. The presence of slime promoted hemagglutinating activity of the bacteria. The slime polysaccharide (SPS) isolated from the cell-free culture supernatant or the bacterial surface was less than 162,000 daltons in size and immunochemically similar. The SPS showed cross-reaction with lipopolysaccharide (LPS) antigen in immunological tests; however, it also appeared to be different from LPS since it did not contain 2-keto-3-deoxyoctonate, a core sugar of LPS. A different pattern of separation from LPS was also observed by silver staining of SDS-polyacrylamide gels. From these data it appeared that either LPS and SPS are contaminated with each other or that SPS is the polysaccharide portion of LPS.  相似文献   

7.
Use of a dialysis microchamber has allowed continuous observations on the same set of gliding bacteria during changes in the composition of the perfused medium. This procedure has revealed the presence of an adaptive, cyanide-insensitive metabolic pathway, which allows cyanide-treated Flexibacter BH3 to begin gliding again at a reduced rate when glucose is the substrate. In addition, it has revealed that individual flexibacter cells can maintain their gliding motility for up to 20 h in the absence of exogenous substrate.Gliding in Flexibacter BH3 was prevented by those inhibitors blocking the electron transport process. Inhibitors of glucose metabolism did not prevent motility, since the flexibacters obviously metabolize endogenous substrate under such circumstances. Proton ionophores, which induce membrane depolarization, rapidly inhibited gliding in Flexibacter BH3. This inhibition was irreversible in the case of gramicidin S. Gliding was not inhibited by cytochalasin B or antiactin antibody. High concentrations of Ca2+ were particularly inhibitory to the gliding process. The significance of these results is discussed in relation to a possible mechanism of gliding involving the generation of rhythmical contractions in the outer cell membrane of Flexibacter BH3.Abbreviations used CCCP carbonyl cyanide m-chlorophenyl hydrazone - DNP p-dinitrophenol - GMCS gramicidin S - HQNO 2-heptyl-4-hydroxyquinoline N-oxide - PCMB p-chloromercuribenzoate - CM complete Lewin's medium - BS Lewin's basal salts  相似文献   

8.
Summary A lipopolysaccharide was isolated from cell walls of Anacystis nidulans by extraction with 45% aqueous phenol at 65°, and further purified by repeated high speed centrifugation. It contains 30–40% of lipid and about 60% of carbohydrate components. The carbohydrate moiety contains predominantly mannose and smaller amounts of galactose, glucose, fucose, rhamnose, 2-keto-3-deoxyoctonate, glucosamine and a second aminosugar. The latter was identified as a 2-amino-2-deoxyheptose with the gluco-configuration from C3 to C7. Thelipid moiety contains glucosamine and fatty acids (C22:0, C18:2, C16:0, C12:0 and C14:OH). The lipopolysaccharide has a very low phosphate content and does not contain heptose. It shows low pyrogenicity in rabbits and it is not toxic in mice.Abbreviations KDO 2-Keto-3-deoxy-octonate - LPS Lipopolysaccharide  相似文献   

9.
Abstract Periodate-thiobarbituric acid reaction-positive substances were found in the strong acid hydrolysates of the lipopolysaccharide (LPS) from Bacteroides gingivalis 381. They were not identical to 2-keto-3-deoxyoctonate (KDO) in high-voltage paper electrophoresis (HVPE), their electrophoretic mobilities relative to KDO being 1.54 and 1.80, respectively. Alkaline phosphatase treatment and HVPE demonstrated that they are some kind of O-phosphorylated derivatives of KDO; in particular, the slow-moving component is identical, at least in HVPE, to 5- O -phosphoryl-KDO isolated from the strong acid hydrolysates of Bordetella pertussis (phase I) LPS.  相似文献   

10.
Summary Lipopolysaccharides (LPS) were extracted from two strains ofRhizobium japonicum (61A76NS and 3I1b110-I). The extracted LPS was purified by gel filtration column chromatography and the amount of 2-keto-3-deoxyoctonate (KDO) was determined. Column purified LPS from both strains were conjugated to rhodamine isothiocyanate on celite to examine binding of this purified, labeled surface component to aseptically grownGlycine soja (wild soybean) seedlings as a basis for symbiotic specificity using fluorescent microscopy. Rhodamine conjugated LPS from both strains ofRhizobium japonicum did not exhibit specific binding to wild soybean seedling roots.Paper no. 8130 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh, NC 27650, USA.  相似文献   

11.
A cellular (LPS I) and extracellular (LPS II) lipopolysaccharide were isolated from Moraxella glucidolytica cells grown on ethanol and from the culture fluid, respectively. Both LPS were toxic when injected to mice and chick embryos. These LPS contained glucose, galactose, glucosamine, galactosamine, 2-keto-3-deoxyoctonate and lipids. By permethylation studies, glucose was found to be linked (16) and (13) in LPS I and only (16) in LPS II. Galactose was the terminal non-reducing sugar. Branching occurred at positions 3 and 4 of galactose residues. LPS I was rich in - and -hydroxylauric and -hydroxymyristic acids and LPS II contained mainly stearic and -hydroxymyristic acids. LPS I was detoxified by mild acid and alkaline treatments. It was also dissociated by sodium deoxycholate and chromatographed on Sephadex G-75. The main fraction was reassociated by removing the surfactant by dialysis. The morphology of LPS I and LPS II was examined by electron microscopy. LPS I (original and reassociated fractions) consisted exclusively of ribbons while LPS II contained ribbons and vesicles.Non-Standard Abbreviations KDO 2-Keto-3-deoxyoctonic acids - LPS Lipopolysaccharide - NaD Sodium deoxycholate  相似文献   

12.
Abstract Structural analysis of the 2-keto-3-deoxyoctonate region of lipopolysaccharide (LPS) isolated from Porphyromonas (Bacteroides) gingivalis was carried out. The substitution of the polysaccharide portion on the KDO was determined by gas chromatography/mass spectrometry of the product obtained by sequential derivatization of the LPS, including dephosphorylation, permethylation, carboxyl reduction, partial hydrolysis, carbonyl reduction, complete hydrolysis and O -acetylation. It was revealed that the KDO carries the polysaccharide on its position C5 and is phosphorylated on either position C7 or C8, although its exact position is not determined. The structure of the KDO region of P. gingivalis LPS in Gram-negative bacterial LPS had not hitherto been elucidated.  相似文献   

13.
Occurrence of 2-keto-3-deoxyoctonate (KDO) in lipopolysaccharides (LPS) of genusBacteroides (some strains have recently been reclassified asPorphyromonas orPrevotella) was examined. Strong-acid treatment of LPS isolated fromBacteroides fragilis, Bacteroides (Porphyromonas) gingivalis andBacteroides intermedius, (Prevotella intermedia) released periodate/thiobarbituric acid reaction-positive substances that were not detectable under conventional hydrolysis conditions. These substances were demonstrated to be KDO phosphate by high voltage paper electrophoresis before and after alkaline phosphatase treatment. KDO phosphate was also identified in these LPS by gas-liquid chromatography and gas-liquid chromatography/mass spectrometry. KDO was identified as well in both mild and strong-acid hydrolysates of LPS isolated fromBacteriodes melaninogenicus (Prevotella melaninogenica). Neither KDO nor KDO phosphate was detectable in LPS ofBacteriodes asaccharolyticus (Porphyromonas asaccharolytica) even after the strong-acid treatment of LPS. These findings indicate that there are possible structural variations in the inner core region ofBacteroides LPS.  相似文献   

14.
Chemical composition of a lipopolysaccharide from Legionella pneumophila   总被引:7,自引:0,他引:7  
Lipopolysaccharide isolated from Legionella pneumophila (Phil. 1) was examined for chemical composition. The polysaccharide split off by mild acid hydrolysis contained rhamnose, mannose, glucose, quinovosamine, glucosamine and 2-keto-3-deoxyoctonate, in molar proportions 1.6:1.8:1.0:1.5:4.1:2.7. Heptoses were absent and glucose was probably mainly phosphorylated. The carbohydrate backbone of the lipid A part consisted of glucosamine, quinovosamine and glycerol, in the molar ratios 3.9:1.0:3.4, with glycerol as a phosphorylated moiety. A complex fatty acid substitution pattern comprising eight O-ester-linked, exclusively nonhydroxylated acids, and nineteen amide-linked, exclusively 3-hydroxylated acids was revealed. Both straight- and branched (iso and anteiso) carbon chains occurred. The major hydroxy fatty acid was 3-hydroxy-12-methyltridecanoic acid and six others were of a chain-length above 20 carbon atoms, with 3-hydroxy-20-methyldocosanoic acid as the longest. Two dihydroxy fatty acids, 2,3-dihydroxy-12-methyltridecanoic and 2,3-dihydroxytetradecanoic acids, were also detected. These results suggest that L. pneumophila contains a rather complex and unusual lipopolysaccharide structure of considerable biological and chemotaxonomic interest.Abbreviations LPS lipopolysaccharide - PS polysaccharide - KDO 2-keto-3-deoxy-octonate - GC gas chromatography - GC-MS gas chromatograph-mass spectrometer combined instrument - CI chemical ionization - EI electron impact - HF hydrofluoric acid - TFA trifluoroacetyl - TMS trimethylsilyl  相似文献   

15.
A chemotaxonomic study was carried out with a new serotyping scheme comprising 35 O-antigen groups of Vibrio fluvialis on the basis of the sugar composition of the polysaccharide portion of their lipopolysaccharide (LPS). A previously developed rapid method of preparing samples for compositional sugar analysis was employed. The 35 O-antigen groups were divided into 21 chemotypes. It is noted that a rarely occurring component sugar of gram-negative bacterial LPS, D -glycero-D -manno-heptose, and two kinds of uronic acids, i.e., galacturonic acid of a weakly bound type and glucuronic acid of a strongly bound type, were found in common in all the 21 chemotypes. A characteristic sugar component of gram-negative bacterial LPS, 2-keto-3-deoxyoctonate (KDO), was not detectable in any of the 21 chemotypes. Instead, three kinds of “KDO-like substances” were found, one in each of three chemotypes (III, XI and XVII). They were strongly positive in Weissbach's periodate-thiobarbituric acid test for KDO, but definitely not identical to it in high-voltage paper electrophoresis (HVPE); the substance present in chemotype XI was indicated by HVPE to be 3-deoxy-D -threo-hexulosonic acid which is a sugar constituent of Vibrio parahaemolyticus O7 and O12 LPS.  相似文献   

16.
Lipopolysaccharides were isolated from two strains of Thiobacillus ferrooxidans and one strain each of Thiobacillus thiooxidans, Thiobacillus novellus and Thiobacillus sp. IFO 14570. Neutral sugars, 2-keto-3-deoxyoctonate, fatty acids and the rare 2,3-diamino-2,3-dideoxyglucose were detected in all lipopolysaccharides. Lipopolysaccharides of both T. ferrooxidans strains contained l-glycero-d-manno-heptose, whereas that of T. thiooxidans contained both l-glycero-d-manno-heptose and d-glycero-d-manno-heptose. On the other hand, heptoses were absent in lipopolysaccharides of T. novellus and Thiobacillus sp. IFO 14570. Lipid A of T. ferrooxidans and T. thiooxidans contained both glucosamine and 2,3-diamino-2,3-dideoxyglucose, in contrast, lipid A of T. novellus and the Thiobacillus sp. IFO 14570 most likely contain only 2,3-diamino-2,3-dideoxyglucose as backbone sugar. Deoxycholate polyacrylamide gel electrophoresis revealed S-type character for all lipopolysaccharides studied. The significance of the lipopolysaccharide composition for taxonomic and phylogenetic questions with regard to thiobacilli is discussed.Abbreviations DAG 2,3-diamino-2,3-dideoxyglucose - DOC sodium deoxycholate - GC gas-liquid chromatography - GC/MS gas-liquid chromatography/mass spectrometry - d,d-Heptose d-glycero-d-manno-heptose - l,d-Heptose l-glycero-d-manno-heptose - KDO 2-keto-3-deoxyoctonate - LPS lipopolysaccharide - 3-OH-14:0 3-hydroxy-tetradecanoic acid - PAGE polyacrylamide gel electrophoresis - PCP phenol-chloroform-petroleum ether  相似文献   

17.
Phosphorylated 2-keto-3-deoxyoctonate (KDO) has been detected in the strong-acid hydrolysates of lipopolysaccharides (LPS) of family Vibrionaceae including Vibrio cholerae. Structural analysis of LPS isolated from a rough mutant of non-01 V. cholerae 05 by dephosphorylation, periodate oxidation and methylation analysis revealed that the inner core region of the LPS molecule contains only one mole of KDO in contrast to enteric Gram-negative bacterial LPS, and that the phosphate group on the KDO molecule resides in the C4 position, while the site of binding of KDO to heptose, a constituent of the distal part of the inner core region, is the C5 position as in the enteric bacterial LPS.  相似文献   

18.
The chemical and biological properties of the lipopolysaccharide (LPS) isolated from a marine bacterium, Photobacterium phosphoreum PJ-1, were studied. This LPS consists of 40.6% carbohydrate, 27.3% fatty acid, 0.2% 2-keto-3-deoxyoctonate (KDO) and other components. One characteristic of this LPS is its small amount of KDO, the basic component of the usual LPS. Electrophoresis in sodium dodecylsulfate polyacrylamide gel revealed at least two staining bands for carbohydrates. These bands were continuous and broad, and showed rapid electrophoretic mobility which corresponded closely to the fastest moving band of LPS from Salmonella typhimurium. This LPS preparation had adjuvant activity, lethality for ddY mice, and the ability to gel Limulus amebocyte lysate, and the strength of these activities corresponded closely to those of LPS preparations from Escherichia coli 0111:B4 and S. typhimurium. In the test for lethality of the LPS for ddY mice, the lethal action appeared in two phases depending on the dose used for intravenous (i.v.) injection : the early lethal action appeared within 30 min after injection of 250 μg or less, and the late lethal action occurred gradually after 16 hr at doses of 500 μg or more. The total (both phases) LD50 of this LPS (i.v.) for ddY mice was 265 μg per mouse and in only the late phase it was 500 μg. These results show that in spite of structual differences in regard to KDO content, LPS from P. phosphoreum PJ-1 has some biological properties similar to those of LPS from E. coli 0111:B4 and S. typhimurium but it shows no immunological cross-reaction with other LPS.  相似文献   

19.
Two strains of the gliding phototrophic bacterium Chloroflexus aurantiacus were investigated for the presence of lipopolysaccharide (LPS). With both strains, all fractions of hot phenol-water extracts and the extracted cell residues from whole cells or cell homogenates were found to be free from characteristic LPS constituents, such as 3-hydroxy fatty acids, 2-keto-3-deoxyoctonate, heptoses, or O-chain sugars. Phenolchloroform-petroleum ether extracts were also free from precipitable LPS. A lipid A fraction could not be obtained, and there was no hint for glucosamine as a possible lipid A backbone amino sugar. Absence of LPS was confirmed by sodium deoxycholate gel electrophoresis.  相似文献   

20.
The structure of the lipopolysaccharide from Rhizobium meliloti 10406, a derivative of the wild-type strain MVII-1, was examined. The compositional analysis of its polysaccharide moiety demonstrated lack of heptose(s), but high contents in glucose, galacturonic acid and 2-keto-3-deoxy-octonate (dOclA) as characteristic features. The lipid A moiety consisted of a -1,6 linked glucosamine disaccharide carrying ester (at C-4) and glycosidically (at C-1) linked phosphate residues, both present exclusively as monoester phosphates but not as phosphodiesters. Ester- and amidelinked 3-hydroxy fatty acids were mostly present as non-3-O-acylated residues. Laser desorption mass spectrometry (LD-MS) revealed heterogeneity in the fatty acid substitution, as was also indicated by the non-stoichiometric ratios obtained by quantitative fatty acid analysis. The predominating lipid A structure contained at the reducing glucosamine residue ester-linked 3-hydroxy-tetradecanoic acid (3-OH-14:0) and amide-linked 3-OH-18:0, or 3-OH-18:1, respectively. The distal (non-reducing) glucosamine carried ester-bound the recently discovered 27-hydroxyoctacosanoic acid and 3-OH-14:0 and, as amide-linked fatty acid, mostly 3-hydroxy-stearic acid (3-OH-18:0).The isolated lipopolysaccharide exhibited a high extent of lethal toxicity in galactosamine-treated mice, comparable to that of enterobacterial lipopolysaccharide. The structural relationship of LPS and lipid A of Rhizobium meliloti to other rhizobial lipopolysaccharides and lipid A's with respect to questions of taxonomy and of phylogenetic relationships will be discussed.Abbreviations LPS lipopolysaccharide - dOclA 3-deoxy-D-mannooctulosonic acid (KDO) - GalA galacturonic acid - DOC sodium deoxycholate - PAGE polyacrylamide gel electrophoresis - LD-MS laser desorption-mass spectrometry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号