首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Medium reorganization energy and enzymatic reaction activation energy   总被引:1,自引:0,他引:1  
Reorganization and activation energies for charge transfer reactions occurring inside a dielectric sphere have been calculated by solving the problem of polar medium reorganization within and outside a dielectric sphere placed in another infinite dielectric. The dielectric sphere is assumed to simulate a protein globule, i.e. an enzyme molecule. It has been shown that for some reaction types the activation energy tends to decrease as the globule radius increases and that for each of the reaction types considered there is an optimal globule radius an increase of which does not bring about any tangible activation energy reduction. The calculated optimal radii for different processes are in good agreement with the increasing molecular sizes in the series: ribonuclease less than or equal to lysozyme less than serine proteinases approximately equal to cysteine proteinases less than NAD-dependent dehydrogenases. The calculated radii are usually about 1.5 to 1.7 times (and molecular masses about 4-5 times) smaller than the experimental ones. The reasons for this discrepancy are discussed and it has been suggested that the approximate nature of the treatment of a protein globule as a structureless dielectric is the main reason. It is shown that charge transfer at an acute angle to the globule surface is the optimum process. For endoergonic reaction stages it is the net charge transfer towards the periphery and for exoergonic ones that in the reverse direction which are advantageous. These conclusions are consistent with the data about the structure of the above-mentioned enzymes.  相似文献   

2.
Wastewater treatment plants (WWTPs) consume high amounts of energy which is mostly purchased from the grid. During the past years, many ongoing measures have taken place to analyze the possible solutions for both reducing the energy consumption and increasing the renewable energy production in the plants. This review contains all possible aspects which may assist to move towards energy neutrality in WWTPs. The sources of energy in wastewater were introduced and different indicators to express the energy consumption were discussed with examples of the operating WWTPs worldwide. Furthermore, the pathways for energy consumption reductions were reviewed including the operational strategies and the novel technological upgrades of the wastewater treatment processes. Then the methods of recovering the potential energy hidden in wastewater were described along with application of renewable energies in WWTPs. The available assessment methods, which may help in analyzing and comparing WWTPs in terms of energy and greenhouse gas emissions were introduced. Eventually, successful case studies on energy self-sufficiency of WWTPs were listed and the innovative projects in this area were presented.  相似文献   

3.
Adenylate energy pool and energy charge in maturing rape seeds   总被引:3,自引:2,他引:1       下载免费PDF全文
A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number.  相似文献   

4.
Restriction of energy intake, energy expenditure, and aging   总被引:6,自引:0,他引:6  
Energy restriction (ER), without malnutrition, increases maximum life span and retards the development of a broad array of pathophysiological changes in laboratory rodents. The mechanism responsible for the retardation of aging by ER is, however, unknown. One proposed explanation is a reduction in energy expenditure (EE). Reduced EE may increase life span by decreasing the number of oxygen molecules interacting with mitochondria, thereby lowering reactive oxygen species (ROS) production. As a step toward testing this hypothesis, it is important to determine the effect of ER on EE. Several whole-body, organ, and cellular studies have measured the influence of ER on EE. In general, whole-body studies have reported an acute decrease in mass-adjusted EE that disappears with long-term ER. Organ-specific studies have shown that decreases in EE of liver and gastrointestinal tract are primarily responsible for initial reductions in EE with ER. These data, however, do not determine whether cellular EE is altered with ER. Three major processes contributing to resting EE at the cellular level are mitochondrial proton leak, Na(+)-K(+)-ATPase activity, and protein turnover. Studies suggest that proton leak and Na(+)-K(+)-ATPase activity are decreased with ER, whereas protein turnover is either unchanged or slightly increased with ER. Thus, two of the three major processes contributing to resting EE at the cellular level may be decreased with ER. Although additional cellular measurements are needed, the current results suggest that a lowering of EE could be a mechanism for the action of ER.  相似文献   

5.
6.
Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.  相似文献   

7.
8.
9.
The influence of small changes in activity on energy expenditure and hence on energy requirements and energy balance is assessed. Evidence from direct and indirect calorimetry suggests that differences in spontaneous minor activity could readily alter 24-h energy expenditure by as much as 20%. This compares with values in the order of 10% for moderate overfeeding and somewhat less than this during mild cold exposure. Individual variability in 24-h energy expenditure can therefore be accounted for not only by differences in resting metabolism and the thermic responses to energy intake and temperature but also by differences in minor activity. Interactions between activity and environmental factors such as nutrition and temperature can modify the effect of activity on energy balance. Very little is known about mechanisms that could account for differences in spontaneous activity and these need to be the subject of future investigations.  相似文献   

10.
Transpiration and energy exchange   总被引:1,自引:0,他引:1  
  相似文献   

11.
12.
AMPK: a nutrient and energy sensor that maintains energy homeostasis   总被引:2,自引:0,他引:2  
AMP-activated protein kinase (AMPK) is a crucial cellular energy sensor. Once activated by falling energy status, it promotes ATP production by increasing the activity or expression of proteins involved in catabolism while conserving ATP by switching off biosynthetic pathways. AMPK also regulates metabolic energy balance at the whole-body level. For example, it mediates the effects of agents acting on the hypothalamus that promote feeding and entrains circadian rhythms of metabolism and feeding behaviour. Finally, recent studies reveal that AMPK conserves ATP levels through the regulation of processes other than metabolism, such as the cell cycle and neuronal membrane excitability.  相似文献   

13.
The adaptation of oxidative energy transformation in mitochondria to the energy demand of cellular metabolism was investigated in experiments with isolated mitochondria and liver cells and by computer simulation in terms of a mathematical model. Separate draining of different energy pools allowed the determination of the relation between these pools and the elucidation of the importance of the connecting enzyme reactions to the regulation of the whole process. The following conclusions can be drawn from the results: 1. The intramitochondrial adenine nucleotide pool exhibits a homogeneous behaviour, and its changes are the signal for ATP synthesis. 2. The proton-motive force which is in near-equilibrium with the intramitochondrial phosphorylation potential is the immediate signal for the respiratory chain. 3. The intramitochondrial phosphorylation potential is transformed into the external one by a flux-dependent non-equilibrium reaction of the translocator. 4. The rate of respiration-linked ATP formation is regulated by more than one reaction step with varying control strength. 5. In both isolated mitochondria and hepatocytes an activation of respiration is provoked by a decrease in the mitochondrial energy state caused by cellular energy utilization.  相似文献   

14.
15.
JJ Harris  R Jolivet  D Attwell 《Neuron》2012,75(5):762-777
Neuronal computation is energetically expensive. Consequently, the brain's limited energy supply imposes constraints on its information processing capability. Most brain energy is used on synaptic transmission, making it important to understand how energy is provided to and used by synapses. We describe how information transmission through presynaptic terminals and postsynaptic spines is related to their energy consumption, assess which mechanisms normally ensure an adequate supply of ATP to these structures, consider the influence of synaptic plasticity and changing brain state on synaptic energy use, and explain how disruption of the energy supply to synapses leads to neuropathology.  相似文献   

16.
Climate, energy and diversity   总被引:1,自引:0,他引:1  
In recent years, a number of species-energy hypotheses have been developed to explain global patterns in plant and animal diversity. These hypotheses frequently fail to distinguish between fundamentally different forms of energy which influence diversity in dissimilar ways. Photosynthetically active radiation (PAR) can be utilized only by plants, though their abundance and growth rate is also greatly influenced by water. The Gibbs free energy (chemical energy) retained in the reduced organic compounds of tissue can be utilized by all heterotrophic organisms. Neither PAR nor chemical energy influences diversity directly. Both, however, influence biomass and/or abundance; diversity may then increase as a result of secondary population dynamic or evolutionary processes. Temperature is not a form of energy, though it is often used loosely by ecologists as a proxy for energy; it does, however, influence the rate of utilization of chemical energy by organisms. It may also influence diversity by allowing a greater range of energetic lifestyles at warmer temperatures (the metabolic niche hypothesis). We conclude that there is no single species/energy mechanism; fundamentally different processes link energy to abundance in plants and animals, and diversity is affected secondarily. If we are to make progress in elucidating these mechanisms, it is important to distinguish climatic effects on species' distribution and abundance from processes linking energy supply to plant and animal diversity.  相似文献   

17.
Ivana Bratic  Aleksandra Trifunovic 《BBA》2010,1797(6-7):961-967
Ageing can be defined as “a progressive, generalized impairment of function, resulting in an increased vulnerability to environmental challenge and a growing risk of disease and death”. Ageing is likely a multifactorial process caused by accumulated damage to a variety of cellular components. During the last 20 years, gerontological studies have revealed different molecular pathways involved in the ageing process and pointed out mitochondria as one of the key regulators of longevity. Increasing age in mammals correlates with increased levels of mitochondrial DNA (mtDNA) mutations and a deteriorating respiratory chain function. Experimental evidence in the mouse has linked increased levels of somatic mtDNA mutations to a variety of ageing phenotypes, such as osteoporosis, hair loss, graying of the hair, weight reduction and decreased fertility. A mosaic respiratory chain deficiency in a subset of cells in various tissues, such as heart, skeletal muscle, colonic crypts and neurons, is typically found in aged humans. It has been known for a long time that respiratory chain-deficient cells are more prone to undergo apoptosis and an increased cell loss is therefore likely of importance in the age-associated mitochondrial dysfunction. In this review, we would like to point out the link between the mitochondrial energy balance and ageing, as well as a possible connection between the mitochondrial metabolism and molecular pathways important for the lifespan extension.  相似文献   

18.
19.
Maintaining energy balance in the context of body-weight regulation requires a multifactorial approach. Recent findings suggest that an elevated protein intake plays a key role herein, through (i) increased satiety related to increased diet-induced thermogenesis, (ii) its effect on thermogenesis, (iii) body composition, and (iv) decreased energy-efficiency, all of which are related to protein metabolism. Supported by these mechanisms, relatively larger weight loss and subsquent stronger body-weight maintenance have been observed. Elevated thermogenesis and GLP-1 appear to play a role in high protein induced satiety. Moreover, a negative fat-balance and positive protein-balance is shown in the short-term, whereby fat-oxidation is increased. Furthermore, a high protein diet shows a reduced energy efficiency related to the body-composition of the body-weight regained, i.e. favor of fat free mass. Since protein intake is studied under various energy balances, absolute and relative protein intake needs to be discriminated. In absolute grams, a normal protein diet becomes a relatively high protein diet in negative energy balance and at weight maintenance. Therefore 'high protein negative energy balance diets' aim to keep the grams of proteins ingested at the same level as consumed at energy balance, despite lower energy intakes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号