首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Troponin T (TnT) isoforms of chicken fast skeletal muscle are classified into two types, breast-muscle-type (B-type) and leg-muscle-type (L-type) isoforms. These isoforms are produced from a single gene by differential alternative splicing of pre-mRNA. We investigated immunohistochemically the distribution of B-type TnT isoforms in chicken leg muscle (musculus biceps femoris), using anti-exon x3 that was raised against a synthetic peptide corresponding to exon x3 and recognized B-type, but not the L-type, TnT isoforms. Mosaic patterns of immunostaining showing locally different expression of B-type TnT isoforms in a single fiber were observed among fibers, and the non-uniform distribution of the isoforms was also detected in sectioned fibers and myofibrils from the muscle. The results indicated that regulation of pre-mRNA splicing of fast skeletal muscle TnT was different not only among the muscle fibers but also within a single fiber, suggesting that heterogeneous myonuclei in regulation of alternative splicings occur in a single muscle fiber.  相似文献   

2.
In order to show the tissue-specific distribution of troponin T (TnT) isoforms in avian skeletal muscles, their expression was examined by electrophoresis of the breast and leg muscles of seven avian species and immunoblotting with the antiserum against fast skeletal muscle TnT. It has been reported in the chicken that breast-muscle-type (B-type) and leg-muscle-type (L-type) TnT isoforms are expressed specifically in the adult breast and leg muscles, respectively. Their differential expression patterns were confirmed in all birds examined in this study. The expression of a segment encoded by the exon x series of TnT was also examined by immunoblotting with the antiserum against a synthetic peptide derived from the exon x3 sequence, because the segment has been shown to be included exclusively in the B-type, but not in the L-type TnT. The expression of the segment was found only in the breast muscle, but not in the leg muscle of all birds examined. TnT cDNA sequences from the duck breast and leg muscles were determined and showed that only B-type TnT had an exon x-related sequence, suggesting that the expression of B-type TnT containing the exon x-derived segment is conserved consistently in the birds.  相似文献   

3.
4.
Monoclonal antibodies were prepared to stage-specific chicken pectoral muscle myosin heavy chain isoforms. From comparison of serial sections reacted with these antibodies, the myosin heavy chain isoform composition of individual myofibers was determined in denervated pectoral muscle and in regenerating myotubes that developed following cold injury of normal and denervated muscle. It was found that the neonatal myosin heavy chain reappeared in most myofibers following denervation of the pectoral muscle. Regenerating myotubes in both innervated and denervated muscle expressed all of the myosin heavy chain isoforms which have thus far been characterized in developing pectoral muscle. However, the neonatal and adult myosin heavy chains appeared more rapidly in regenerating myotubes compared to myofibers in developing muscle. While the initial expression of these isoforms in the regenerating areas was similar in innervated and denervated muscles, the neonatal myosin heavy chain did not disappear from noninnervated regenerating fibers. These results indicate that innervation is not required for the appearance of fast myosin heavy chain isoforms, but that the nerve plays some role in the repression of the neonatal myosin heavy chain.  相似文献   

5.
We test the hypothesis that cat jaw satellite cells belong to a distinct lineage preprogrammed to express masticatory-specific isoforms of myosin heavy-chain (m-MyHC), myosin-binding protein-C (m-MBP-C), and tropomyosin (m-Tm) during myogenesis in vitro. A monoclonal antibody (MAb) against m-MyHC and MAbs raised here against cat m-MBP-C and m-Tm were used to stain cryostat sections of cat masseter muscle and cultured myotubes derived from satellite cells of cat temporalis and limb muscles, using peroxidase immunohistochemistry. MAbs against m-MBP-C bound purified m-MBP-C in Western blots. MAbs against m-Tm failed to react with m-Tm in Western blots, but reacted with native m-Tm in gel electrophoresis–derived ELISA. In cat masseter sections, MAbs against m-MyHC, m-MBP-C, and m-Tm stained all masticatory fibers, but not the jaw-slow fibers. Cat jaw and limb muscle cultures mature significantly more slowly relative to rodent cultures. However, at 3 weeks, all three MAbs extensively stained temporalis myotubes, whereas they apparently stained isolated myotubes weakly in cat limb and rat jaw cultures. We conclude that satellite cells of masticatory fibers are preprogrammed to express these isoforms during myogenesis in vitro. These results consolidate the notion that masticatory and limb muscle allotypes are distinct. (J Histochem Cytochem 58:623–634, 2010)  相似文献   

6.
Numerous troponin T (TnT) isoforms are produced by alternative splicing from three genes characteristic of cardiac, fast skeletal, and slow skeletal muscles. Apart from the developmental transition of fast skeletal muscle TnT isoforms, switching of TnT expression during muscle development is poorly understood. In this study, we investigated precisely and comprehensively developmental changes in chicken cardiac and slow skeletal muscle TnT isoforms by two-dimensional gel electrophoresis and immunoblotting with specific antisera. Four major isoforms composed of two each of higher and lower molecular weights were found in cardiac TnT (cTnT). Expression of cTnT changed from high- to low-molecular-weight isoforms during cardiac muscle development. On the other hand, such a transition was not found and only high-molecular-weight isoforms were expressed in the early stages of chicken skeletal muscle development. Two major and three minor isoforms of slow skeletal muscle TnT (sTnT), three of which were newly found in this study, were expressed in chicken skeletal muscles. The major sTnT isoforms were commonly detected throughout development in slow and mixed skeletal muscles, and at developmental stages until hatching-out in fast skeletal muscles. The expression of minor sTnT isoforms varied from muscle to muscle and during development.  相似文献   

7.
Coordinate accumulation of troponin subunits in chicken breast muscle   总被引:3,自引:0,他引:3  
The accumulation of troponin subunits in developing chicken breast muscle was determined by two-dimensional gel electrophoresis and an image analyzing system. Many troponin T isoforms, including those hidden behind creatine kinase, were detected on the two-dimensional pattern by the addition of 6 M urea in the second dimension. These troponin T isoforms were classified into four types by developmental order, isoelectric point, and molecular weight: leg-muscle type (L), neonatal breast-muscle type (BN), young chicken breast-muscle type (BC), and adult breast-muscle type (BA). The L-, BN-, and BC-type troponin Ts were transiently expressed at specific developmental stages. Quantitative analysis of two-dimensional patterns of troponin subunits including troponin I and troponin C showed moderate coordination in accumulation among the three subunits throughout postnatal development, when the total amount of all isoforms of troponin T was taken into account.  相似文献   

8.
余梅  蔡伟强  金建平  张庆德  曹建华  李奎 《遗传学报》2003,30(12):1097-1100
以艾维茵鸡和湖北省地方鸡种洪山鸡为实验材料 ,借助特异性识别Tx残基肽的单克隆抗体 6B8,采用Western杂交方法 ,检测Tx TnT异构体在洪山鸡和艾维茵鸡 7个发育时期 (孵化第 14d、初生 1日龄、7、14、2 1、2 8和35日龄 )的胸肌和腿肌中的表达差异 ,并与胸肌重进行相关分析。结果表明 ,Tx TnT在腿肌和孵化第 14d的胸肌中均不表达 ,在初生 1日龄后胸肌中的表达随发育逐步增长 ,统计分析发现 ,Tx TnT在艾维茵鸡和洪山鸡胸肌中的表达量具有显著差异 (P <0 0 5 ) ,与胸肌重具有显著相关 (P <0 0 5 )。  相似文献   

9.
10.
Membrane trafficking is one of the most important mechanisms involved in the establishment and maintenance of the forms and functions of the cell. However, it is poorly understood in skeletal muscle cells. In this study, we have focused on vesicle-associated membrane proteins (VAMPs), which are components of the vesicle docking and fusion complex, and have performed immunostaining to investigate the expression of VAMPs in rat skeletal muscle tissue. We have found that VAMP2, but not VAMP1 or VAMP3, is expressed in satellite cells. VAMP2 is also expressed in myofibers in the soleus muscle and nerve endings. This is consistent with previous studies in which VAMP2 has been shown to regulate GLUT4 trafficking in slow-twitch myofibers in soleus muscle and neurotransmitter release in nerve endings. As satellite cells are quiescent myogenic cells, the expression of VAMP2 has further been examined in regenerating muscles after injury by the snake venom, cardiotoxin; we have observed enhanced expression of VAMP2 in immature myotubes with a peak at 3 days after injury. Our findings suggest that VAMP2 plays roles in quiescent satellite cells and is involved in muscle regeneration. The nature of the material transported in the VAMP2-bearing vesicles in satellite cells and myotubes is still under investigation. This work was supported by a research grant (17A-10) for nervous and mental disorders from the Ministry of Health, Labor, and Welfare of Japan, and Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.  相似文献   

11.
Deletion of murine Smn exon 7, the most frequent mutation found in spinal muscular atrophy, has been directed to either both satellite cells, the muscle progenitor cells and fused myotubes, or fused myotubes only. When satellite cells were mutated, mutant mice develop severe myopathic process, progressive motor paralysis, and early death at 1 mo of age (severe mutant). Impaired muscle regeneration of severe mutants correlated with defect of myogenic precursor cells both in vitro and in vivo. In contrast, when satellite cells remained intact, mutant mice develop similar myopathic process but exhibit mild phenotype with median survival of 8 mo and motor performance similar to that of controls (mild mutant). High proportion of regenerating myofibers expressing SMN was observed in mild mutants compensating for progressive loss of mature myofibers within the first 6 mo of age. Then, in spite of normal contractile properties of myofibers, mild mutants develop reduction of muscle force and mass. Progressive decline of muscle regeneration process was no more able to counterbalance muscle degeneration leading to dramatic loss of myofibers. These data indicate that intact satellite cells remarkably improve the survival and motor performance of mutant mice suffering from chronic myopathy, and suggest a limited potential of satellite cells to regenerate skeletal muscle.  相似文献   

12.
Alternative splicing of troponin T (TnT) in striated muscle during development results in expression of different isoforms, with the splicing of a 5(') exon of TnT resulting in the expression of low-molecular-weight basic adult TnT isoforms and high-molecular-weight acidic embryonic TnT isoforms. Although other differences exist, the main differences between cardiac TnT (cTnT) and fast skeletal muscle TnT (fTnT) are in the NH(2) terminus, with fTnT being less acidic than cTnT. A transgenic mouse line expressing chicken fTnT in the heart was used to investigate the functional significance of TnT NH(2)-terminal charge differences on cardiac muscle contractility. The rates of force redevelopment (k(tr)) at four levels of Ca(2+) activation were recorded for skinned left ventricular trabeculae from control and transgenic mice. The k(tr) vs Ca(2+) relationship was different in control mice and transgenic mice, suggesting that the structure of TnT, and possibly the NH(2)-terminal region, is involved in determining the kinetics of cross-bridge cycle. These results suggest that isoform shifts in TnT may be an important molecular mechanism for determining the Ca(2+) dependence of cardiac muscle contractility.  相似文献   

13.
Specific isoforms of myofibrillar proteins are expressed in different muscles and in various fiber types within a single muscle. We have isolated and characterized monoclonal antibodies against C-proteins from slow tonic (anterior latissimus dorsi, ALD) and fast twitch (pectoralis major) muscles of the chicken. Although the antibody against "fast" C-protein (MF-1) did not bind to the "slow" isoform and the antibody to the "slow" C-protein (ALD-66) did not bind to the "fast" isoform, we observed that both antibodies bound C-protein from the posterior latissimus dorsi (PLD) muscle. Here we demonstrate that in the PLD muscle the binding sites of these two antibodies reside in two different C-protein isoforms which have different molecular weights and can be separated by hydroxylapatite column chromatography. Since we have shown previously that both these antibodies stain all myofibers and myofibrils derived from PLD muscle, we conclude that all myofibers in this muscle contain both isoforms with all sarcomeres.  相似文献   

14.
《The Journal of cell biology》1984,98(6):1961-1972
Antibodies against chicken erythrocyte vimentin and gizzard desmin were affinity purified and then cross-absorbed with the heterologous antigen. They were used to study the in vivo distributions of these proteins in developing and mature myotubes by immunofluorescence microscopy of 0.5-2-micron frozen sections of iliotibialis muscle in 7- 21-day chick embryos, neonatal and 1-d postnatal chicks, and adult chickens. The distributions of vimentin and desmin were coincidental throughout the development of myotubes, but the concentration of vimentin was gradually reduced as the myotubes matured and became largely undetectable at the time of hatching. The process of confining these proteins to the level of Z line from the initial uniform distribution occurred subsequent to the process of bringing myofibrils into lateral registry: in-register lateral association of several myofibrils was occasionally seen as early as in 7-11-d embryos, whereas the cross-striated immunofluorescence pattern of desmin and vimentin was only vaguely discerned in myotubes of 17-d embryos, just 4 d before hatching. In some myotubes of 21-d embryos, myofibrils were in lateral registry as precisely as in adult myofibers but desmin was still widely distributed around Z line in an irregular manner. Nevertheless, in many other myotubes of prenatal or neonatal chicks, desmin became confined to the level of Z line in a manner similar to that seen in adult myofibers, thus essentially completing its redistribution to the confined state of adult myofibers in coincidence with the time of hatching. In extracts from iliotibialis and posterior latissimus dorsi muscles of adult chickens, we detected a hitherto unidentified protein that was very similar to vimentin in molecular weight but did not react with our antivimentin antibody. We discuss the possibility that this protein was confused with vimentin in the past.  相似文献   

15.
Postnatal myoblasts, the satellite cells, originating from slow and fast skeletal muscle fibres differentiate and fuse into myotubes expressing different phenotype of myosin heavy chain (MyHC) isoforms. Little is known, however, of factors which establish and maintain this phenotypic diversity. We used immunofluorescent labelling and Western blotting to examine the expression of slow and fast MyHC isoforms in myotubes formed in vitro from satellite cells isolated from mouse fast twitch extensor digitorum longus (EDL) and slow twitch soleus muscles. Satellite cells were cultured in serum-rich growth medium promoting myoblast proliferation until cross-striated and self-contracting myotubes were formed. We report that in both cultures myotubes expressed slow as well as fast MyHC isoforms, but the level of slow MyHC was higher in soleus culture than in EDL culture. Hence, the pattern of expression of slow and fast MyHC was characteristic of the muscle fibre type from which these cells derive. These results support the concept of phenotypic diversity among satellite cells in mature skeletal muscles and suggest that this diversity is generated in vitro irrespectively of serum mitogens.  相似文献   

16.
R E Breitbart  B Nadal-Ginard 《Cell》1987,49(6):793-803
Alternative RNA splicing is a ubiquitous process permitting single genes to encode multiple protein isoforms. Here we report experiments in which a gene construct, containing combinatorial Troponin T (TnT) exons that manifest an exceptional diversity of alternative splicing in vivo, has been transfected into muscle and nonmuscle cells. Analyses of the spliced RNAs show that the alternative TnT exons retain their capacity for differential splicing in the modified minigene context when introduced into a variety of nonmuscle and muscle cells. The patterns of alternative splicing differ depending on cell type. Only in differentiated myotubes are the alternative exons normally incorporated during splicing, reproducing their behavior in the native gene; they are excluded in nonmuscle cells and myoblasts that do not express the endogenous TnT. These results provide proof that trans factors required for correct alternative splicing are induced during myogenesis. Surprisingly, such factors are also required for the correct splicing of constitutive TnT exons.  相似文献   

17.
《The Journal of cell biology》1985,101(5):1643-1650
We prepared monoclonal antibodies specific for fast or slow classes of myosin heavy chain isoforms in the chicken and used them to probe myosin expression in cultures of myotubes derived from embryonic chicken myoblasts. Myosin heavy chain expression was assayed by gel electrophoresis and immunoblotting of extracted myosin and by immunostaining of cultures of myotubes. Myotubes that formed from embryonic day 5-6 pectoral myoblasts synthesized both a fast and a slow class of myosin heavy chain, which were electrophoretically and immunologically distinct, but only the fast class of myosin heavy chain was synthesized by myotubes that formed in cultures of embryonic day 8 or older myoblasts. Furthermore, three types of myotubes formed in cultures of embryonic day 5-6 myoblasts: one that contained only a fast myosin heavy chain, a second that contained only a slow myosin heavy chain, and a third that contained both a fast and a slow heavy chain. Myotubes that formed in cultures of embryonic day 8 or older myoblasts, however, were of a single type that synthesized only a fast class of myosin heavy chain. Regardless of whether myoblasts from embryonic day 6 pectoral muscle were cultured alone or mixed with an equal number of myoblasts from embryonic day 12 muscle, the number of myotubes that formed and contained a slow class of myosin was the same. These results demonstrate that the slow class of myosin heavy chain can be synthesized by myotubes formed in cell culture, and that three types of myotubes form in culture from pectoral muscle myoblasts that are isolated early in development, but only one type of myotube forms from older myoblasts; and they suggest that muscle fiber formation probably depends upon different populations of myoblasts that co-exist and remain distinct during myogenesis.  相似文献   

18.
Polyclonal antibodies were raised in guinea pigs against troponin-T (TnT) isoforms purified from fast- and slow-twitch rabbit muscles. With the use of these antibodies and immunoblots of one- and two-dimensional electrophoreses, the distribution of fast and slow TnT isoforms was investigated in normal and chronically stimulated hindlimb muscles of the rabbit. According to differences in their apparent molecular masses, six fast TnT isoforms (TnTcf, TnT1f, TnT2f, TnT3f, TnT4f, TnT5f) were distinguished in normal tibialis anterior and extensor digitorum longus muscles. These muscles also contained low amounts of TnT1s and TnT2s which were the predominant TnT isoforms in slow-twitch soleus muscle. Fast and slow TnT isoforms were found to exist in several charge variants, i.e. one for TnTcf, three different charge forms for TnT1f, seven for TnT2f, four for TnT3f, three for TnT4f, one for TnT5f, four for TnT1s, and three for TnT2s. Some charge variants were phosphorylated isoforms because treatment with alkaline phosphatase reduced the number of the 19 fast and 7 slow variants to 12 and 3, respectively. The stimulation-induced fast-to-slow transition caused progressive decreases in fast and increases in slow isoforms. The decrease and the disappearance of the major fast isoforms followed a sequence of TnT2f, TnTcf, TnT4f, TnT1f, and TnT3f. This decrease in fast isoforms fits well with the reduction of fast TnT mRNAs assessed by Northern blot analysis. Prolonged stimulation ultimately created a TnT isoform pattern similar to that found in normal slow-twitch muscle. Stimulation also induced changes in the tropomyosin subunit pattern with a decrease in the fast and an increase in the slow alpha-tropomyosin subunit without altering the alpha/beta-tropomyosin subunit ratio. Similar to slow-twitch soleus muscle, long-term stimulated muscles contained appreciable amounts of the fast alpha-tropomyosin subunit, but only traces of fast TnT isoforms. This combination indicated that the predominant slow TnT isoforms may be capable of interacting with fast tropomyosin in these muscles.  相似文献   

19.
Regenerating areas of adult chicken fast muscle (pectoralis major) and slow muscle (anterior latissimus dorsi) were examined in order to determine synthesis patterns of myosin light chains, heavy chains and tropomyosin. In addition, these patterns were also examined in muscle cultures derived from satellite cells of adult fast and slow muscle. One week after cold-injury the regenerating fast muscle showed a pattern of synthesis that was predominately embryonic. These muscles synthesized the embryonic myosin heavy chain, beta-tropomyosin and reduced amounts of myosin fast light chain-3 which are characteristic of embryonic fast muscle but synthesized very little myosin slow light chains. The regenerating slow muscle, however, showed a nearly complete array of embryonic peptides including embryonic myosin heavy chain, fast and slow myosin light chains and both alpha-fast and slow tropomyosins. Peptide map analysis of the embryonic myosin heavy chains synthesized by regenerating fast and slow muscles showed them to be identical. Thus, in both muscles there is a return to embryonic patterns during regeneration but this return appears to be incomplete in the pectoralis major. By 4 weeks postinjury both regenerating fast and slow muscles had stopped synthesizing embryonic isoforms of myosin and tropomyosin and had returned to a normal adult pattern of synthesis. Adult fast and slow muscles yielded a satellite cell population that formed muscle fibers in culture. Fibers derived from either population synthesized the embryonic myosin heavy chain in addition to alpha-fast and beta-tropomyosin. Thus, muscle fibers derived in culture from satellite cells of fast and slow muscles synthesized a predominately embryonic pattern of myosin heavy chains and tropomyosin. In addition, however, the satellite cell-derived myotubes from fast muscle synthesized only fast myosin light chains while the myotubes derived from slow muscle satellite cells synthesized both fast and slow myosin light chains. Thus, while both kinds of satellite cells produced embryonic type myotubes in culture the overall patterns were not identical. Satellite cells of fast and slow muscle appear therefore to have diverged from each other in their commitment during maturation in vivo.  相似文献   

20.
The different isoforms of fast skeletal muscle troponin T (TnT) are generated by alternative splicing of several 5' exons in the fast TnT gene. In rabbit skeletal muscle this process results in three major fast TnT species, TnT1f, TnT2f and TnT3f, that differ in a region of 30 to 40 amino acid residues near the N terminus. Differential expression of these three isoforms modulates the activation of the thin filament by calcium. To establish a basis for further structure-function studies, we have sequenced the N-terminal region of these proteins. TnT2f is the fast TnT sequenced by Pearlstone et al. The larger species TnT1f contains six additional amino acid residues identical in sequence and position to those encoded by exon 4 in the rat fast skeletal muscle TnT gene. TnT3f also contains that sequence but lacks 17 amino acid residues spanning the region encoded by exons 6 and 7 of the rat gene. These three TnTs appear to be generated by discrete alternative splicing pathways, each differing by a single event. Comparison of these TnT sequences with those from chicken fast skeletal muscle and bovine heart shows that the splicing pattern resulting in the excision of exon 4 is evolutionarily conserved and leads to a more calcium-sensitive thin filament.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号