首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Carotene isomerase mutant (crtH mutant) cells of Synechocystis sp. PCC 6803 can accumulate beta-carotene under light conditions. However, the mutant cells grown under a light-activated heterotrophic growth condition contained detectable levels of neither beta-carotene nor D1 protein of the photosystem (PS) II reaction center, and no oxygen-evolving activity of PSII was detected. beta-Carotene and D1 protein appeared and a high level of PSII activity was detected after the cells were transferred to a continuous light condition. The PSI activities of thylakoid membranes from mutant cells were almost the same as those of thylakoid membranes from wild-type cells, both before and after transfer to the continuous light condition. These results suggest that beta-carotene is required for the assembly of PSII but not for that of PSI.  相似文献   

3.
The transport of putrescine into a moderately salt tolerant cyanobacterium Synechocystis sp. PCC 6803 was characterized by measuring the uptake of radioactively-labeled putrescine. Putrescine transport showed saturation kinetics with an apparent K(m) of 92 +/- 10 microM and V(max) of 0.33 +/- 0.05 nmol/min/mg protein. The transport of putrescine was pH-dependent with highest activity at pH 7.0. Strong inhibition of putrescine transport was caused by spermine and spermidine whereas only slight inhibition was observed by the addition of various amino acids. These results suggest that the transport system in Synechocystis sp. PCC 6803 is highly specific for polyamines. Putrescine transport is energy-dependent as evidenced by the inhibition by various metabolic inhibitors and ionophores. Slow growth was observed in cells grown under salt stress. Addition of low concentration of putrescine could restore growth almost to the level observed in the absence of salt stress. Upshift of the external osmolality generated by either NaCl or sorbitol caused an increased putrescine transport with an optimum 2-fold increase at 20 mosmol/kg. The stimulation of putrescine transport mediated by osmotic upshift was abolished in chloramphenicol-treated cells, suggesting possible involvement of an inducible transport system.  相似文献   

4.
We investigated the spectrum of secreted proteins in the cyanobacterium Synechocystis, and identified these proteins by amino-terminal sequencing. In total, seven sequences have been determined that corresponded to the proteins Sll0044, Sll1694, Sll1891, Slr0924, Slr0841, Slr0168, and Slr1855. The protein Sll1694 of 18 kDa that formed one of two major bands on SDS-PAGE was identified as cyanobacterial pilin, PilA. The amino-terminal sequence of another protein that formed a second major band was blocked. The analysis of the data revealed that five of seven proteins had distinct putative leader sequences for secretion.  相似文献   

5.
Accumulation of poly-beta-hydroxybutyrate (PHB) by photoautotrophic microorganisms makes it possible to reduce the production cost of PHB. The Synechocystis sp. PCC6803 cells grown in BG11 medium under balanced, nitrogen-starved or phosphorus-starved conditions were observed by transmission electron microscope. Many electron-transparent granules in the nitrogen-starved cells had a diameter up to 0.8 micron. In contrast, the number of granules in the normally cultured cells decreased obviously and only zero to three much smaller granules were in each cell. These granules were similar to those in bacteria capable of synthesizing PHB. They were proved to be PHB by gas chromatography after subjecting the cells to methanolysis. Effects of glucose as carbon source and light intensity on PHB accumulation in Synechocystis sp. PCC6803 under nitrogen-starved cultivation were further studied. Glucose and illumination promoted cell growth but did not favor PHB synthesis. After 7 days of growth under nitrogen-starved photoautotrophic conditions, the intracellular level of PHB was up to 4.1% of cellular dry weight and the PHB concentration in the culture broth was 27 mg/l.  相似文献   

6.
T Ogawa  E Marco    M I Orus 《Journal of bacteriology》1994,176(8):2374-2378
A high-CO2-requiring mutant, G7, of Synechocystis sp. strain PCC6803 capable of inorganic carbon transport but unable to utilize the intracellular inorganic carbon pool for photosynthesis was isolated. Transmission electron micrographs of the mutant indicated that the mutant does not have any carboxysomes. A clone (pHPG7) with a 7.5-kbp DNA insert that transforms the G7 mutant to the wild-type phenotype was isolated from a genomic library of wild-type Synechocystis sp. strain PCC6803. Complementation tests with subclones identified the mutation site in G7 within 208 bp. Sequencing of nucleotides in this region elucidated an open reading frame, designated ccmA, encoding a protein of 302 amino acids. Cloning and sequence analysis of the respective G7 gene revealed an A-to-G substitution that results in an Asp-to-Gly substitution in the deduced amino acid. The result indicated that the ccmA gene encodes a protein essential for the formation of carboxysomes. An open reading frame encoding a proline-rich protein of 271 amino acids was found downstream of the ccmA gene, but no ccm-like genes or rbc operon was found in this region.  相似文献   

7.
The unicellular cyanobacterium Synechocystis sp. PCC6803 can grow heterotrophically in complete darkness, given that a brief period of illumination is supplemented every day (light-activated heterotrophic growth, LAHG), or under very weak (<0.5 micromol m(-2) s(-1)) but continuous light. By random insertion of the genome with an antibiotic resistance cassette, mutants defective in LAHG were generated. In two identical mutants, sll0886, a tetratricopeptide repeat (TPR)-family membrane protein gene, was disrupted. Targeted insertion of sll0886 and three downstream genes showed that the phenotype was not due to a polar effect. The sll0886 mutant shows normal photoheterotrophic growth when the light intensity is at 2.5 micromol m(-2) s(-1) or above, but no growth at 0.5 micromol m(-2) s(-1). Homologs to sll0886 are also present in cyanobacteria that are not known of LAHG. sll0886 and homologs may be involved in controlling different physiological processes that respond to light of low fluence.  相似文献   

8.
Synechocystis sp. PCC 6803 is a unicellular motile cyanobacterium that shows positive and negative phototaxis on agar plates under lateral illumination. Recent studies on the molecular mechanisms of the phototactic motility of Synechocystis have revealed that a number of genes are responsible for its pilus-dependent motility and phototaxis. Here we describe what is known about these genes. We also discuss the novel spectral properties of the phytochrome-like photoreceptor PixJ1 in Synechocystis, that is essential for positive phototaxis and which has revealed the existence of a new group of chromophore-binding proteins in cyanobacteria.  相似文献   

9.
To advance our knowledge of the model cyanobacterium Synechocystis sp. PCC 6803 we investigated the three-dimensional organization of the cytoplasm using standard transmission electron microscopy and electron tomography. Electron tomography allows a resolution of ~5 nm in all three dimensions, superior to the resolution of most traditional electron microscopy, which is often limited in part by the thickness of the section (70 nm). The thylakoid membrane pairs formed layered sheets that followed the periphery of the cell and converged at various sites near the cytoplasmic membrane. At some of these sites, the margins of thylakoid membranes associated closely along the external surface of rod-like structures termed thylakoid centers, which sometimes traversed nearly the entire periphery of the cell. The thylakoid membranes surrounded the central cytoplasm that contained inclusions such as ribosomes and carboxysomes. Lipid bodies were dispersed throughout the peripheral cytoplasm and often juxtaposed with cytoplasmic and thylakoid membranes suggesting involvement in thylakoid maintenance or biogenesis. Ribosomes were numerous and mainly located throughout the central cytoplasm with some associated with thylakoid and cytoplasmic membranes. Some ribosomes were attached along internal unit-membrane-like sheets located in the central cytoplasm and appeared to be continuous with existing thylakoid membranes. These results present a detailed analysis of the structure of Synechocystis sp. PCC 6803 using high-resolution bioimaging techniques and will allow future evaluation and comparison with gene-deletion mutants.Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

10.
The role of the primary-like sigma factor SigC was studied in Synechocystis. Under high temperature stress (48 degrees C) the DeltasigC inactivation strain showed a lower survival rate than the control strain. The DeltasigC strain grew poorly at 43 degrees C in liquid cultures under normal air. However, change to 3% CO(2) enhanced growth of DeltasigC at 43 degrees C. Differences in expression of many genes related to the carbon concentrating mechanisms between the control and the DeltasigC strain were recorded with a genome-wide DNA microarray. We suggest that low solubility of CO2 at high temperature is one of the factors contributing to the poor thermotolerance of the DeltasigC strain.  相似文献   

11.
Glutaminase is widely distributed among microorganisms and mammals with important functions. Little is known regarding the biochemical properties and functions of the deamidating enzyme glutaminase in cyanobacteria. In this study a putative glutaminase encoded by gene slr2079 in Synechocystis sp. PCC 6803 was investigated. The slr2079 was expressed as histidine-tagged fusion protein in Escherichia coli. The purified protein possessed glutaminase activity, validating the functional assignment of the genomic annotation. The apparent K m value of the recombinant protein for glutamine was 26.6 ± 0.9 mmol/L, which was comparable to that for some of other microbial glutaminases. Analysis of the purified protein revealed a two-fold increase in catalytic activity in the presence of 1 mol/L Na+. Moreover, the K m value was decreased to 12.2 ± 1.9 mmol/L in the presence of Na+. These data demonstrate that the recombinant protein Slr2079 is a glutaminase which is regulated by Na+ through increasing its affinity for substrate glutamine. The slr2079 gene was successfully disrupted in Synechocystis by targeted mutagenesis and the Δslr2079 mutant strain was analyzed. No differences in cell growth and oxygen evolution rate were observed between Δslr2079 and the wild type under standard growth conditions, demonstrating slr2079 is not essential in Synechocystis. Under high salt stress condition, however, Δslr2079 cells grew 1.25-fold faster than wild-type cells. Moreover, the photosynthetic oxygen evolution rate of Δslr2079 cells was higher than that of the wild-type. To further characterize this phenotype, a number of salt stress-related genes were analyzed by semi-quantitative RT-PCR. Expression of gdhB and prc was enhanced and expression of desD and guaA was repressed in Δslr2079 compared to the wild type. In addition, expression of two key enzymes of ammonium assimilation in cyanobacteria, glutamine synthetase (GS) and glutamate synthase (GOGAT) was examined by semi-quantitative RT-PCR. Expression of GOGAT was enhanced in Δslr2079 compared to the wild type while GS expression was unchanged. The results indicate that slr2079 functions in the salt stress response by regulating the expression of salt stress related genes and might not play a major role in glutamine breakdown in Synechocystis. Supported by the National Natural Sciences Foundation of China (Grant No. 30500108) and Hundred Talents Program of Chinese Academy of Sciences.  相似文献   

12.
S Aoki  T Kondo    M Ishiura 《Journal of bacteriology》1995,177(19):5606-5611
The expression of the dnaK gene in the cyanobacterium Synechocystis sp. strain PCC 6803 was continuously monitored as bioluminescence by an automated monitoring system, using the bacterial luciferase genes (luxAB) of Vibrio harveyi as a reporter of promoter activity. A dnaK-reporting bioluminescent Synechocystis strain was constructed by fusing a promoterless segment of the luxAB gene set downstream of the promoter region of the Synechocystis dnaK gene and introduction of this gene fusion into a BglII site downstream of the ndhB gene in the Synechocystis chromosome. Bioluminescence from this strain was continuously monitored and oscillated with a period of about 22 h for at least 5 days in continuous light. The phase of the rhythm was reset by the timing of the 12-h dark period administered prior to the continuous light. The period of the rhythm was temperature compensated between 25 and 35 degrees C. Thus, the bioluminescence rhythm satisfied the three criteria of circadian rhythms. Furthermore, the abundance of dnaK mRNA also oscillated with a period of about 1 day for at least 2 days in continuous light conditions, indicating circadian control of dnaK gene expression in Synechocystis sp. strain PCC 6803.  相似文献   

13.
The unicellular cyanobacterium Synechocystis sp PCC 6803 is capable of synthesizing two different Photosystem-I electron acceptors, ferredoxin and flavodoxin. Under normal growth conditions a [2Fe-2S] ferredoxin was recovered and purified to homogeneity. The complete amino-acid sequence of this protein was established. The isoelectric point (pI = 3.48), midpoint redox potential (Em = -0.412 V) and stability under denaturing conditions were also determined. This ferredoxin exhibits an unusual electrophoretic behavior, resulting in a very low apparent molecular mass between 2 and 3.5 kDa, even in the presence of high concentrations of urea. However, a molecular mass of 10,232 Da (apo-ferredoxin) is calculated from the sequence. Free thiol assays indicate the presence of a disulfide bridge in this protein. A small amount of ferredoxin was also found in another fraction during the purification procedure. The amino-acid sequence and properties of this minor ferredoxin were similar to those of the major ferredoxin. However, its solubility in ammonium sulfate and its reactivity with antibodies directed against spinach ferredoxin were different. Traces of flavodoxin were also recovered from the same fraction. The amount of flavodoxin was dramatically increased under iron-deficient growth conditions. An acidic isoelectric point was measured (pI = 3.76), close to that of ferredoxin. The midpoint redox potentials of flavodoxin are Em1 = -0.433 V and Em2 = -0.238 V at pH 7.8. Sequence comparison based on the 42 N-terminal amino acids indicates that Synechocystis 6803 flavodoxin most likely belongs to the long-chain class, despite an apparent molecular mass of 15 kDa determined by SDS-PAGE.  相似文献   

14.
Three open reading frames of Synechocystis sp. PCC 6803 encoding a domain homologous with the cAMP binding domain of bacterial cAMP receptor protein were analyzed. These three open reading frames, sll1371, sll1924, and slr0593, which were named sycrp1, sycrp2, and sypk, respectively, were expressed in Escherichia coli as His-tagged or glutathione S-transferase fusion proteins and purified, and their biochemical properties were investigated. The results obtained for equilibrium dialysis measurements using these recombinant proteins suggest that SYCRP1 and SYPK show a binding affinity for cAMP while SYCRP2 does not. The dissociation constant of His-tagged SYCRP1 for cAMP is approximately 3 microM. A cross-linking experiment using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide revealed that His-tagged SYCRP1 forms a homodimer, and the presence or absence of cAMP does not affect the formation of the homodimer. The amino acid sequence reveals that SYCRP1 has a domain similar to the DNA binding domain of bacterial cAMP receptor protein in the COOH-terminal region. Consistent with this, His-tagged SYCRP1 forms a complex with DNA that contains the consensus sequence for E. coli cAMP receptor protein in the presence of cAMP. These results strongly suggest that SYCRP1 is a novel cAMP receptor protein.  相似文献   

15.
Glutaminase is widely distributed among microorganisms and mammals with important functions. Lit-tle is known regarding the biochemical properties and functions of the deamidating enzyme glutami-nase in cyanobacteria. In this study a putative glutaminase encoded by gene slr2079 in Synechocystis sp. PCC 6803 was investigated. The slr2079 was expressed as histidine-tagged fusion protein in Es-cherichia coli. The purified protein possessed glutaminase activity, validating the functional assign-ment of the genomic annotation. The apparent Km value of the recombinant protein for glutamine was 26.6 ± 0.9 mmol/L, which was comparable to that for some of other microbial glutaminases. Analysis of the purified protein revealed a two-fold increase in catalytic activity in the presence of 1 mol/L Na . Moreover, the Km value was decreased to 12.2 ± 1.9 mmol/L in the presence of Na . These data demon-strate that the recombinant protein Slr2079 is a glutaminase which is regulated by Na through in-creasing its affinity for substrate glutamine. The slr2079 gene was successfully disrupted in Synecho-cystis by targeted mutagenesis and the △slr2079 mutant strain was analyzed. No differences in cell growth and oxygen evolution rate were observed between △slr2079 and the wild type under standard growth conditions, demonstrating slr2079 is not essential in Synechocystis. Under high salt stress condition, however, △slr2079 cells grew 1.25-fold faster than wild-type cells. Moreover, the photosyn-thetic oxygen evolution rate of △slr2079 cells was higher than that of the wild-type. To further charac-terize this phenotype, a number of salt stress-related genes were analyzed by semi-quantitative RT-PCR. Expression of gdhB and prc was enhanced and expression of desD and guaA was repressed in △slr2079 compared to the wild type. In addition, expression of two key enzymes of ammonium assimi-lation in cyanobacteria, glutamine synthetase (GS) and glutamate synthase (GOGAT) was examined by semi-quantitative RT-PCR. Expression of GOGAT was enhanced in △slr2079 compared to the wild type while GS expression was unchanged. The results indicate that slr2079 functions in the salt stress re-sponse by regulating the expression of salt stress related genes and might not play a major role in glutamine breakdown in Synechocystis.  相似文献   

16.
Abstract Eight species of halophilic Archaea were tested for the presence of the enzymes of the methylglyoxal bypass. Methylglyoxal synthase was found in extracts of all species tested, with the exception of Halobacterium salinarium and Halobacterium cutirubrum . The enzyme of Haloferax volcanii was most active at pH 7 in the absence of salt, and in the presence of 3 M NaCl or KCl activity was half of that without salt, and was inhibited by phosphate. Glyoxalase I was detected in all species tested. Optimal activity of H. volcanii glyoxalase I was found at pH 7 and 3 M KCl; in the absence of salt, activity was strongly reduced. Glutathione could be replaced by γ-glutamylcysteine as the acceptor of the D-lactoyl group. The work shows that the methylglyoxal bypass may be operative in representatives of the archaeal kingdom.  相似文献   

17.
18.
To elucidate influences on the tocopherol biosynthesis in cyanobacteria, wild type and mutant cells of a putative methyltransferase in tocopherol and plastoquinone biosynthesis of Synechocystis sp. PCC 6803 were grown under different conditions. The vitamin E content of cells grown under different light regimes, photomixotrophic or photoautotrophic conditions and varying carbon dioxide supplies were compared by HPLC measurements. The tocopherol levels in wild type cells increased under higher light conditions and low carbon dioxide supply. Photomixotrophic growth led to lower vitamin E amounts in the cells compared to those grown photoautotrophically. We were able to segregate a homozygous deltasll0418 mutant under photoautotrophic conditions. In contrast to former suggestions in the literature the deletion of this gene is not lethal under photomixotrophic conditions and the influence on tocopherol and plastoquinone amounts is diminutive. The methyltransferase encoded by the gene sll0418 is not essential either for tocopherol or plastoquinone synthesis.  相似文献   

19.
AIM: To stimulate poly-beta-hydroxybutyrate (PHB) accumulation in Synechocystis sp. PCC 6803 by manipulating culture conditions. METHODS AND RESULTS: Stationary phase cultures of Synechocystis sp. PCC 6803 were subjected to N- and P-deficiency, chemoheterotrophy and limitations of gas-exchange. Enhanced PHB accumulation was observed under all the above conditions. However, interaction of P-deficiency with gas-exchange limitation (GEL) in the presence of exogenous carbon boosted PHB accumulation maximally. CONCLUSIONS: Combined effects of P-deficiency and GEL boosted PHB accumulation up to 38% (w/w) of dry cell weight (dcw) in Synechocystis sp. PCC 6803 in the presence of fructose and acetate. This value is about eightfold higher as compared with the accumulation under photoautotrophic growth condition. SIGNIFICANCE AND IMPORTANCE OF THE STUDY: These results showed a good potential of Synechocystis sp. PCC 6803 in accumulating poly-beta-hydroxybutyrate, an appropriate raw material for biodegradable and biocompatible plastic. Poly-beta-hydroxybutyrate could be an important material for plastic and pharmaceutical industries.  相似文献   

20.
We constructed a promoter-trap vector pPT6803-1 to isolate circadian clock-controlled promoters in the cyanobacterium Synechocystis sp. strain PCC 6803. The vector contains a promoterless luciferase gene set (luxAB) from Vibrio harveyi that is targeted to a specific site of the Synechocystis genome as a reporter for gene expression. A library was constructed in pPT6803-1 by introducing the genomic DNA fragments upstream of luxAB to transform Synechocystis cells. Of approximately 10,000 Synechocystis transformants, at least 55 (#1-55) showed circadian rhythms of bioluminescence under continuous illumination. Clones #19, #22, and #26 exhibited obviously different waveforms of bioluminescence from each other. Deletion analysis and primer extension experiments mapped the promoters for the clpP, slr1634, and rbpP genes that are responsible for bioluminescence from #19, #22, and #26, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号