首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vasopressin-oxytocin family of peptides is of very ancient lineage, found in organisms as diverse as hydra and man. Although these peptides have been intensively studied in vertebrates, the presumably more extensive invertebrate series was defined primarily by immunological methods. In this report, we describe the purification and structures of two peptides of the vasopressin-oxytocin family from molluscs ("Conopressins"), which were found in the venom of fish-hunting marine snails of the genus Conus. The biological activity observed when the two snail peptides are injected intracerebrally into mice is very similar to that elicited by the vertebrate neurohypophyseal hormones and presumably reflects their actions upon a common receptor in the brain. The sequences of the purified peptides reveal unique features not found in the vertebrate peptide series, most notably an additional positive charge. These are the first members of the invertebrate series of the vasopressin-oxytocin family to be characterized biochemically. The sequences of these peptides are: from Conus geographus venom, Lys-conopressin-G, Cys-Phe-Ile-Arg-Asn-Cys-Pro-Lys-Gly-NH2; and from Conus striatus venom, Arg-conopressin-S, Cys-Ile-Ile-Arg-Asn-Cys-Pro-Arg-Gly-NH2.  相似文献   

2.
Evolutionary aspects of gonadotropin-releasing hormone and its receptor   总被引:5,自引:0,他引:5  
Summary 1. Gonadotropin-releasing hormone (GnRH) was originally isolated as a hypothalamic peptide hormone that regulates the reproductive system by stimulating the release of gonadotropins from the anterior pituitary. However, during evolution the peptide was subject to gene duplication and structural changes, and multiple molecular forms have evolved.2. Eight variants of GnRH are known, and at least two different forms are expressed in species from all vertebrate classes: chicken GnRH II and a second, unique, GnRH isoform.3. The peptide has been recruited during evolution for diverse regulatory functions: as a neurotransmitter in the central and sympathetic nervous systems, as a paracrine regulator in the gonads and placenta, and as an autocrine regulator in tumor cells.4. Evidence suggests that in most species the early-evolved and highly conserved chicken GnRH II has a neurotransmitter function, while the second form, which varies across classes, has a physiologic role in regulating gonadotropin release.5. We review here evolutionary aspects of the family of GnRH peptides and their receptors.  相似文献   

3.
4.
We describe here the repertoire of neuropeptide Y (NPY) peptides and receptors in the elephant shark Callorhinchus milii, belonging to the chondrichthyans that diverged from the rest of the gnathostome (jawed vertebrate) lineage about 450 million years ago and the first chondrichthyan with a genome project. We have identified two peptide genes that are orthologous to NPY and PYY (peptide YY) in other vertebrates, and seven receptor genes orthologous to the Y1, Y2, Y4, Y5, Y6, Y7 and Y8 subtypes found in tetrapods and teleost fishes. The repertoire of peptides and receptors seems to reflect the ancestral configuration in the predecessor of all gnathostomes, whereas other lineages such as mammals and teleosts have lost one or more receptor genes or have acquired 1-2 additional peptide genes. Both the peptides and receptors showed broad and overlapping mRNA expression which may explain why some receptor gene losses could take place in some lineages, but leaves open the question why all the known ancestral receptors have been retained in the elephant shark.  相似文献   

5.
On an evolutionary time scale, polymorphic alleles are believed to have a short life, persisting at most tens of millions of years even under long-term balancing selection. Here, we report highly diverged trans-species dimorphism of the proteasome subunit beta type 8 (PSMB8) gene, which encodes a catalytic subunit of the immunoproteasome responsible for the generation of peptides presented by major histocompatibility complex (MHC) class I molecules, in lower teleosts including Cypriniformes (zebrafish and loach) and Salmoniformes (trout and salmon), whose last common ancestor dates to 300 Ma. Moreover, phylogenetic analyses indicated that these dimorphic alleles share lineages with two shark paralogous genes, suggesting that these two lineages have been maintained for more than 500 My either as alleles or as paralogs, and that conversion between alleles and paralogs has occurred at least once during vertebrate evolution. Two lineages termed PSMB8A and PSMB8F show an A(31)F substitution that would probably affect their cleaving specificity, and whereas the PSMB8A lineage has been retained by all analyzed jawed vertebrates, the PSMB8F lineage has been lost by most jawed vertebrates except for cartilaginous fish and basal teleosts. However, a possible functional equivalent of the PSMB8F lineage has been revived as alleles within the PSMB8A lineage at least twice during vertebrate evolution in the amphibian Xenopus and teleostean Oryzias species. Dynamic evolution of the PSMB8 polymorphism through long-term persistence, loss, and regaining of dimorphism and conversion between alleles and paralogs implies the presence of strong selective pressure for functional polymorphism of this gene.  相似文献   

6.
Ancient evolution of stress-regulating peptides in vertebrates   总被引:3,自引:0,他引:3  
Chang CL  Hsu SY 《Peptides》2004,25(10):1681-1688
Recent studies on genomic sequences have led to the discovery of novel corticotropin-releasing factor (CRF) type 2 receptor-selective agonists, stresscopin (SCP)/urocortin III (UcnIII), and stresscopin-related peptide (SRP)/urocortin II (UcnII). In addition, analyses of vertebrate genomes showed that the CRF peptide family includes four distinct genes, CRF, urocortin/urotensin I, SCP/UcnIII, and SRP/UcnII. Each of these four genes is highly conserved during evolution and the identity between mammalian and teleost orthologs ranges from >96% for CRF to >55% for SCP. Phylogenetic studies showed that the origin of each of these peptides predates the evolution of tetrapods and teleosts, and that this family of peptide hormones evolved from an ancestor gene that developed the CRF/urocortin and SCP/SRP branches through an early gene duplication event. These two ancestral branches then gave rise to additional paralogs through a second round of gene duplication. Consequently, each of these peptides participates in the regulation of stress responses over the 550 million years of vertebrate evolution. The study also suggested that the fight-or-flight and stress-coping responses mediated mainly by CRF types 1 and 2 receptors evolved early in chordate evolution. In addition, we hypothesize that the CRF/CRF receptor signaling evolved from the same ancestors that also gave rise to the diuretic hormone/diuretic hormone receptors in insects. Thus, a complete inventory of CRF family ligands and their receptors in the genomes of different organisms provides an opportunity to reveal an integrated view of the physiology and pathophysiology of the CRF/SCP family peptides, and offers new insights into the evolution of stress regulation in vertebrates.  相似文献   

7.
The neuroendocrine bag cell neurons of the marine mollusk Aplysia produce prolonged inhibition that lasts for more than 2 hr. We purified a peptide from the abdominal ganglion that mimics this inhibition. Mass spectrometry and microsequence analysis indicate that the peptide is 40 aa long and is amidated at its carboxyl terminus. It is highly homologous to vertebrate neuropeptide Y (NPY) and other members of the pancreatic polypeptide family. As determined from cloned cDNA, the gene coding for the precursor protein shares a common structural organization with genes encoding precursors of the vertebrate family. The peptides may therefore have arisen from a common ancestral gene. Bag cell neurons are immunoreactive for Aplysia NPY, and Northern blot analysis indicates that as with its vertebrate counterparts, the peptide is abundantly expressed in the CNS. This suggests that peptides related to NPY may have important functions in the nervous system of Aplysia as well as in other invertebrates.  相似文献   

8.
1. We searched for bioactive peptides, most of which were considered to be neuropeptides, in various animals of several phyla. These peptides were compared with each other and with peptides identified by many other investigators. Consequently, we found that structures of neuropeptides are generally conserved in each phylum. 2. We also found some exceptional interesting aspects. First, there are a number of peptide groups whose members are distributed among several phyla. Second, there are many structural similarities between molluscan and annelidan peptides as if molluscs and annelids were the animals in a phylum. Third, certain toxic peptides of invertebrates are closely related to vertebrate neuropeptides. 3. In addition to the above phylogenetic aspects, we found some other interesting aspects. A wide structural variety of members of a peptide group is generally found in invertebrate species. Invertebrate muscles seem to be generally regulated not only by some or several classical non-peptidic neuromediators but also by various peptidic neuromediators. Peptides containing a D-amino acid residue are not rare.  相似文献   

9.
Antimicrobial properties of peptides from Xenopus granular gland secretions   总被引:8,自引:0,他引:8  
E Soravia  G Martini  M Zasloff 《FEBS letters》1988,228(2):337-340
Previously, we described a family of novel broad spectrum antimicrobial peptides, magainins, from the skin of Xenopus laevis. In this report we show that at least two other Xenopus peptides, present in the skin and its secretions, PGLa and a peptide released from the xenopsin precursor, exhibit antimicrobial properties comparable to the magainins. The identification of these newer members provides insight into the structural diversity of vertebrate antimicrobial peptides.  相似文献   

10.
11.
12.
The proopiomelanocortin gene (POMC) encodes several bioactive peptides, including adrenocorticotropin hormone, alpha-, beta-, and gamma-melanocyte-stimulating hormone, and the opioid peptide beta-endorphin, which play key roles in vertebrate physiology. In the human, mouse, and chicken genomes, there is only one POMC gene. By searching public genome projects, we have found that Tetraodon (Tetraodon nigroviridis), Fugu (Takifugu rubripes), and zebrafish (Danio rerio) possess two POMC genes, which we called POMCalpha and POMCbeta, and we present phylogenetic and mapping evidence that these paralogue genes originated in the whole-genome duplication specific to the teleost lineage over 300 MYA. In addition, we present evidence for two types of subfunction partitioning between the paralogues. First, in situ hybridization experiments indicate that the expression domains of the ancestral POMC gene have been subfunctionalized in Tetraodon, with POMCalpha expressed in the nucleus lateralis tuberis of the hypothalamus, as well as in the rostral pars distalis and pars intermedia (PI) of the pituitary, whereas POMCbeta is expressed in the preoptic area of the brain and weakly in the pituitary PI. Second, POMCbeta genes have a beta-endorphin segment that lacks the consensus opioid signal and seems to be under neutral evolution in tetraodontids, whereas POMCalpha genes possess well-conserved peptide regions. Thus, POMC paralogues have experienced subfunctionalization of both expression and peptide domains during teleost evolution. The study of regulatory regions of fish POMC genes might shed light on the mechanisms of enhancer partitioning between duplicate genes, as well as the roles of POMC-derived peptides in fish physiology.  相似文献   

13.
Parallel collision-induced dissociation (CID) of peptides rather than serial, as is customary, results in loss of the obvious parent-fragment ion lineage available from CID on a single ion. We report proof-of-principle results suggesting the feasibility of parallel peptide CID, referred to here as shotgun CID, for protein identification when using the measured mass accuracies available from a time of flight mass analyzer and currently available search routines such as SEQUEST. Additionally, we report that parent-fragment ion lineage may be reconstructed from information encoded in the chromatographic single ion current traces of peptides.  相似文献   

14.
Corticotropin-releasing factor and urocortin belong to a superfamily of neuropeptides that includes the urotensins-I in fishes and the insect diuretic peptides. Sequence analysis suggests that urocortin is the mammalian ortholog of urotensin-I, although the physiological role for this peptide in mammals is not known. Within the Rodentia, hamsters belong to a phylogenetically older lineage than that of mice and rats and possess significant differences in hypothalamic organization. We have, therefore, cloned the coding region of the Syrian hamster (Mesocricetus auratus) corticotropin-releasing factor and urocortin mature peptide by polymerase chain reaction. Hamster urocortin was prepared by solid-phase synthesis, and its pharmacological actions on human corticotropin-releasing factor R1 and R2 receptors were investigated. The deduced hamster corticotropin-releasing factor amino acid sequence and cleavage site is identical to that in rat, whereas the urocortin sequence is unique among the urocortin/urotensin-I/sauvagine family in possessing asparagine and alanine in positions 38 and 39, respectively. The hamster urocortin carboxy terminus sequence bears greater structural similarity to the insect diuretic peptide family, suggesting either retrogressive mutational changes within the mature peptide or convergent sequence evolution. Despite these changes, human and hamster urocortin are generally equipotent at cAMP activation, neuronal acidification rate, and R1/R2 receptor affinities.  相似文献   

15.
Short structured peptides can provide scaffolds for protease-resistant peptide therapeutics, serve as useful building blocks in biomedical and biotechnological applications, and shed light on the role of secondary structure elements in protein folding. It is well known that directed evolution is a powerful method for creating proteins and peptides with novel properties, and a system for the selection of short peptides based on structure from a randomized library would be an important advancement. In this study, phage particles monovalently displaying a short peptide and an N-terminal 6×His tag on their P3 coat protein were bound to nickel agarose resin and were subsequently challenged with a protease that specifically cleaves at a site within the peptide. The extent to which phage is proteolytically released from the resin was found to be dependent on the structural properties of the inserted peptide sequences. As proofs-of-concept, a structured peptide has been isolated from a pool of flexible peptides using a trypsin selection, and a flexible peptide has been isolated from a pool of structured peptides using a chymotrypsin selection. This selection system will be a strong technological platform for the creation of short peptides with interesting structural properties using directed evolution.  相似文献   

16.
CUT class homeobox genes, including CUX/CASP, ONECUT, SATB and COMPASS family genes, are known to exhibit diverse features in the homeodomain and the domain architecture. Furthermore, the intron/exon organization of CUX/CASP is different between vertebrates and protostomes, and SATB genes are only known for vertebrates, whereas COMPASS genes have only been found in protostomes. These observations suggest a complex evolutionary history for the CUT class homeobox genes, but the evolution of CUT class homeobox genes in the lineage to vertebrates remained largely unknown. To obtain clearer insights into this issue, we searched the genome of amphioxus, Branchiostoma floridae, a lower chordate, for CUT class homeobox genes by extensive BLAST survey and phylogenetic analyses. We found that the genome of Branchiostoma floridae encodes each single orthologue of CUX/CASP, ONECUT, and COMPASS, but not the SATB gene, and one atypical CUT gene likely specific to this species. In addition, the genomic structure of the amphioxus CUX/CASP gene turned out to be protostome-type, but not vertebrate-type. Based on these observations, we propose a model in which SATB is suggested to evolve at the expense of COMPASS and this change, together with the structural change in CUX/CASP, is supposed to take place in the lineage to vertebrates after divergence of the amphioxus and vertebrate ancestors. The present study provides an example of dramatic evolution among homeobox gene groups in the vertebrate lineage and highlights the ancient character of amphioxus, retaining genomic features shared by protostomes.  相似文献   

17.
The feeding cycle of the adult female cockroach Blattella germanica parallels vitellogenesis. The study of the mechanisms that regulate this cycle led us to look for food-intake inhibitors in brain extracts. The antifeedant activity of brain extracts was tested in vivo by injecting the extract and measuring the carotenoids contained in the gut from carrot ingested after the treatment. By HPLC fractionation and tracking the biological activity with the carrot test, we isolated the sulfakinin EQFDDY(SO3H) GHMRFamide (Pea-SK). A synthetic version of the peptide inhibited food intake when injected at doses of 1 microg (50% inhibition) and 10 microg (60% inhibition). The sulfate group was required for food-intake inhibition. These biological and structural features are similar to those of the gastrin-cholecystokinin (gastrin-CCK) family of vertebrate peptides. However, heterologous feeding assays (human CCK-8 tested on B. germanica, and Pea-SK tested on the goldfish Carassius auratus) were negative. In spite of this, alignment and cluster analysis of these and other structurally similar peptide families suggest that sulfakinins and gastrin-CCKs are homologous, and that mechanisms of feeding regulation involving these regulatory peptides may have been conserved during evolution between insects and vertebrates.  相似文献   

18.
Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.  相似文献   

19.
Human somatic angiotensin I-converting enzyme (sACE) has two active sites present in two homologous protein domains, resulting from a tandem gene duplication. It has been proposed that the N- and C-terminal active sites can have specific in vivo roles. In Drosophila melanogaster, Ance and Acercode for two ACE-like single-domain proteins, also predicted to have distinct physiological roles. We have investigated the relationship of Ance and Acer to the N- and C-domains of human sACE by genomic sequence analysis and by using domain-selective inhibitors, including RXP 407, a selective inhibitor of the human N-domain. These phosphinic peptides were potent inhibitors of Acer, but not of Ance. We conclude that the active sites of the N-domain and of Acer share structural features that permit the binding of the unusual RXP407 inhibitor and the hydrolysis of a broader range of peptide structures. In comparison, Ance, like the human C-domain of ACE, displays greater inhibitor selectivity. From the analysis of the published sequence of the Adh region of Drosophila chromosome 2, which carries Ance, Acer, and four additional ACE-like genes, we also suggest that this functional conservation is reflected in an ancestral gene structure identifiable in both protostome and deuterostome lineages and that the duplication seen in vertebrate genomes predates the divergence of these lineages. The conservation of ACE enzymes with distinct active sites in the evolution of both vertebrate and invertebrate species provides further evidence that these two kinds of active sites have different physiological functions.  相似文献   

20.
1. Two novel insect myotropic peptides termed neosulfakinin-I (Neb-SK-I) and neosulfakininII (Neb-SK-II) were isolated from the heads of 42 thousand fleshflies, Neobellieria bullata (Diplera, Sarcophagidae).2. A series of four, high-performance liquid Chromatographic (HPLC), fractionations performed on columns with different characteristic features yielded two purified biologically active, hindgut motility stimulating fractions, suitable for amino acid sequence analysis.3. The proposed sequences for the two peptides are: Phe-Asp-Asp-Tyr-Gly-His-Met-Arg-Phe-(NH2), (Neb-SK-I) and X-X-Glu-Glu-Gln-Phe-Asp-Asp-Tyr-Gly-His-Met-Arg-Phe-(NH2), (Neb-SK-II).4. These sulfakinins exhibit very high homology to putative drosulfakinin sequences which, however, have not yet been isolated, but were deduced from a cloned Drosophila gene encoding these peptides.5. Here we provide the first evidence for the expression of such peptides present in Dipterans.6. Insect sulfakinins show structural identities with the hormonally-active portion of vertebrate gastrin II-, cholecystokinin- and caerulin-related peptides and they share common carboxy terminal sequences with invertebrate/vertebrate peptides of the FMRFamide peptide family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号