首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Regulation of the mitochondrial adenine nucleotide pool size   总被引:1,自引:0,他引:1  
A mechanism by which normal adult rat liver mitochondria may regulate the matrix adenine nucleotide content was studied in vitro. If mitochondria were incubated with 1 mm ATP at 30 ° C in 225 mm sucrose, 2 mm K2HPO4, 5 mm MgCl2, and 10 mm Tris-Cl (pH 7.4), the adenine nucleotide pool size increased at a rate of 0.44 ± 0.02 nmol/mg mitochondrial protein/min. The rate of adenine nucleotide accumulation under these conditions was concentration dependent and specific for ATP or ADP; AMP was not taken up. The rate of net ADP uptake was 50–75% slower than that for ATP. The Km values for net uptake of ATP and ADP were 2.08 and 0.36 mm, respectively. Adenine nucleotide uptake was stoichiometrically dependent on Mg2+ and stimulated by inorganic phosphate. Net uptake was inhibited by n-ethylmaleimide, or mersalyl, but not by n-butylmalonate. Nigericin inhibited net uptake, but valinomycin did not. In the presence of uncouplers, net uptake was not only inhibited, but adenine nucleotide efflux was observed instead. Like uptake, uncoupler-induced efflux of adenine nucleotides was inhibited by mersalyl, indicating that a protein was required for net flux in either direction. Carboxyatractyloside, bongkrekic acid, or respiratory substrates reduced the rate of adenine nucleotide accumulation, however, this did not appear to be a direct inhibition of the transport process, but rather was probably related indirectly to an increase in the matrix ATPADP ratio. The collective properties of the transport mechanism(s) for adenine uptake and efflux were different from those which characterize any of the known transport systems. It is proposed that uptake and efflux operate to regulate the total matrix adenine nucleotide pool size: a constant pool size is maintained if the rates of uptake and efflux are equal. Transient alterations in the relative rates of uptake and efflux may occur in response to hormones or other metabolic signals, to bring about net changes in the pool size.  相似文献   

2.
Oligomycin Sensitivity Conferral Protein (OSCP) and an F1-ATPase Binding Protein were isolated from F1-depleted rat liver mitochondrial membrane. Their molecular weights on polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea were 22,500 and 8,500 respectively. When incubated with liver TUA (trypsin, urea and ammonia-treated) submitochondrial particles, the binding protein was effective in the binding of F1 to the particles with the resultant particle-bound ATPase activity not oligomycin sensitive. When OSCP was then incubated with the reconstituted membrane-bound ATPase, its activity became oligomycin sensitive. These results suggest that, first; the binding protein, but not OSCP, connects F1-ATPase to the membrane of rat liver mitochondria and maybe to the “stalk”, if indeed there is a stalk in mitochondrial membrane ATPase complex; and second; the function of OSCP is solely to render the ATPase activity sensitive to oligomycin and other similar inhibitors.  相似文献   

3.
Antibody raised in rabbits against Complex V (miochondrial ATP synthetase complex) purified from beef heart mitochondria cross-reacted with Complex V and submitochondrial particles from beef heart, beef adrenals, and rat liver as shown by double-diffusion and rocket immunoelectrophoresis analysis. Of the various isolated and purified components of Complex V, only the oligomycin sensitivity-conferring protein showed strong reactivity with the anti-Complex V antibody, soluble F1-ATPase reacted very faintly, while F6 and ATPase inhibitor protein showed no precipitin lines. Crossed immunoelectrophoresis indicated that antigenic determinants recognized by the antibody were present on OSCP and possibly on the dicyclohexylcarbodiimide-binding protein. The components of Complex V could be precipitated from beef heart submitochondrial particles dissolved in Triton X-100 and pretreated with control IgG. When the composition of the immunoprecipitate was compared to that of purified Complex V, all the constituent polypeptides of the latter were present in the immunoprecipitate, except for one polypeptide in the low-molecular-weight region. Incubation of Complex V or submitochondrial particles with the anti-Complex V antibody in the absence of Triton X-100 caused inhibition of ATP-Pi exchange but not of ATPase activity. In the presence of Triton X-100, oligomycin sensitivity of Complex V was lost and the antibody was able to inhibit also the ATPase activity. The enzymic activity of soluble F1-ATPase was unaffected by the antibody in the absence or presence of Triton X-100. These results suggest that the anti-Complex V antibody might be a useful tool for identifying and probing the role of Complex V components involved in energy transduction.  相似文献   

4.
5.
The control of oxidative phosphorylation by the extramitochondrial [ATP][ADP] ratio and [Pi] was investigated by incubations of isolated mitochondria with an ADP regenerating system and by a new perifusion technique using glass filters for immobilization of mitochondria. With mitochondria from different sources oxidizing different substrates and with both techniques, similar results were obtained. Changes of the extramitochondrial [ATP][ADP] ratio from about 100 to 5 transfer mitochondria from the resting state (state 4) to the fully active state (state 3). The importance of the adenine nucleotide translocator in this transition was demonstrated by the influence of its specific inhibitor carboxyatractyloside. The sensitivity to the inhibitor was more pronounced in states with high [ATP][ADP] ratios than in the fully active state. In the hexokinase-glucose system the action of the inhibitor caused a transition to a new steady state, where a decreased [ATP][ADP] ratio overcomes the inhibition. Thus, a partial inhibition of the translocator shifted the control characteristics to lower [ATP][ADP] ratios. When the concentration of inorganic phosphate was decreased, the main effect was a reduction of the maximum rate of oxidative phosphorylation (i.e., in state 3), whereas the [ATP][ADP] sensitive range was not altered. This effect is caused by changes in the intramitochondrial phosphorylation potential. Furthermore, this indicates that the kinetic properties of the adenine nucleotide translocator prevent a simple equilibration of the phosphorylation potential across the inner membrane. This is also demonstrated by the fact that the extramitochondrial formation of glucose-6-phosphate and the intramitochondrial synthesis of citrulline compete for ATP.  相似文献   

6.
A colorimetric assay for the determination of long-chain free fatty acids (FFA) is described. The FFA were extracted from subcellular organelles with chloroform:heptane:methanol. The copper soaps of FFA were determined colorimetrically with diphenylcarbazide. There are three advantages to employing the present modified procedure. (a) The sensitivity has been increased approximately twofold over that of the previous procedure of K. Falholt, B. Lund, and W. Falholt (1973, Clin. Chim. Acta46, 105–111); (b) it takes less time to complete the assay compared to the tedious procedures currently available; and (c) the presence of bovine serum albumin, a known FAA-binding protein, does not interfere with the assay procedure. The assay shows a linear response over the range of 10 to 130 nmol of FFA. The recovery of free fatty acids from mitochondria is 99%.  相似文献   

7.
The total adenine nucleotide content of rat liver mitochondria was varied in vitro over a wide range in order to investigate a possible relationship between net changes in the total matrix ATP + ADP + AMP content and the overall rate of citrulline synthesis. Isolated mitochondria were specifically depleted of matrix adenine nucleotides by incubating with inorganic pyrophosphate (G. K. Asimakis and J. R. Aprille, 1980, Arch. Biochem. Biophys.203, 307–316); alternatively, matrix adenine nucleotides were increased by incubating mitochondria with 1 mm ATP at 30 °C. No exogenous ATP or ADP was included in the subsequent incubations for the determination of citrulline synthesis. Rates varied from 0.1 to 1.6 μmol citrulline/mg protein/h as a linear function of total adenine nucleotide content in the range 2–15 nmol (ATP + ADP + AMP)/mg protein. Further increases in the matrix ATP + ADP + AMP content caused no further increase in citrulline synthesis rates. Changes in the total adenine nucleotide content were reflected in proportional changes in both the ATP and ADP content of the matrix. The ATPADP ratio did not change significantly. Therefore, the variations in citrulline synthesis were most simply explained as the effect of different concentrations of ATP on the activity of carbamoyl-phosphate synthetase. It was concluded that net changes in the total adenine nucleotide content can contribute to the control of citrulline synthesis. These findings are significant in the context of recent evidence which shows that the matrix adenine nucleotide pool size is under hormonal control.  相似文献   

8.
K A Skau  M C Gerald 《Life sciences》1977,20(9):1495-1499
Amphetamine inhibited neuromuscular transmission and prevented the irreversible blockade produced by α-bungarotoxin (α-BGT) in the isolated mouse phrenic nerve-diaphragm preparation. Similarly, amphetamine (1.35 × 10?4 to 3 × 10?3M) inhibited the binding of 125I-α-BGT to mouse hemidiaphragms in a concentration-dependent manner; (+)-amphetamine was found to be twice as potent as its (-)-isomer with respect to inhibition of 125I-α-BGT binding. It is suggested that amphetamine binds to the nicotinic, cholinergic receptor of skeletal muscle and may produce weakness and paralysis in amphetamine overdosage.  相似文献   

9.
The cytosolic and mitochondrial forms of Superoxide dismutase have been purified to homogeneity from an inbred line of maize. The cytosolic isozymes SOD-2 and SOD-4 are dimers with a molecular weight of 31,000–33,000, composed of apparently equal subunits, and are remarkably similar with respect to their ultraviolet absorption spectra, antigenic specificity, and sensitivity to cyanide, azide, hydrogen peroxide, and diethyldithiocarbamate. These and other data suggest that both isozymes belong to the family of copper and zinc-containing Superoxide dismutases. The mitochondrial isozyme, SOD-3, is unlike the cytosolic isozymes in every parameter studied and appears to be similar to the mitochondrial manganese-containing Superoxide dismutases purified from other eukaryotic organisms. It is a tetramer with a molecular weight of approximately 90,000, composed of apparently equal subunits, and is insensitive to both 1 mm cyanide and hydrogen peroxide.  相似文献   

10.
The activity of phosphodiesterase (“Ca2+ plus Mg2+-dependent” phosphodiesterase) of a preparation from brain was found to depend on the presence of both Ca2+ and a protein factor called modulator. It was shown by gel filtration that the active enzyme-modulator complex (MW, about 200,000) was formed from the modulator (MW, 28,000) and an inactive enzyme (MW, about 150,000) in the presence of Ca2+. When EGTA was added, this active enzyme-modulator complex dissociated into inactive enzyme and modulator. These results, together with the finding of Teo and Wang that Ca2+ binds to the modulator, could explain the stimulatory effect of Ca2+ on this enzyme as follows: The “Ca2+ plus Mg2+-dependent” phosphodiesterase may exist as the inactive free form in equilibrium with the active enzymemodulator (Ca2+) complex, and Ca2+, through binding to the modulator, may shift the equilibrium towards formation of the active enzyme-modulator (Ca2+) complex, thereby increasing the activity of the mixture. On decreasing the concentration of Ca2+, the process is reversible.  相似文献   

11.
The steric course of the methyl group transfer to polygalacturonic acid to form the methyl ester group in pectin was studied using S-adenosylmethionine (AdoMet) carrying a methyl group made chiral by labeling with 1H, 2H, 3H, in an asymmetric arrangement. The incubation of the two diastereomers of this substrate with a particulate enzyme preparation obtained from Phaseolus aureus (mung bean) shoots gave the corresponding pectins. These were degraded in a series of stereochemically unambiguous reactions that converted the methoxy group into the methyl group of acetate, which was then analyzed for its configuration. The results indicate that the transfer of the methyl group from the sulfur of AdoMet to the oxygen of the carboxyl group proceeds with inversion of configuration of the methyl group.  相似文献   

12.
A soluble extract from rat skeletal muscles has been used with purified mitochondrial ATPase (F1) to develop steady states with respect to glycolytic flux, the concentrations of glycolytic intermediates and inorganic phosphate, and the concentrations and ratios of adenine nucleotides. Incubations were carried out in media resembling the ionic composition in the cell cytoplasm, in an attempt to evaluate the quantitative contributions of various effectors to the overall control mechanism under simulated in vivo conditions. The primary control reaction of glycolytic flux under the conditions studied could be identified with phosphofructokinase, followed by secondary control of the reaction catalyzed by hexokinase. Glycolytic flux was increased with increasing pH over the range 6.6–7.6, both in the absence and presence of ATPase. Without other added effectors, the glycolyzing extract maintained an ATP/ADP ratio of about 50 in the pH range 7.0–7.6, and phosphofructokinase was incompletely suppressed. Addition of increasing amounts of ATPase markedly stimulated glycolytic flux coincident with lowered steady-state ATP/ADP ratios, and decreased accumulation of hexose monophosphates. Control of flux by the ATP/ADP ratio (and simultaneously altered AMP concentration) was less effective if pH (7.3 to 7.6) or phosphate concentration (2 to 20 mm) was increased. Flux through phosphofructokinase was controlled principally when the ATP/ADP ratios were varied in the range between > 50 and 15. The inhibitory effect of citrate was evaluated. Suppression of glycolytic flux and accumulation of hexose monophosphates were dependent on incubation conditions. If the pH was 7.3 or less, and the phosphate concentration low (2 mm), flux through phosphofructokinase was significantly suppressed even at citrate concentrations less than 50 μm. Simultaneous decrease in the steady-state ATP/ADP ratio and elevation of AMP was ineffective in reversing this inhibition. At higher pH and, more dramatically, when the phosphate concentration was increased, sensitivity to citrate inhibition was markedly diminished. These data, taken together with studies of respiratory control with isolated mitochondria (21., 24.), J. Biol. Chem.250, 2275–2282) strongly suggest that adenine nucleotide control of both glycolysis and respiration is exerted when the ratio of free nucleotides (not protein bound) in the cytosol is in the range of 15 to > 50. The data further suggest that citrate plays an important role in the regulation of glycolysis in muscle when the ATP/ADP ratio is high (and the phosphate concentration is correspondingly low), but that this inhibition is overcome by liberation of inorganic phosphate during muscle contraction.  相似文献   

13.
Rat testis mitochondrial ATPase was not inhibited by oligomycin at pH 7.5. It was inhibited only at higher alkaline pH's, and showed a lower sensitivity both to oligomycin and N,N′-dicyclohexylcarbodiimide and a higher one to efrapeptin. In submitochondrial particles, testis ATPase was only slightly inhibited by oligomycin, ossamycin, and efrapeptin. The possibility of a loose binding of F1 to the membrane was supported by its recovery from the supernatant of the submitochondrial particles. Furthermore, by electron microscopy, after hypoosmotic shock and negative staining of the mitochondrial preparations, most of the inner mitochondrial membranes showed only a few “knobs” or none at all. The capacity of the testis mitochondrial preparation to produce ATP was tested and compared to that from liver. ATP synthetase/ATPase activity ratio was 301 in liver mitochondria, whereas in the testis it was 31. In spite of this large difference, at least part of the testis ATPase must be firmly bound to the membrane, since it is able to form ATP. The rest seems to be loosely bound and its functional significance is still unknown.  相似文献   

14.
A cytochrome P-450, which is functional in the steroid methylene 11β-hydroxylation (P-45011β), has been purified to a protein weight of 85 kg per heme from bovine adrenocortical mitochondria. The purification is accomplished in the presence of deoxycorticosterone as a substrate stabilizer. The procedure involved solubilization of sonicated mitochondrial pellets, ammonium sulfate fractionation, alumina Cγ gel treatment and aniline-substituted Sepharose 4B chromatography.The purified preparation when freed from deoxycorticosterone, has a low spin type absorption spectrum which can rapidly be converted into a typical high spin substrate-bound form by the addition of an 11β-hydroxylatable steroid, either deoxycorticosterone or testosterone. The preparation exhibits high 11β-hydroxylase activity and is free from the cholesterol side-chain cleavage cytochrome P-450 (P-450scc).The purified P-45011β, when submitted to SDS-polyacrylamide gel electrophoresis, exhibits a single protein band (molecular weight of 46 kilodaltons) which is clearly distinguished from P-450scc. As determined by the sedimentation equilibrium method, the molecular weight of the guanidine-treated P-45011β is estimated to be 43 kilodaltons.  相似文献   

15.
Rabbit muscle aldolase (E.C. 4. 1. 2. 13) was guanidinated by reaction with O-methylisourea. Up to 60% of the lysine residues can be guanidinated without any dissociation of the tetramer but with a complete loss of enzymatic activity. Native and guanidinated aldolase can be dissociated into monomers in 2.4 m MgCl2 with only slight change in conformation of the subunit. Nitrotroponylation of guanidinated aldolase in dilute buffer gives no reaction whereas in 2.4 m MgCl2 nitrotroponlylation modifies another 8–12% of the lysine residues. Removal of MgCl2 by dialysis affords 100% recovery of activity and tetrameric structure for native aldolase and 100% recovery of tetrameric structure for guanidinated aldolase. In contrast nitrotroponylated and guanidinated aldolase remains monomeric before precipitating as the MgCl2 concentration is lowered. It is concluded that lysine may be involved in the protein-protein interaction of the subunit contact domains of muscle aldolase.  相似文献   

16.
A previous study of energy-independent in vitro Ca2+ uptake by rat intestinal epithelial membrane vesicles demonstrated that uptake by Golgi membrane vesicles was greater than that by microvillus or lateral-basal membrane vesicles, was markedly decreased in vitamin D-deficient rats, and responded specifically to 1,25-(OH)2D3 repletion (R. A. Freedman, M. M. Weiser, and K. J. Isselbacher, 1977, Proc. Nat. Acad. Sci. USA74, 3612–3616; J. A. MacLaughlin, M. M. Weiser, and R. A. Freedman, 1980, Gastroenterology78, 325–332). In the present study, properties of Ca2+ uptake and release by intestinal Golgi membrane vesicles have been investigated. The initial rate of uptake was found to be saturable, suggesting carrier-mediated uptake. Uptake was markedly inhibited by Mg2+ and Sr2+, but not by Na+ or K+. Lowering the external [H+] or raising the internal [H+] resulted in enhancement of the initial rate of uptake; the intial rate was found to correlate with the internal-to-external [H+] gradient. The initial rate of uptake could be enhanced by preloading the vesicles with MgCl2 or SrCl2 but not CaCl2, NaCl, or KCl. Vesicles preloaded with K2SO4 failed to show enhanced uptake in the presence of valinomycin, suggesting that enhancement in uptake by vesicles preloaded with MgCl2 was not due to transmembrane potentials. The internal volume of the Golgi membrane vesicles was determined and found to be 9 μl/mg protein; this volume could accomodate less than 1% of the Ca2+ uptake maintained at equilibrium. Therefore, the remainder of the Ca2+ taken up was presumably bound to the Golgi membranes. A dissociation constant of 3.8 × 10?6m was found for this binding. The bound Ca2+ could be rapidly released by external Mg2+ or Sr2+, but not Ca2+, Na+, or K+. Release of bound Ca2+ could also be induced by raising the [H+] of the external medium. Failure of external Ca2+ to release bound Ca2+ suggested that the release induced by external Mg2+, Sr2+, or H+ was not due to competitive displacement of Ca2+ from its binding sites. These results indicated that Ca2+ uptake by intestinal Golgi membrane vesicles consists of carrier-mediated transport followed by binding of Ca2+ to the vesicle. The effects of H+, Mg2+, and Sr2+ on Ca2+ uptake and release suggest the existence of cation countertransport in the Golgi membrane vesicles.  相似文献   

17.
The protein-keratan sulfate core of bovine nasal cartilage proteoglycan was purified by affinity chromatography on a column of immobilized hyaluronic acid. The hyaluronic acid was immobilized by reaction with a hydrazido-alkyl derivative of Sepharose in the presence of borohydride. Proteoglycan was digested with chondroitinase ABC and the entire mixture was passed over a column of the Sepharose-hyaluronic acid maintained at 4°C. After the digested chondroitin sulfate chains were washed from the column, the bound protein-keratan sulfate core was eluted with 4m guanidinium chloride. The protein-keratan sulfate core interacts with the affinity matrix through its hyaluronic acid binding site as shown by the inhibition of binding by free hyaluronic acid and hyaluronic acid decasaccharide.  相似文献   

18.
Reaction of yeast phosphoglycerate kinase with either butanedione or cyclohexanedione can result in modification of up to all 13 arginyl residues with total loss of activity; however, extrapolation to zero activity for partially modified preparations indicates that up to 7 arginyls are essential. Whereas 20 mm 3-phosphoglycerate affords partial protection of activity toward both reagents, 20 mm MgATP affords complete protection of activity and protects 2 arginyls against modification by butanedione and 1 arginyl against modification by cyclohexanedione. With butanedione the modification could be reversed with total recovery of activity, suggesting that only arginyl groups were modified, which is consistent with the amino acid analysis of the modified protein. Only at high cyclohexanedione concentrations or long reaction times was a yellow product obtained that showed loss of lysyl residues. Circular dichroism spectra show that even when all the arginyls are modified by butanedione or up to 10 modified by cyclohexanedione there is no change observed in the far or near ultraviolet, indicating that there is no detectable conformational change concomitant with modification, which is confirmed by hydrodynamic studies. It is concluded that at least one, possibly two, arginyls of yeast phosphoglycerate kinase are essential for its action on ATP.  相似文献   

19.
Neurospora crassa conidia have multiple and constitutive amino acid transport systems. Extraction by KCl releases amino acid-binding glycoproteins which have been purified by arginine affinity chromatography. Disappearance of certain fractions is coordinate with genetic lesions which reduce amino acid transport. Two such affinity fractions contain radioactivity when cells are grown on l-[14C]phenylalanine or on [14C]uridine, but not when cells are grown on [14C ]glucosamine. One purified arginine-binding fraction (B) contains 113 amino acid residues per minimum molecular weight. This glycoprotein also contains eight types of neutral sugar residues. No amino sugars were detected. Electrophoresis of crude extracts reveals five major Coomassie blue-staining species. The number of species is reduced, and the electrophoretic pattern is altered in extracts from transport-deficient strains. Tryptic “fingerprints” of these extracts indicate that mutations that reduce transport result in amino acid substitutions in the extractable glycoproteins. Nondialyzable material which absorbs light in the 260-nm region becomes dialyzable after digestion with RNase. Digestion of conidia with RNase reduces the amount of l-phenylalanine accumulated by the cells after 10 min of incubation with the amino acid.  相似文献   

20.
Using two different assay systems to distinguish between overt and inner forms of carnitine palmitoyl transferase (CPT, EC 2.3.1.21) of intact guinea-pig liver mitochondria, we have shown that the hypoglycemic agent 2-(3-methylcinnamylhydrazono)-propionate (BM 42.304) inhibits the activity of carnitine-acylcarnitine translocase of liver mitochondria. The results offer an explanation for the inhibitory effect of the compound on ketogenesis with oleate but not with octanoate in the perfused guinea-pig liver, previously reported by us (Biochem. Pharmacol. 32, 3405-3412, 1983).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号