首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described to confirm the presence of 19-nortestosterone metabolites in urine after the administration of veterinary preparations of this anabolic steroid to horses. The method is based upon the detection, by gas chromatography mass spectrometry or selected ion monitoring, of an isomer of estrane-3,17-diol in the urine.  相似文献   

2.
Steroid glucuronides: Human circulatory levels and formation by LNCaP cells   总被引:3,自引:0,他引:3  
We studied the relationship between circulating androsterone glucuronide, androstane-3,17β-diol glucuronide and androstane-3β,17β-diol glucuronide concentrations and adrenal as well as testicular C-19 steroids in men. Among the three 5-reduced steroid glucuronides, androsterone glucuronide is the predominant C-19 steroid measured in plasma and its levels are markedly elevated compared to those of the non-conjugated steroid. The marked rise in testosterone during puberty was strongly correlated with the increase in both androsterone glucuronide and androstane-3,17β-diol glucuronide, thus suggesting that testicular C-19 steroids are the main precursors of the steroid glucuronides. We also found that the presence of testicular androgen in plasma contributes to approx. 70% of plasma androsterone glucuronide and androstane-3,17β-diol glucuronide. Our data suggest that the adrenal C-19 steroids remaining in circulation after castration in men are converted into potent androgen which are then glucuronidated by UDP-glucuronyltransferase. We also demonstrated that the human prostate cell line LNCaP is capable of converting to a large extent androstenedione into androsterone glucuronide. Our data further confirm that glucuronidation is a major pathway of steroid metabolism in steroid target tissues.  相似文献   

3.
Oestradiene-3,17-diol and oestratriene-3,17-diol (or the diol of Heard's ketone (3-hydroxy-5(10),6,8-oestratriene-17-one) have been extracted on a large scale from pooled urines and allantoic fluid obtained from pregnant mares. Initial purification was achieved using column chromatography, and further purification by high performance liquid chromatography or silver nitrate (argentation) thin layer chromatography. The steroids were characterised using gas chromatography-mass spectrometry. Positions of the double bonds in ring B of oestradienediol were deduced on the basis of results of ultraviolet (UV) and nuclear magnetic resonance (NMR) spectroscopy, hydrogenation, and incubation studies with the enzyme 5-ene-3beta-hydroxysteroid dehydrogenase/steroid-4,5-isomerase. The reference steroid, 5,7-cholestadien-3beta-ol (7-dehydrocholesterol), with its conjugated double bond system, behaved entirely differently to oestradienediol, consistent with the latter having no conjugated system. These data, together with detailed results of NMR studies, have led us to designate the positions of the double bonds in oestradienediol as 5(10),7-. The instability of the dienediol became apparent when the steroid was converted to its bis-trimethylsilyl (TMS) ether. The phenomenon was exacerbated when derivatisation was performed at elevated temperatures or when the fraction containing the dienediol was stored at 4 degrees C prior to being derivatised. The facile oxidation product was shown to be 5(10),6, 8-oestratriene-3,17-diol, implying that the two steroids are related and, furthermore, that all the sites of unsaturation are in the B ring. Because of the facile oxidation of oestradienediol to oestratrienediol (the diol of Heard's ketone), we propose, that this, and by implication, Heard's ketone itself, are artefacts of the isolation procedures which were utilised in the original studies. A possible mechanism is proposed for the biosynthesis of 5, 7-oestradienediol from a ring-B unsaturated C(19) compound, involving C(19) demethylation without aromatisation.  相似文献   

4.
New analogues of androgens that had never been available as approved drugs are marketed as “dietary supplement” recently. They are mainly advertised to promote muscle mass and are considered by the governmental authorities in various countries, as well as by the World Anti-doping Agency for sport, as being pharmacologically and/or chemically related to anabolic steroids.In the present study, we report the detection of a steroid in a product seized by the State Bureau of Criminal Investigation Schleswig-Holstein, Germany. The product “1-Androsterone” of the brand name “Advanced Muscle Science” was labeled to contain 100 mg of “1-Androstene-3b-ol,17-one” per capsule. The product was analyzed underivatized and as bis-TMS derivative by GC-MS. The steroid was identified by comparison with chemically synthesized 3β-hydroxy-5α-androst-1-en-17-one, prepared by reduction of 5α-androst-1-ene-3,17-dione with LS-Selectride (Lithium tris-isoamylborohydride), and by nuclear magnetic resonance. Semi-quantitation revealed an amount of 3β-hydroxy-5α-androst-1-en-17-one in the capsules as labeled.Following oral administration to a male volunteer, the main urinary metabolites were monitored. 1-Testosterone (17β-hydroxy-5α-androst-1-en-3-one), 1-androstenedione (5α-androst-1-ene-3,17-dione), 3α-hydroxy-5α-androst-1-en-17-one, 5α-androst-1-ene-3α,17β-diol, and 5α-androst-1-ene-3β,17β-diol were detected besides the parent compound and two more metabolites (up to now not finally identified but most likely C-18 and C-19 hydroxylated 5α-androst-1-ene-3,17-diones). Additionally, common steroids of the urinary steroid profile were altered after the administration of “1-Androsterone”. Especially the ratios of androsterone/etiocholanolone and 5α-/5β-androstane-3α,17β-diol and the concentration of 5α-dihydrotestosterone were influenced. 3α-Hydroxy-5α-androst-1-en-17-one appears to be suitable for the long-term detection of the steroid (ab-)use, as this characteristic metabolite was detectable in screening up to nine days after a single administration of one capsule.  相似文献   

5.
The present study was performed to investigate the influence of the intake of selective oestrogen receptor modulators on the urinary endogenous steroids profile. For this purpose the circadian variability of luteinizing hormone, follicle-stimulating hormone, testosterone, 5α-androstan-3α,17β-diol, 5β-androstan-3α,17β-diol, epitestosterone, 4-androstenedione, androsterone and etiocholanolone were measured on eight subjects (four males and four females) by gas chromatography–mass spectrometry and chemiluminescent immunometric assay techniques before and after oral administration of multiple doses of either tamoxifen (80 mg for 2 days) or toremifene (120 mg for 2 days) or clomiphene (100 mg for 2 days). The individual baseline variability of the steroids studied was set up by collecting the urine samples every 3 h, for 3 days prior to the treatment; whereas the evaluation of the effects of the oral administration of multiple doses of selective oestrogen receptor modulators on the steroid urinary profile was assessed by collecting urine samples every three hours for at least five days from the first administration.The results of our measurements showed that, only in male subjects, the relative urinary concentrations of testosterone, epitestosterone and 4-androstenedione were significantly altered generally after the second day of drug administration. While no significant effects were recorded in both sexes on the luteinizing hormone, follicle-stimulating hormone, androsterone, etiocholanolone, 5α-androstan-3α,17β-diol and 5β-androstan-3α,17β-diol urinary levels and on testosterone/epitestosterone, 5α-androstan-3α,17β-diol/5β-androstan-3α,17β-diol and androsterone/etiocholanolone ratios.  相似文献   

6.
The main purpose of this article is to show the application of the CG/C/IRMS in real time during competition in the steroid confirmation analysis. For this reason, this paper summarizes the results obtained from the doping control analysis during the period of the 2007 Pan American Games held in Rio de Janeiro, Brazil. Approximately 5600 athletes from 42 different countries competed in the games. Testing was performed in accordance to World Anti-Doping Agency (WADA) technical note for prohibited substances. This paper reports data where abnormal urinary steroid profiles, have been found with the screening procedures. One 8 mL urine sample was used for the analysis of five steroid metabolites with two separate analyses by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Urine samples were submitted to GC/C/IRMS for confirmation analysis to determine the 13C/12C ratio of selected steroids. Fifty-seven urine samples were analyzed by GC/C/IRMS and the δ 13C values (‰) of androsterone, etiocholanolone, 5β-androstane-3α, 17β-diol (5β-diol), 5α-androstane-3α, 17β-diol (5α-diol) and 5β-pregnane-3α, 20α-diol (5β-pdiol), the endogenous reference compound are presented. One urine sample with a testosterone/epitestosterone (T/E) ratio of 4.7 was confirmed to be positive of doping by GC/C/IRMS analysis. The δ values of 5β-diol and 5α-diol were 3.8 and 10.8, respectively, compared to the endogenous reference compound 5β-pdiol, which exceeded the WADA limit of 3‰. The results obtained by CG/C/IRMS confirmation analyses, in suspicious samples, were conclusive in deciding whether or not a doping steroid violation had occurred.  相似文献   

7.
New metabolites of mesterolone, methenolone and stenbolone bearing a C18 hydroxyl group were isolated from the steroid glucuronide fraction of urine specimens collected after administration of single 50 mg doses of these steroids to human subjects. Mesterolone gave rise to four metabolites which were identified by gas chromatography/mass spectrometry as 18-hydroxy-1 alpha-methyl-5 alpha-androstan-3,17-dione 1, 3 alpha,18-dihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 2, 3 beta,18-dihydroxy-1-alpha-methyl-5 alpha-androstan-17-one 3 and 3 alpha,6 xi,18-trihydroxy-1 alpha-methyl-5 alpha-androstan-17-one 4. These data suggest that mesterolone itself was not hydroxylated at C18, but rather 1 alpha-methyl-5 alpha-androstan-3,17-dione, an intermediate metabolite which results from oxidation of mesterolone 17-hydroxyl group. In addition to hydroxylation at C18, reduction of the 3-keto group and further hydroxylation at C6 were other reactions that led to the formation of these metabolites. It is of interest to note that in the case of both methenolone and stenbolone, only one 18-hydroxylated urinary metabolite namely 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 5 and 18-hydroxy-1-methyl-5 alpha-androst-1-ene-3,17-dione 6 were both detected in post-administration urine specimens. These data indicate that the presence of a methyl group at the C1 or C2 positions in the steroids studied is a structural feature that seems to favor interaction of hepatic 18-hydroxylases with these steroids. These data provide further evidence that 18-hydroxylation of endogenous steroids can also occur in extra-adrenal sites in man.  相似文献   

8.
The metabolism of methenolone acetate (17 beta-acetoxy-1-methyl-5 alpha-androst-1-en-3-one), a synthetic anabolic steroid, has been investigated in man. After oral administration of a 50 mg dose of the steroid to two male volunteers, twelve metabolites were detected in urine either in the glucuronide, sulfate or free steroid fractions. Methenolone, the parent steroid was detected in urine until 90 h after administration. Its cumulative urinary excretion accounted for 1.63% of the ingested dose. With the exception of 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, the major biotransformation product of methonolone acetate, metabolites were excreted in urine at lower levels, through minor metabolic routes. Most of methenolone acetate metabolites were isolated from the glucuronic acid fraction, namely methenolone, 3 alpha-hydroxy-1-methylen-5 alpha-androstan-17-one, 3 alpha-hydroxy-1 alpha-methyl-5 alpha-androstan-17-one, 17-epimethenolone, 3 alpha,6 beta-dihydroxy-1-methylen-5 alpha-androstan-17-one, 2 xi-hydroxy-1-methylen-5 alpha-androstan-3,17-dione, 6 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione, 16 alpha-hydroxy-1-methyl-5 alpha-androst-1-en-3,17-dione and 3 alpha,16 alpha-dihydroxy-1-methyl-5 alpha-androst-1-en-17-one. Interestingly, the metabolites detected in the sulfate fraction were isomeric steroids bearing a 16 alpha- or a 16 beta-hydroxyl group, whereas 1-methyl-5 alpha-androst-1-en-3,17-dione was the sole metabolite isolated from the free steroid fraction. Steroids identity was assigned on the basis of the mass spectral features of their TMS ether, TMS enol-TMS ether, MO-TMS, and d9-TMS ether derivatives and by comparison with reference and structurally related steroids. The data indicated that methenolone acetate was metabolized into several compounds resulting from oxidation of the 17-hydroxyl group and reduction of A-ring substituents, with or without concomitant hydroxylation at the C6 and C16 positions.  相似文献   

9.
19-Norandrostenedione (NAED) and nandrolone are anabolic-androgenic steroids (AASs). Nandrolone was regarded solely as a synthetic AAS until the 1980s when trace concentrations of apparently endogenous nandrolone were detected in urine samples obtained from intact male horses (stallions). Since then, its endogenous origin has been reported in boars and bulls; endogenous NAED and nandrolone have been identified in plasma and urine samples collected from stallions. More recently, however, it was suggested that NAED and nandrolone detected in urine samples from stallions are primarily artifacts due to the analytical procedure. The present study was undertaken to determine whether NAED and nandrolone detected in plasma and urine samples collected from stallions are truly endogenous or artifacts from sample processing. To answer this question, fresh plasma and urine samples from ≥8 stallions were analyzed for the two AASs, soon after collection, by liquid chromatography hyphenated to tandem mass spectrometry (LC-MS/MS). NAED and nandrolone were not detected in fresh plasma samples but detected in the same samples post storage. Concentrations of both AASs increased with storage time, and the increases were greater at a higher storage temperature (37°C versus 4°C, and ambient temperature versus 4°C). Although NAED was detected in some fresh stallion urine samples, its concentration (<407 pg/mL) was far lower (<0.4%) than that in the same samples post storage (at ambient temperature for 15 days). Nandrolone was not detected in most of fresh urine samples but detected in the same samples post storage. Based on these results, it is concluded that all NAED and nandrolone detected in stored plasma samples of stallions and most of them in the stored urine samples are not from endogenous origins but spontaneously generated during sample storage, most likely from spontaneous decarboxylation of androstenedione-19-oic acid and testosterone-19-oic acid. To our knowledge, it is the first time that all NAED and nandrolone detected in plasma of stallions and most of them detected in the urine have been shown to be spontaneously generated in vitro during sample storage. This finding would have significant implications with regard to the regulation of the two steroids in horse racing.  相似文献   

10.
G. Hobe  R. Schön  W. Schade 《Steroids》1980,36(2):131-147
Following oral administration of 9,11- 3H-17α-cyano-methylestra-1,3,5(10)-triene-3,17-diol 3-methyl ether, urinary metabolites were studied in man, baboon, beagle dog, minipig and rat. The metabolite pattern revealed remarkable species differences, especially in quantitative respects. 17α-Cyanomethylestra-1,3,5(10)-triene-3,17-diol, 17α-cyanomethylestra-1,3,5(10)-triene-2,3,17-triol 2-methyl ether, 17α-hydroxymethylestra-1,3,5(10)-triene-3,17-diol and 17α-cyanomethylestra-1,3,5(10)-triene-3,1665,17-triol were isolated as principal metabolites. In rat bile, a metabolite was tentatively identified as aγ-lactone of a 17α-carbozymethyl-16α-hydroxy compound.  相似文献   

11.
Stable isotope gas chromatography/mass spectrometry has been used successfully in the elucidation of structures of urinary steroid metabolites in the horse and in the identification of metabolites isolated from in vivo perfusion and in vitro incubation studies using equine tissue preparations. Deuterium-labeled steroids, testosterone, dehydroepiandrosterone, and 5-androstene-3 beta,17 beta-diol have been synthesized by base-catalyzed isotope exchange methods and the products characterized by gas chromatography/mass spectrometry. [16,16(-2)H2]Dehydroepiandrosterone (plus radiolabeled dehydroepiandrosterone) was perfused into a testicular artery of a pony stallion and was shown to be metabolized into 2H2-labeled testosterone, 4-androstenedione, isomers of 5-androstene-3,17-diol, 19-hydroxytestosterone, and 19-hydroxy-4-androstenedione. In further studies, equine testicular minces have been incubated with 2H2-labeled and radiolabeled dehydroepiandrosterone and 5-androstene-3 beta, 17 beta-diol. The metabolites, whose identity was confirmed by stable isotope gas chromatography/mass spectrometry, proved the interconversion of the two substrates, as well as formation of testosterone and 4-androstenedione. The aromatization of dehydroepiandrosterone was also confirmed, together with the formation of an isomer of 5(10)-estrene-3,17-diol from both substrates showing 19-demethylation without concomitant aromatization. In studies of the feto-placental unit, the allantochorion was shown to aromatize [2H5]testosterone to [2H4]estradiol, the loss of one 2H from the substrate being consistent with aromatization of the A ring. The formation of 6-hydroxyestradiol was also confirmed in this study. The same technique has been valuable in determining the structure of two metabolites of nandrolone isolated from horse urine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Neural tissues from adult, castrated male guinea pigs were examined for their capability to concentrate and metabolize [1,2-3H]testosterone (T) and [1,2-3H]dihydrotestosterone (DHT), both in vitro and in vivo. In vitro uptake of DHT and T was greater in the hypothalamus and anterior pituitary than in the cerebral cortex. With DHT as the substrate, the 800×g particulate concentration of this compound was highest in the hypothalamus, although in this tissue, particulate concentration was less than that of the cytoplasm. In the cerebral cortex 5α-androstane-3,17-dione was the most abundant metabolite, whereas 5α-androstane-3,17-dione, 5α-androstane-3α,17β-diol, and 5α-androstane-3β,17β-diol were all present in equivalent amounts in the hypothalamus and pituitary. Incubation with T resulted in the formation of DHT, 4-androstane-3,17-dione, and a compound with the mobility of 5α-(or 5β-)androstane-3,17-7-dione. The radioactivity associated with DHT was the most prevalent in the pituitary (1.3%), and least prevalent in the cerebral cortex (0.6%), and in all cases cytoplasmic concentration of this compound exceeded the concentration in the particulate fraction. Recrystallization failed to confirm the presence of estradiol-17β. Although there were no apparent tissue differences in the uptake of DHT or T 1 hour after their injection, intracellular distribution varied. In all tissues examined, that percentage of total radioactivity attributable to DHT was greatest in the 800×g particulate preparations, particularly in the hypothalamus. Thus neural tissues in the guinea pig, as in other species, exhibit differential uptake and metabolism of androgen through which physiological and behavioral effects may be mediated.  相似文献   

13.
Fabregat A  Pozo OJ  Marcos J  Segura J  Ventura R 《Steroids》2011,76(12):1367-1376
The screening of testosterone misuse in the doping control field is normally performed by the measurement of the ratio between the concentrations of testosterone and epitestosterone excreted as glucuronides (T/E). Despite the satisfactory results obtained with this approach, the measurement of T/E presents some limitations like the long-term detection of oral testosterone administration. Recently, several testosterone metabolites released after basic treatment of the urine have been reported (androsta-1,4-dien-3,17-dione, androsta-4,6-dien-3,17-dione, 17β-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione). In the present work, the usefulness of these metabolites for the detection of oral testosterone misuse has been evaluated and compared with the conventional T/E measurement. For this purpose, 173 urine samples collected from healthy volunteers were analysed in order to obtain reference concentrations for the four metabolites released after alkaline treatment. On the other hand, urine samples collected from five volunteers before and after testosterone undecanoate administration were also analysed. Concentrations of androsta-4,6-dien-3,17-dione and 17β-hydroxy-androsta-4,6-dien-3-one showed a similar behaviour as the T/E, allowing the detection of the misuse for several hours after administration. More promising results were obtained by quantifying androsta-1,4-dien-3,17-dione and 15-androsten-3,17-dione. The time in which the concentrations of these analytes could be differentiated from the basal level was between 3 and 6 times longer than the obtained with T/E, as a result, an improvement in the detection of testosterone abuse can be achieved. Moreover, several ratios between these compounds were evaluated. Some of them improved the detection of testosterone misuse when comparing with T/E. The best results were obtained with those ratios involving androsta-1,4-dien-3,17-dione.  相似文献   

14.
Because relatively large amounts of dehydroepiandrosterone (DHEA) are required to demonstrate its diverse metabolic effects, it is postulated that this steroid may be converted to more active molecules. To search for the possible receptor-recognized hormones. DHEA was incubated with whole rat liver homogenate and metabolite appearances were studied by LC-MS as a function of time to predict the sequence of their formation. An array of metabolites has been resolved, identified and characterized by highly specific and accurate technique of LC-MS, and several of these steroids were analyzed quantitatively. Their identities were established by comparison with pure chemically synthesized compounds and by chemical degradation of isolated fractions. In the present study, we have reasonably established that DHEA was converted to 7alpha-OH-DHEA, 7-oxo-DHEA, and 7beta-OH-DHEA in sequence. These metabolites were further reduced at position 7 and/or 17 to form their respective diols and triols, which were also sulfated at 3beta-position. DHEA and its 7-oxygenated derivatives were also converted to their respective 3beta-sulfate esters. Several of these steroids are being reported for the first time. 16Alpha-hydroxy-DHEA, androst-5-ene-3beta,16alpha,17beta-triol, androst-4-ene-3,17-dione, 11-hydroxy-androst-4-ene-3,17-dione, androst-5-ene-3,17-diol and testosterone were also identified and characterized. In all, 19 metabolites of DHEA are being reported in this extensive study. We have also detected the formation of 12 additional metabolites including several conjugates, which are the subject of current investigation.  相似文献   

15.
The short-step synthesis of all norethisterone (NET) hydrogenated metabolites and their deuteroanalogues has been accomplished. Reduction of NET by NaBH4 in the presence of N,N,N',N'-tetramethylethylenediamine provided 19-norpregn-20-yn-3,17-diols as a mixture of 3- and 5-epimers. The individual isomers were isolated by flash chromatography and oxidyzed by PyHCrO3Cl into 5 alpha- and 5 beta-dihydro-NET. These products were converted, on isotopic exchange with D2O--MeOD in alcaline conditions followed by reduction with NaBD4, into four stereoisomeric 2,2,3,4,4-pentadeuterated 19-norpregn-20-yn-3,17-diols; two isomeric 2,2,3,4,4,16,16,17-octadeuterated estrane-3,17-diols were also isolated as side products. All compounds obtained will be used as internal standards for chromato-mass-fragmentographic analysis.  相似文献   

16.
17β-Nandrolone (17β-NT) is one of the most frequently misused anabolic steroids in meat producing animals. As a result of its extensive metabolism combined with the possibility of interferences with other endogenous compounds, detection of its illegal use often turns out to be a difficult issue. In recent years, proving the illegal administration of 17β-NT became even more challenging since the presence of endogenous presence of 17β-NT or some of its metabolite in different species was demonstrated. In bovines, 17α-NT can occur naturally in the urine of pregnant cows and recent findings reported that both forms can be detected in injured animals. Because efficient control must both take into account metabolic patterns and associated kinetics of elimination, the purpose of the present study was to investigate further some estranediols (5α-estrane-3β,17β-diol (abb), 5β-estrane-3α,17β-diol (bab), 5α-estrane-3β,17α-diol (aba), 5α-estrane-3α,17β-diol (aab) and 5β-estrane-3α,17α-diol (baa)) as particular metabolites of 17β-NT on a large number of injured (n=65) or pregnant (n=40) bovines. Whereas the metabolites abb, bab, aba and baa have previously been detected in urine up to several days after 17β-NT administration, the present study showed that some of the isomers abb (5α-estrane-3β,17β-diol) and bab (5β-estrane-3α,17β-diol) could not be detected in injured or pregnant animals, even at very low levels. This result may open a new way for the screening of anabolic steroid administration considering these 2 estranediols as biomarkers to indicate nandrolone abuse in cattle.  相似文献   

17.
The present study reports the effects exerted by 1,4,6-androstatriene-3,17-dione (ATD), 4-hydroxy-4-androstene-3,17-dione (4-OH-A) and 4-acetoxy-4-androstene-3,17-dione (4-Ac-A), three steroids known to inhibit the aromatization of androgens to estrogens, on the in vitro metabolism of labelled testosterone (T), dihydrotestosterone (DHT) and androstenedione (delta-4-A) in the ventral prostate of adult male rats. It has been found that ATD, in the concentration tested, does not influence the conversion of labelled T into DHT, but decreases the formation of 5 alpha-androstane-3 alpha,17 beta-diol and 5 alpha-androstane-3 beta,17 beta-diol (diols). On the contrary, 4-OH-A and 4-Ac-A simultaneously decrease the formation of DHT and the diols. When T is used as the substrate, the presence in the medium of these three steroids enhances the formation of delta-4-A and of 5 alpha-androstanedione (5 alpha-A). ATD, but not 4-OH-A and 4-Ac-A inhibits the conversion of labelled DHT into the diols. The transformation of labelled delta-4-A into 5 alpha-A is not modified by either ATD or 4-OH-A, while 4-Ac-A exerts only a small inhibition. These results suggest that the three aromatase inhibitors tested are able to profoundly modify the metabolism of T in the ventral prostate of the rat. In particular: 4-OH-A and 4-Ac-A are able to inhibit the conversion of T into DHT; ATD is able to inhibit the conversion of DHT into the diols; ATD and 4-OH-A do not inhibit the process of 5 alpha-reduction of delta-4-A into 5 alpha-A, while 4-Ac-A exerts only a minor effect. It is suggested that in the ventral prostate of the rat there are two different 5 alpha-reductase isoenzymes, one sensitive to the inhibitory effect of the steroid tested and which is responsible for the conversion of T into the 5 alpha-reduced metabolites of the 17-OH series (DHT and the diols), and a second one, insensitive to the effects of the three steroids, which affects the conversion of delta-4-A into 5 alpha-A.  相似文献   

18.
The retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione were good substrates for cortisone reductase in the presence of NADH, and the products corresponded to the respective 3beta-hydroxy compounds, in which the 3beta-hydroxyl group is axial and the absolute configuration is 3S. The analogous natural steroids 17beta-hydroxy-5beta,9alpha,10beta-androstan-3-one and 5beta,9alpha,10beta-androstane-3,17-dione were very poor substrates, and gave the corresponding 3alpha(equatorial,3R)-hydroxy compounds, and, in the latter case, also an appreciable amount of 3beta(axial, 3S)-hydroxy-5beta,9alpha,10beta-androstan-17-one. The natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione were better substrates than the retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one, but were not such good substrates as the retro steroids 17beta-hydroxy-5beta,9beta,10alpha-androstan-3-one and 5beta,9beta,10alpha-androstane-3,17-dione. Unlike these retro steroid 5beta,9beta,10alpha-androstan-3-ones, the natural steroids 17beta-hydroxy-5alpha,9alpha,10beta-androstan-3-one and 5alpha,9alpha,10beta-androstane-3,17-dione gave the corresponding 3alpha(axial,3R)-hydroxy compounds. The retro steroid 17beta-hydroxy-5alpha,9beta,10alpha-androstan-3-one was not a good substrate, and the product of reaction corresponded to the 3alpha(axial,3R)-hydroxy compound. The nature of substrate recognition by this enzyme is discussed in the light of these structure-activity relationships.  相似文献   

19.
A new convergent synthesis of the antitumor steroid formestane (4-OHA) 5 has been performed from the easily available epimeric mixture of 5 alpha- and 5 beta-androst-3-en-17-one 1a and 1b in order to attempt a yield improvement. A two-step oxidative route followed by base-catalyzed isomerization was applied to the 5 alpha- and 5 beta-epimers 1a and 1b, either as a mixture or separately, leading to the title compound 5. From epimer 1a an efficient process was attained to prepare the desired aromatase inhibitor formestane. Epimer 1b led to the formation of the same compound 5. Additionally, 1b have also been converted in 5 beta-hydroxyandrostane-3,17-dione 12 and androst-4-ene-3,17-dione 13, revealing an unexpected reactivity of the 3 beta,4 beta-epoxy-5 beta-androstan-17-one intermediate 6 formed from 1b during the first oxidative step with performic acid. Cleavage of the epoxide 6 led to the trans-diaxial and the trans-diequatorial vic-diols 7 and 8 and to the 1,3-diol 9. The formation of the abnormal products 8 and 9 were investigated through X-ray and deuterium labeling studies. Diol 8 was formed through a trans-diequatorial epoxide ring opening and the 1,3-diol 9 was formed through an intramolecular rearrangement involving a 1,2-hydride shift. All the vic-diols 3, 7 and 8 formed, proved to be good precursors for the synthesis of the target compound 5.  相似文献   

20.
James C. Coffey 《Steroids》1973,22(2):247-257
Tritiated 4-androstene-3,17-dione and testosterone were incubated with submaxillary gland homogenates of 6 month old male mice. In 15 and 180 minute incubations fortified with NADPH, submaxillary tissue converted 4-androstene-3,17-dione predominantly to androsterone and, to a lesser extent, testosterone, 17β-hydroxy-5α-androstan-3-one and 5α-androstane-3α, 17β-diol. Testosterone was converted primarily to 5α-androstane-3α, 17β-diol when exogenous NADPH was available; trace amounts of 4-androstene-3,17-dione, 17β-hydroxy-5α-androstan-3-one and androsterone were also formed. When a NADPH-generating system was omitted from the incubation medium both 4-androstene-3,17-dione and testosterone were poorly metabolized by submaxillary tissue; the amounts of reduced metabolites accumulating were markedly reduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号