首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspergillus niger has been grown in glucose- and maltose-limited continuous cultures to determine the bioenergetic consequences of the production of the extracellular enzyme glucoamylase. Growth yields (g biomass per mol substrate) were high, indicating that growth was very efficient and protein production for biomass was not exceedingly energy consuming. It has been found that the energy costs for the production of this extracellular enzyme is very high. Depending on the efficiency of energy conservation the glucoamylase protein yield on ATP is between 1.3 and 2.6 g protein per mol ATP, which is equal or less than 10% of the theoretical maximum of 25.5. These high energy costs most probably have to be invested in the process of excretion. A comparison between an industrial over-producing strain and the wild typeAspergillus niger showed that this over-producing strain most probably is a regulatory mutant. Two regions of specific growth rates could be determined (one at specific growth rates lower and one at specific growth rates higher than 0.1 h-1), which are characterized by differences in mycelium morphology and a significant deviation from linearity in the linear equation for substrate utilization. Analysis of the region of specific growth rates higher than 0.1 h-1 yielded maintenance requirements of virtual zero. It has been concluded that for a good analysis of the growth behaviour of filamentour fungi the linear equation for substrate utilization is not suitable, since it contains no term for the process of differentiation.  相似文献   

2.
The molar growth yield (Y m) of Bacteroides amylophilus strain WP91 on maltose was 68±2 g/mol when determined from batch cultures at the peaks of maximal growth. Continued incubation led to considerable cell lysis. When calculated from batch cultures in exponential phase (specific growth rate, =0.57 h-1) Y m was 101 g/mol. The maximum value of Y m in maltose-limited chemostat cultures at the maximum dilution rate (D) attainable (D==0.39 h-1) was about 79 g/mol. Ammonia-Fmited chemostat cultures metabolized maltose with a much reduced efficiency and this was associated with a difference in morphology and chemical composition of the cells. The theoretical maximum molar growth yields (Y m max ) were 55 and 114 g/mol for ammonia- and maltose-limited growth respectively. However, if account was taken of extracellular nitrogen-containing material in ammonia-limited cultures, Y m max became 60. The maintenance coefficient (m s), estimated from the lines relating the specific rate of maltose consumption (q m) and D (where m s=q m at D=0), was 7.4±0.6×10-4 mol maltose/g x h for both nutrient limitations. A difference in maintenance energy demand, independent of growth-rate, could not account, therefore, for the observed differences in Y m between ammonia- and maltose-limited growth.  相似文献   

3.
Summary Bacillus licheniformis S 1684 is able to produce an alkaline serine protease exocellularly. In glucose-limited chemostat cultures the specific rate of protease production was maximal at a -value of 0.22. Above this growth rate protease production was repressed. Dependent on 10–20% of the glucose input was used for exocellular product formation. The degree of reduction of exocellular products was 4.1.Maximum molar growth yields were high and indicate a high efficiency of growth. The values of Y glu max and YO 2 max were 83.8 and 53.3, respectively. When Y glu max was corrected for the amount of glucose used for product formation a value of 100.3 was obtained. These high maximum molar growth yields are most probably caused by a high Y ATP max . Anaerobic batch experiments showed a Y ATP of 14.6.Sometimes the used strain was instable in cell morphology and protease production. Non-protease producing cells most probably develop from producing cells by mutation in the rel-gene. Producing cells most probably are relaxed (rel -) and non-producing cells stringent (rel +).Glossary specific growth rate (h-1) - Y sub growth yield permol substrate (g biomass/mol) - Y max maximum molar growth yield, corrected for maintenance requirements (g biomass/mol) - Y max(corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub(corr) maintenance requirements corrected for product formation (mol/g biomass·h) - Y c fraction of organic substrate converted in biomass - z fraction of organic substrate converted in exocellular products - d fraction of organic substrate converted in CO2 (g mol/g atom C) - Crec% carbon recovery % - average degree of reduction of exocellular products - P/O amount of ATP produced during electron-transport of 2 electrons to oxygen  相似文献   

4.
Escherichia coli was grown anaerobically on sodium fumarate and molecular hydrogen or sodium formate in continuous culture. The maximal growth yield and the maintenance coefficient were determined. In a mineral medium a Y fum max value of 6.6 g dry weight per mol fumarate was found. This value increased to 7.5 when casamino acids were present in the medium. From these data and the corresponding Y ATP max values it could be calculated that per mol of fumarate reduced, 0.4 mol of ATP became available for growth. In batch culture a Yfum value of 4.8 g dry weight per mol fumarate was determined.  相似文献   

5.
The oxygen uptake rate (OUR) was studied in a solid state fermentation process of dried citrus peel with the strain Aspergillus niger QH-2 in order to obtain the growth estimation of the microorganism in the system. The relationship between OUR, the maintenance coefficient (m) and the yield for oxygen consumption YO2 allows the estimation of the biomass rate if we consider that both parameters are not constants in some periods of the process. It was estimated that in the first 24th the strain has an specific growth rate of 0.174 h?1 with values for YO2 and m in the order of 2.84 g-cell/g-oxygen and 0.006 g-oxygen/g-cell ·h respectively.  相似文献   

6.
Using experimental data from continuous cultures of Clostridium acetobutylicum with and without biomass recycle, relationships between product formation, growth and energetic parameters were explored, developed and tested. For glucose-limited cultures the maintenance models for, the Y ATP and biomass yield on glucose, and were found valid, as well as the following relationships between the butanol (Y B/G) or butyrate (Y BE/G) yields and the ATP ratio (R ATP, an energetic parameter), Y B/G =0.82-1.35 R ATP, Y BE/G =0.54 + 1.90 R ATP. For non-glucose-limited cultures the following correlations were developed, Y B/G =0.57-1.07 , Y B/G =0.82-1.35 R ATPATP and similar equations for the ethanol yield. All these expressions are valid with and without biomass recycle, and independently of glucose feed or residual concentrations, biomass and product concentrations. The practical significance of these expressions is also discussed.List of Symbols D h–1 dilution rate - m e mol g–1 h–1 maintenance energy coefficient - m G mol g–1 h–1 maintenance energy coefficient - R biomass recycle ratio, (dimensionless) - R ATP ATP ratio (eqs.(5), (10) and (11)), (dimensionless) - X kg/m3 biomass concentration - Y ATP g biomass per mol ATP biomass yield on ATP - Y ATP max g biomass per mol ATP maximum Y ATP - Y A/G mol acetate produced per mol glucose consumed molar yield of acetate - y an/g mol acetone produced per mol glucose consumed molar yield of acetone - Y B/G mol butanol produced per mol glucose consumed molar yield of butanol - y be/g mol butyrate produced per mol glucose consumed molar yield of butyrate - Y E/G mol ethanol produced per mol glucose consumed molar yield of ethanol - Y X/G g biomass per mol glucose consumed biomass yield on glucose - Y ATP max g biomass per mol maximum Y X/G glucose consumed - h–1 specific growth rate  相似文献   

7.
Crude rapeseed oil and post-refining fatty acids were used as substrates for oxalic acid production by a mutant of Aspergillus niger. Both the final concentration and the yield of the product were highest at pH 4 to 5. With a medium containing 50 g lipids l–1, production reached a maximum of 68 g oxalic acid l–1 after 7 d. A high yield of the product (up to 1.4 g oxalic acid g–1 lipids consumed) was achieved with oil and fatty acids combined.  相似文献   

8.
Azotobacter vinelandii was grown diazotrophically in sucrose-limited chemostat cultures at either 12, 48, 108, 144 or 192 M dissolved oxygen. Steady state protein levels and growth yield coefficients (Y) on sucrose increased with increasing dilution rate (D). Specific rate of sucrose consumption (q) increased in direct proportion to D. Maintenance coefficients (m) extrapolated from plots of q versus D, as well as from plots of 1/Y versus 1/D exhibited a nonlinear relationship to the dissolved oxygen concentration. Constant maximal theoretical growth yield coefficients (Y G) of 77.7 g cells per mol of sucrose consumed were extrapolated irrespective of differences in ambient oxygen concentration. For comparison, glucose-, as well as acetate-limited cultures were grown at 108 M oxygen. Fairly identical m- and Y G-values, when based on mol of substrate-carbon with glucose and sucrose grown cells, indicated that both substrates were used with the same efficiency. However, acetate-limited cultures showed significantly lower m- and, at comparable, D, higher Y-values than cultures limited by either sucrose or glucose. Substrate concentrations (K s) required for half-maximal growth rates on sucrose were not constant, they increased when the ambient oxygen concentration was raised and, at a given oxygen concentration, when D was decreased. Since biomass levels varied in linear proportion to K s these results are interpreted in terms of variable substrate uptake activity of the culture.Abbreviations D dilution rate - K s substrate concentration required for half maximal growth rate - m maintenance coefficient - q specific rate of substrate consumption - Y growth yield coefficient - Y G maximum theoretical growth yield coefficient  相似文献   

9.
Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Yxp total), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7±0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3±0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (rp total, the sum of extracellular and intracellular lipase productivity) was found to be 1.60±0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h–1, compared with a total specific lipase productivity of 1.10±0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.  相似文献   

10.
Citric acid production from sugar cane molasses byAspergillus niger NIAB 280 was studied in a batch cultivation process. A maximum of 90 g/L total sugar was utilized in citric acid production medium. From the parental strainA. niger, mutant strains showing resistance to 2-deoxyglucose in Vogal's medium containing molasses as a carbon source were induced by γ-irradiation. Among the new series of mutant strains, strain RP7 produced 120 g/L while the parental strain produced 80 g/L citric acid (1.5-fold improvement) from 150 g/L of molasses sugars. The period of citric acid production was shortened from 10 d for the wild-type strain to 6–7 d for the mutant strain. The efficiency of substrate uptake rate with respect to total volume substrate consumption rate,Q s (g per L per h) and specific substrate consumption rate,q s (g substrate per g cells per h) revealed that the mutant grew faster than its parent. This indicated that the selected mutant is insensitive to catabolite repression by higher concentrations of sugars for citric acid production. With respect to the product yield coefficient (Y p/x), volume productivity (Q p) and specific product yields (q p), the mutant strain is significantly (p≤0.05) improved over the parental strain.  相似文献   

11.
Singh SS  Dikshit AK 《Biodegradation》2011,22(6):1109-1117
Decolourization of anaerobically digested and polyaluminium chloride treated distillery spentwash was studied in a fungal stirred tank aerobic reactor without dilution of wastewater. Aspergillus niger isolate IITB-V8 was used as the fungal inoculum. The main objectives of the study were to optimize the stirrer speed for achieving maximum decolourization and to determine the kinetic parameters. A mathematical model was developed to describe the batch culture kinetics. Volumetric oxygen transfer coefficient (k L a) was obtained using dynamic method. The maximum specific growth rate and growth yield of fungus were determined using Logistic equation and using Luedeking–Piret equation. 150 rpm was found to be optimum stirrer speed for overall decolourization of 87%. At the optimum stirrer speed, volumetric oxygen transfer coefficient (k L a) was 0.4957 min−1 and the maximum specific growth rate of fungus was 0.224 h−1. The values of yield coefficient (Y x/s) and maintenance coefficient (m s) were found to be 0.48 g cells (g substrate)−1 and 0.015 g substrate (g cells)−1 h−1.  相似文献   

12.
Summary Maximal molar growth yields (Y sub max ) and protease production ofBacillus licheniformis S 1684 during NH 4 + -, O2-, and NH 4 + +O2-limitation with either glucose or citrate as carbon and energy source and during glucose-, and citratelimitation in chemostat cultures were determined. Protease production was repressed by excess ammonia when glucose served as C/E-source. Glucose and citrate repressed protease production during NH 4 + -limitation. A low oxygen tension enbanced protease production at low -values. It was concluded that, besides ammonia repression, catabolite flux and oxygen tension influence protease production, indicating that the energy status of the cell is important for the level of protease production.Y sub max -values were high during glucose-limitation and indicate a high efficiency of growth caused by a highY ATP max . During NH 4 + -, O2-, and NH 4 + +O2-limitation with glucose as C/E-values were lower than during glucose limitation. The lowerY sub max -values were due to a lower efficiency of energy conservation.Y sub max -values during limitations with citrate as C/E-source were lower than during limitations with glucose as C/E-source.Nomenclature specific growth rate (h-1) - Y sub growth yield per mol substrate (g biomass/mol) - Y max maximal molar growth yield corrected for maintenance requirements (g biomass/mol) - Y max (corr) Y max corrected for product formation (g biomass/mol) - m sub maintenance requirements (mol/g biomass·h) - m sub (corr) maintenance requirements corrected for product formation (mol/g biomass·h) - q port max maximal specific rate of protease production (E440/mg DW·h)  相似文献   

13.
Summary A production of macerating enzymes which liquefy and hydrolyze the mandarin orange peel was studied in a solid state cultivation of Aspergillus niger on wheat bran substrate. Solid state cultivation in a 2 drum fermenter capable of interchangeable operation under dynamic or static conditions were carried out maintaining the moisture content of the substrate at 32, 39, 46, 56, 67, and 74%. Biomass grown on the solid substrate was estimated on the basis of a constant value of glucosamine content of A. niger, 50 mg glucosamine/g cell. A linear relationship between oxygen uptake rate and growth rate observed in all the experiments gave an oxygen growth yield, YX/O, of 28.5 g cell/mol O2. The rate of macerating enzyme formation was also in proportion to the growth rate irrespective of the difference of the moisture content of the substrate.The enzyme accumulation on the solid substrate, the growth rate and oxygen uptake rate were maximum when the moisture content of the substrate was maintained at ca. 56% ascending from 32 to 56 and descending from 56 to 74.  相似文献   

14.
Paracoccus denitrificans was grown aerobically during two-(carbon)substrate-limitation on mannitol and methanol in chemostat cultures. Theoretical growth parameters were calculated based on the presence of 2 or 3 sites in the electron-transport chain of Paracoccus denitrificans. Experimental growth parameters determined during two-(carbon)substrate growth were conform to the presence of 3 sites of oxidative phosphorylation, while cells grown only on mannitol possessed 2 sites. The maximum growth yield on adenosine triphosphate (ATP), corrected for maintenance requirements, determined in chemostat experiments in which the methanol concentration is less than 2.11 times the mannitol concentration was 8.6 g of biomass. When the methanol concentration was more than 2.11 times the mannitol concentration the maximum growth yield on adenosine triphosphate decreased due to the more energy consuming process of CO2-assimilation. Cells use methanol only as energy source to increase the amount of mannitol used for assimilation purposes. When the methanol concentration in chemostat experiments was more than 2.11 times the mannitol concentration, all mannitol was used for assimilation and excess energy derived from methanol was used for CO2-assimilation via the ribulose-bisphosphate cycle. The synthesis of ribulosebisphosphate carboxylase was repressed when the methanol concentration in chemostat experiments was less than 2.11 times the mannitol concentration or when Paracoccus denitrificans was grown in batch culture on both methanol and mannitol. When in chemostat experiments the methanol concentration was more than 2.11 times the mannitol concentration ribulose-bisphosphate carboxylase activity could be demonstrated and CO2-assimilation will occur. It is proposed that energy produced in excess activates or derepresses the synthesis of the necessary enzymes of the ribulose-bisphosphate cycle in Paracoccus denitrificans. Consequently growth on any substrate will be carbonas well as energy-limited. When methanol is present in the nutrient cells of Paracoccus denitrificans synthesize a CO-binding type of cytochrome c, which is essential for methanol oxidase activity.The reason for the increase in efficiency of oxidative phosphorylation from 2 to 3 sites is most probably the occurrence of this CO-binding type of cytochrome c in which presence electrons preferentially pass through the a-type cytochrome region of the electron-transport chain.Non Standard Abbreviations X prosthetic group of methanol dehydrogenase - q substrate specific rate of consumption of substrate (mol/g biomass. h.) - Y substrate, Y substrate MAX are respectively the growth yield and the maximum growth yield corrected for maintenance requirements (g biomass/mol) - m substrate maintenance requirement (mol substrate/g biomass) - specific growth rate (h-1) - M [methanol]/[mannitol] ratio in the nutrient - N part of mannitol that is assimilated when M=o - R m amount of methanol-equivalents that has the same energy content as 1 mannitol-equivalent - P/O N , P/O F , P/O X is the amount of ATP produced during electron-transport of two electrons from respectively NADH+H+, FADH2 and XH2 to oxygen  相似文献   

15.
Two years atmospheric survey of air-borne Aspergillus was carried out in the environmental conditions of South Assam. The survey revealed a total of 16 different species of Aspergillus with marked seasonal and annual variations. Aspergillus fumigatus was found to be the dominant atmospheric fungal species followed by Aspergillus flavus, Aspergillus niger, etc. Among the sample extracts tested, highest quantity of soluble protein was recorded in Aspergillus fumigatus (95.0 mg/g) whereas highest quantity of soluble carbohydrate (40.8 mg/g) and free amino acid (135.0 mg/g) was recorded in the sample extract of Aspergillus niger per gram of dry weight, respectively. The highest numbers of protein polypeptide bands were detected in the sample extract of Aspergillus fumigatus followed by Aspergillus flavus and lowest in Aspergillus niger. The maximum numbers of immunoglobulin E binding protein fractions were found in Aspergillus fumigatus, followed by Aspergillus flavus, Aspergillus clavatus, etc.  相似文献   

16.
Batch fermentation of sugarcane bagasse hemicellulosic hydrolyzate by the yeast Candida guilliermondii FTI 20037 was performed using controlled pH values (3.5, 5.5, 7.5). The maximum values of xylitol volumetric productivity (Q p=0.76 g/l h) and xylose volumetric consumption (Q s=1.19 g/l h) were attained at pH 5.5. At pH 3.5 and 7.5 the Q p value decreased by 66 and 72%, respectively. Independently of the pH value, Y x/s decreased with the increase in Y p/s suggesting that the xylitol bioconversion improves when the cellular growth is limited. At the highest pH value (7.5), the maximum specific xylitol production value was the lowest (q pmax=0.085 g/l h.), indicating that the xylose metabolism of the yeast was diverted from xylitol formation to cell growth.List of symbols P max xylitol concentration (g/l) - Q x volumetric cell production rate (g/l h) - Q s volumetric xylose uptake rate (g/l h) - Q p volumetric xylitol production rate (g/l h) - q pmax specific xylitol production (g/g h) - q smax specific xylose uptake rate (g/g h) - max specific cell growth rate (h–1) - Y p/s xylitol yield coefficient, g xylitol per g xylose consumed (g/g) - Y p/x xylitol yield coefficient, g xylitol per g dry cell mass produced (g/g) - Y x/s cell yield coefficient, g dry cell mass per g xylose consumed (g/g) - cell percentage of the cell yield from the theoretical value (%) - xylitol percentage of xylitol yield from the theoretical value (%)  相似文献   

17.
Summary The metabolism ofBacteroides cellulosolvens was studied on cellobiose and cellulose as energy and carbon sources. The growth rate was faster on cellobiose; however, growth on cellulose resulted in consumption of 55% more hexose equivalents, and in production of 49% more biomass, and 30% more metabolites (ethanol, acetate, and lactate). On each substrateB. cellulosolvens exhibited two distinct ranges of molar growth yields (Y H g cells/mol hexose). At low substrate concentrations (less than 30 mmol) hexoseY H values were 25.5 for cellulose and 28.5 for cellobiose, while at hexose levels greater than 30 mmolY H values were 13.5 and 15, respectively. Shifts in metabolism towards greater lactic acid production resulted in decreased ATP production; however, this did not cause early growth cessation, as these shifts occurred after the drop inY H.Issued as NRCC No. 27409.  相似文献   

18.
The present investigation deals with role of Ca++ ions in increasing the yield of citric acid in a repeated-batch cultivation system (working volume 9-1) and its kinetic basis. Five different hyper-producing strains of Aspergillus niger were evaluated for citric acid production using clarified cane-molasses as basal substrate. Among the cultures, NGGCB101 (developed by u.v./chemical mutation in our labs) gave maximum production of citric acid i.e., 87.98 g/1, 6 days after mycelial inoculation. The addition of CaCl2 to the culture medium promoted the formation of small rounded fluffy pellets (1.55 mm, diameter), which were desirable for citric acid productivity. CaCl2 at a level of 2.0 M, added during inoculation time, was optimized for commercial exploitation of molasses. During repeated-batch culturing, a yield of citric acid monohydrate of 128.68 g/1 was obtained when the sampling vs. substrate feeding was maintained at 4-1 (44.50% working volume). The incubation period was reduced from 6 to only 2 days. The values of kinetic parameters such as substrate consumption and product formation rates revealed the hyperproducibility of citric acid by the selected Aspergillus niger NGGCB101 (LSD = 0.456a, HS). Case studies are highly economical because of higher yield of product, lower energy consumption and the use of raw substrate without any additional supplementation.  相似文献   

19.
The energetics of growth of the fission yeast Schizosaccharomyces pombe was studied in continuous high-cell concentration cultures using a cell-recycle fermentor. Under non-O2-limited conditions, steady-states were obtained at various specific growth rates (partial cell-recycle) with purely oxidative (glucose limitation) or respiro-fermentative (glucose excess) metabolic behaviour. The stoichiometry of biomass synthesis was established from the elemental composition of the cells and measurements of all the specific metabolic rates, i.e. consumption of glucose and O2 and production of CO2, ethanol and other products. The theoretical yield factor for biomass on glucose was YG,X = 0.85 C-mol·C-mol–1 and maintenance requirements were negligible. Assuming a constant coupling between energy generation and biomass formation for both respirative and respiro-fermentative breakdown of glucose, the biomass yield from ATP (YATP) and the efficiency of oxidative phosphorylation (P/O ratio) could be determined as 9.8 g biomass·mol ATP and 1.28 mol ATP·atom of O2, respectively. Correspondence to: A. Pareilleux  相似文献   

20.
NMR analysis of 13C-labelling patterns showed that the Embden–Meyerhof (EM) pathway is the main route for glycolysis in the extreme thermophile Caldicellulosiruptor saccharolyticus. Glucose fermentation via the EM pathway to acetate results in a theoretical yield of 4 mol of hydrogen and 2 mol of acetate per mole of glucose. Previously, approximately 70% of the theoretical maximum hydrogen yield has been reached in batch fermentations. In this study, hydrogen and acetate yields have been determined at different dilution rates during continuous cultivation. The yields were dependent on the growth rate. The highest hydrogen yields of 82 to 90% of theoretical maximum (3.3 to 3.6 mol H2 per mol glucose) were obtained at low growth rates when a relatively larger part of the consumed glucose is used for maintenance. The hydrogen productivity showed the opposite effect. Both the specific and the volumetric hydrogen production rates were highest at the higher growth rates, reaching values of respectively 30 mmol g−1 h−1 and 20 mmol l−1 h−1. An industrial process for biohydrogen production will require a bioreactor design, which enables an optimal mix of high productivity and high yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号