首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
ragged seedling2 (rgd2) is a novel, recessive mutation affecting lateral organ development in maize. The mutant phenotype of homozygous rgd2-R leaves is variable. Mild leaf phenotypes have a reduced midrib and may be moderately narrow and furcated; severe Rgd2-R(-) leaves are filamentous or even radial. Despite their radial morphology, severe Rgd2-R(-) mutant leaves develop distinct adaxial and abaxial anatomical features. Although Rgd2-R(-) mutants exhibit no reduction in adaxial or abaxial cell types, areas of epidermal cell swapping may occur that are associated with misaligned vascular bundles and outgrowths of ectopic margins. Scanning electron microscopy of young primordia and analyses of leaf developmental-marker gene expression in mutant apices reveal that RGD2 functions during recruitment of leaf founder cells and during expansive growth of leaf primordia. Overall, these phenotypes suggest that development is uncoordinated in Rgd2-R(-) mutant leaves, so that leaf components and tissues may develop quasi-independently. Models whereby RGD2 is required for developmental signaling during the initiation, anatomical patterning, and lateral expansion of maize leaves are discussed.  相似文献   

3.
4.
5.
Maize leaves are initiated from the shoot apex with an inherent leaf dorsoventral polarity; the leaf surface closest to the meristem is the adaxial (upper, dorsal) surface whereas the opposite leaf surface is the abaxial (lower, ventral) surface. The Rolled leaf1 (Rld1) semi-dominant maize mutations affect dorsoventral patterning by causing adaxialization of abaxial leaf regions. This adaxialization is sometimes associated with abaxialization of the adaxial leaf regions, which constitutes a "switch". Dosage analysis indicates Rld1 mutants are antimorphs. We mapped Rld1's action to a single cell layer using a mosaic analysis and show Rld1 acts non cell-autonomously along the dorsoventral axis. The presence of Rld1 mutant product in the abaxial epidermis is necessary and sufficient to induce the Rolled leaf1 phenotype within the lower epidermis as well as in other leaf layers along the dorsoventral axis. These results support a model for the involvement of wild-type RLD1 in the maintenance of dorsoventral features of the leaf. In addition, they demonstrate the abaxial epidermis sends/receives a cell fate determining signal to/from the adaxial epidermis and controls the dorsoventral patterning of the maize leaf.  相似文献   

6.
7.
8.
A model to evaluate photon transport within leaves and the implications for photosynthesis are investigated. A ray tracing model, Raytran, was used to produce absorption profiles within a virtual dorsiventral plant leaf oriented in two positions (horizontal/vertical) and illuminated on one of its two faces (adaxial/abaxial). Together with chlorophyll profiles, these absorption profiles feed a simple photosynthesis model that calculates the gross photosynthetic rate as a function of the incident irradiance. The differences observed between the four conditions are consistent with the literature: horizontal‐adaxial leaves, which are commonly found in natural conditions, have the greatest light use efficiency. The absorption profile obtained with horizontal‐abaxial leaves lies below this, but above those obtained for vertical leaves. The latter present similar gross photosynthetic rates when irradiated on either the adaxial or abaxial surfaces. Vertical profiles of photosynthetic rates across the leaf confirm that carbon fixation occurs mainly in the palisade parenchyma, that the leaf anatomy is integral to its function and that leaves cannot be considered as a single homogeneous unit. Finally, the relationships between leaf structure, orientation and photosynthesis are discussed.  相似文献   

9.
10.
Acclimation to CO2 enrichment was studied in maize plants grown to maturity in either 350 or 700 microl l-1 CO2. Plants grown with CO2 enrichment were significantly taller than those grown at 350 microl l-1 CO2 but they had the same number of leaves. High CO2 concentration led to a marked decrease in whole leaf chlorophyll and protein. The ratio of stomata on the adaxial and abaxial leaf surfaces was similar in all growth conditions, but the stomatal index was considerably increased in plants grown at 700 microl l-1 CO2. Doubling the atmospheric CO2 content altered epidermal cell size leading to fewer, much larger cells on both leaf surfaces. The photosynthesis and transpiration rates were always higher on the abaxial surface than the adaxial surface. CO2 uptake rates increased as atmospheric CO2 was increased up to the growth concentrations on both leaf surfaces. Above these values, CO2 uptake on the abaxial surface was either stable or increased as CO2 concentration increased. In marked contrast, CO2 uptake rates on the adaxial surface were progressively inhibited at concentrations above the growth CO2 value, whether light was supplied directly to this or the abaxial surface. These results show that maize leaves adjust their stomatal densities through changes in epidermal cell numbers rather than stomatal numbers. Moreover, the CO2-response curve of photosynthesis on the adaxial surface is specifically determined by growth CO2 abundance and tracks transpiration. Conversely, photosynthesis on the abaxial surface is largely independent of CO2 concentration and rather independent of stomatal function.  相似文献   

11.
Leaves of flowering plants are diverse in shape. Part of this morphological diversity can be attributed to differences in spatiotemporal regulation of polarity in the upper (adaxial) and lower (abaxial) sides of developing leaves. In a leaf primordium, antagonistic interactions between polarity determinants specify the adaxial and abaxial domains in a mutually exclusive manner. The patterning of those domains is critical for leaf morphogenesis. In this review, we first summarize the gene networks regulating adaxial–abaxial polarity in conventional bifacial leaves and then discuss how patterning is modified in different leaf type categories. genesis 52:1–18, 2014. © 2013 The Authors. Genesis Published byWiley Periodicals, Inc.  相似文献   

12.
Recent work on species with simple leaves suggests that the juxtaposition of abaxial (lower) and adaxial (upper) cell fates (dorsiventrality) in leaf primordia is necessary for lamina outgrowth. However, how leaf dorsiventral symmetry affects leaflet formation in species with compound leaves is largely unknown. In four non-allelic dorsiventrality-defective mutants in tomato, wiry, wiry3, wiry4 and wiry6, partial or complete loss of ab-adaxiality was observed in leaves as well as in lateral organs in the flower, and the number of leaflets in leaves was reduced significantly. Morphological analyses and expression patterns of molecular markers for ab-adaxiality [LePHANTASTICA (LePHAN) and LeYABBY B (LeYAB B)] indicated that ab-adaxial cell fates were altered in mutant leaves. Reduction in expression of both LeT6 (a tomato KNOX gene) and LePHAN during post-primordial leaf development was correlated with a reduction in leaflet formation in the wiry mutants. LePHAN expression in LeT6 overexpression mutants suggests that LeT6 is a negative regulator of LePHAN. KNOX expression is known to be correlated with leaflet formation and we show that LeT6 requires LePHAN activity to form leaflets. These phenotypes and gene expression patterns suggest that the abaxial and adaxial domains of leaf primordia are important for leaflet primordia formation, and thus also important for compound leaf development. Furthermore, the regulatory relationship between LePHAN and KNOX genes is different from that proposed for simple-leafed species. We propose that this change in the regulatory relationship between KNOX genes and LePHAN plays a role in compound leaf development and is an important feature that distinguishes simple leaves from compound leaves.  相似文献   

13.
14.
HYPONASTIC LEAVES1 (HYL1) is an important regulator of microRNA (miRNA) biogenesis. Incurvature of rosette leaves in loss-of-function mutants of HYL1 implicates the regulation of leaf flatness by HYL1 via miRNA pathways. Recent studies have identified jba-1D, jaw-1D, and oe-160c, the dominant mutants of MIR166g, MIR319a, and MIR160c genes, respectively, which display three types of leaf curvature. However, it remains unclear whether or how HYL1 controls leaf flatness through the pathways mediated by these miRNAs. To define which miRNAs and target genes are relevant to the hyl1 phenotype in terms of leaf incurvature, the effects of three mutated MIRNA genes and their targets on the direction and extent of leaf curvature in hyl1 mutants were examined. The genetic analysis shows that the hyl1 phenotype is strongly rescued by jba-1D, but not by jaw-1D or oe-160c, whereas the mutant phenotypes of jba-1D, jaw-1D, or oe-160c leaves are compromised by the hyl1 allele. Expression analysis indicates that reduced accumulation of miR166, rather than of miR319a or miR160, causes incurvature of hyl1 leaves, and that miR319a-targeted TCP3 positively regulates the adaxial identity gene PHABULOSA while miR160-targeted ARF16 negatively regulates the abaxial identity gene FILAMENTOUS FLOWER. In these cases, the direction and extent of leaf incurvature are associated with the expression ratio of adaxial to abaxial genes (adaxial to abaxial ratio). HYL1 regulates the balance between adaxial and abaxial identity and modulates leaf flatness by preventing leaf incurvature, wavy margins, and downward curvature. It is concluded that HYL1 monitors the roles of miR165/166, miR319a, and miR160 in leaf flattening through the relative activities of adaxial and abaxial identity genes, thus playing an essential role in leaf development.  相似文献   

15.
对叶子花(Bougainvillea spectabilis)正常叶和变态叶上气孔密度、气孔指数和保卫细胞大小进行了研究。结果表明:正常叶上表皮的表皮细胞为多边形,垂周壁平直;下表皮的表皮细胞为不规则型,垂周壁浅波状;气孔类型为不规则型。变态叶上表皮没有发现气孔,变态叶下表皮的表皮细胞垂周壁则由浅波形逐渐变为深波形,气孔类型为不规则型和轮列型。随着变态叶的发育,变态叶下表皮的气孔密度降低,气孔指数升高;变态叶保卫细胞的长增大,宽减小。变态叶的平均气孔密度和平均气孔指数明显低于正常叶。正常叶和变态叶的保卫细胞均呈肾形。  相似文献   

16.
The leaves of most higher plants are polar along their adaxial‐abaxial axis, and the development of the adaxial domain (upper side) and the abaxial domain (lower side) makes the leaf a highly efficient photosynthetic organ. It has been proposed that a hypothetical signal transported from the shoot apical meristem (SAM) to the incipient leaf primordium, or conversely, the plant hormone auxin transported from the leaf primordium to the SAM, initiates leaf adaxial‐abaxial patterning. This hypothetical signal has been referred to as the Sussex signal, because the research of Ian Sussex published in 1951 was the first to imply its existence. Recent results, however, have shown that auxin polar transport flanking the incipient leaf primordium, but not the Sussex signal, is the key to initiate leaf polarity. Here, we review the new findings and integrate them with other recently published results in the field of leaf development, mainly focusing on the early steps of leaf polarity establishment.  相似文献   

17.
18.
A key innovation in leaf evolution is the acquisition of a flat lamina with adaxial-abaxial polarity, which optimizes the primary function of photosynthesis. The developmental mechanism behind leaf adaxial-abaxial polarity specification and flat lamina formation has long been of interest to biologists. Surgical and genetic studies proposed a conceptual model wherein a signal derived from the shoot apical meristem is necessary for adaxial-abaxial polarity specification, and subsequent lamina outgrowth is promoted at the juxtaposition of adaxial and abaxial identities. Several distinct regulators involved in leaf adaxial-abaxial polarity specification and lamina outgrowth have been identified. Analyses of these genes demonstrated that the mutual antagonistic interactions between adaxial and abaxial determinants establish polarity and define the boundary between two domains, along which lamina outgrowth regulators function. Evolutionary developmental studies on diverse leaf forms of angiosperms proposed that alteration to the adaxial-abaxial patterning system can be a major driving force in the generation of diverse leaf forms, as represented by 'unifacial leaves', in which leaf blades have only the abaxial identity. Interestingly, unifacial leaf blades become flattened, in spite of the lack of adaxial-abaxial juxtaposition. Modification of the adaxial-abaxial patterning system is also utilized to generate complex organ morphologies, such as stamens. In this review, we summarize recent advances in the genetic mechanisms underlying leaf adaxial-abaxial polarity specification and lamina outgrowth, with emphasis on the genetic basis of the evolution and diversification of leaves.  相似文献   

19.
Leaf adaxial–abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial–abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin‐associated marker gene WUSCHEL‐RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial–abaxial polarity. How middle domain and margins function in the process is discussed.  相似文献   

20.
Yu L  Yu X  Shen R  He Y 《Planta》2005,221(2):231-242
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号