共查询到20条相似文献,搜索用时 0 毫秒
1.
Marivaux L Tabuce R Lebrun R Ravel A Adaci M Mahboubi M Bensalah M 《Journal of human evolution》2011,61(4):447-457
The HGL-50 locality, situated on the Glib Zegdou outlier in the Gour Lazib of Algeria (Hammada du Dra), is famous for having yielded several dental remains of primates dating from the late Early to the early Middle Eocene. These primates include Algeripithecus minutus, Azibius trerki and a new species of cf. Azibius (not described yet). Algeripithecus was widely acknowledged to be one of the oldest known anthropoids from Africa. However, very recent discoveries strongly suggest that Algeripithecus is closely related to Azibius and that both taxa are phylogenetically remote from the clade Anthropoidea. Algeripithecus and Azibius make up the family Azibiidae and appear as stem strepsirhines. Here we describe and analyse two ankle bones (tali) found in HGL-50. UM/HGL50-466 is a small left talus, which is appropriate in size to belong to A. trerki, while UM/HGL50-467 is a right talus, which is significantly larger and appropriate in size to belong to the new large species of cf. Azibius. Both tali exhibit a suite of features that resemble conditions primarily found in extinct and extant strepsirhine and adapiform primates; conditions that are consistent with the strepsirhine-like dentition characterizing azibiids. Functionally, these two tali indicate that Azibius species were engaged in a form of active arboreal quadrupedalism with some ability to climb and leap. Azibiids were rather small-bodied primates, approximating the size of some modern dwarf lemurs (Cheirogaleidae) and sportive lemurs (Lepilemuridae) from Madagascar. Given their small body-size and their talar morphology, living cheirogaleid lemurs, which are agile arboreal quadrupeds (with climbing, springing and branch running activities), might appear as good analogues for azibiids in terms of locomotor behaviour. 相似文献
2.
The forelimbs of hylobatids (gibbons and siamang) are distinctive among tetrapods in that they are loaded in overall tension during normal locomotion. While hylobatid ulnae must also encounter bending stresses in the course of their full range of locomotor behavior, their loading regime differs from that of quadrupedal anthropoids in that these bending stresses are distributed evenly along the bone, are not exerted in a preferred plane, and are probably of generally lower magnitude. This study examines the degree to which hylobatid ulnae are adapted to this suspensory loading regime. We obtained cross-sections of ulnae at various increments along the length of the bone using CAT scans. The sample comprises 476 cross-sections representing the ulnae of 25 individuals from five species of comparable body size. We show that in gibbons and siamang, the patterning of ulnar cross-sectional area and resistance to bending in the dorsoventral plane along the ulnar diaphysis differ from that of similarly sized quadrupedal anthropoids in the manner predicted by a suspensory loading regime. We also find the same pattern for the ulnae of Ateles, whose loading regime may be fairly similar to that of hylobatids. However, we find that the cross-sectional shape of the ulnar diaphysis in hylobatids and Ateles does not differ from that of quadrupedal monkeys in the manner predicted by a suspensory loading regime. © 1995 Wiley-Liss, Inc. 相似文献
3.
A review was made of experiments on humans in which air trapping by glottis closure during three-dimensional movements were examined in four subjects including former Olympic gymnasts. In brachiation and horizontal bar exercises, the behaviour of the larynx was monitored with a fiberoptic endoscope, and EMG-data were recorded from shoulder muscles. The results revealed that immobilization of the polyaxial connection between the shoulder girdle and the thorax by air trapping occurs in phases of extreme loading of the upper limbs. The closure of the airway by the larynx in humans serves three functions: first, the prevention of errors in deglutition; second, the production of vocal sounds; third, the retention of air inside the thoracic cavity. The latter function, air trapping, allows the immobilization of the rib cage for the muscular fixation of the shoulder blade on the trunk in movements that imply unusually high external forces acting on the upper limbs. This morphological-functional innovation probably has been made when early mammals invaded the three dimensional arboreal habitat, because it gave the tree-dwelling early primates the device to anchor themselves by the arms alone and to avoid falling out of trees. The specific functional characteristic of primates is the hermetic closure of the vocal and vestibular folds by rapidly contracting muscles in the folds. So the closure of the glottis, which in humans seems primarily an adaptation to the production of vocal tones, seems to go back to the adaptation of Tertiary arboreal primates to movements in a three-dimensional environment. Our conclusions are in agreement with the results of other contributions to this volume. 相似文献
4.
5.
6.
7.
Foot anthropometry and morphology phenomena 总被引:1,自引:0,他引:1
8.
The phylogenetic relationships of the late Eocene anthropoids Catopithecus browni and Proteopithecus sylviae are currently a matter of debate, with opinion divided as to whether these taxa are stem or crown anthropoids. The phylogenetic position of Catopithecus is of particular interest, for, unlike the highly generalized genus Proteopithecus, this taxon shares apomorphic dental and postcranial features with more derived undoubted catarrhines that appear in the same region 1-2 Ma later. If these apomorphies are homologous and Catopithecus is a stem catarrhine, the unique combination of plesiomorphic and apomorphic features preserved in this anthropoid would have important implications for our understanding of the crown anthropoid morphotype and the pattern of morphological character transformations that occurred during the early phases of stem catarrhine evolution.Well-preserved astragali referrable to Proteopithecus, Catopithecus, and the undoubted early Oligocene stem catarrhine Aegyptopithecus have provided additional morphological evidence that allows us to further evaluate competing hypotheses of interrelationships among Eocene-Oligocene Afro-Arabian anthropoids. Qualitative observations and multivariate morphometric analyses reveal that the astragalar morphology of Proteopithecus is very similar to that of early Oligocene parapithecids and living and extinct small-bodied platyrrhines, and strengthens the hypothesis that the morphological pattern shared by these taxa is primitive within crown Anthropoidea. In contrast, Catopithecus departs markedly from the predicted crown anthropoid astragalar morphotype and shares a number of apomorphic features (e.g., deep cotylar fossa, laterally projecting fibular facet, trochlear asymmetry, mediolaterally wide astragalar head) with Aegyptopithecus and Miocene-Recent catarrhines. The evidence from the astragalus complements other independent data from the dentition, humerus and femur of Catopithecus that support this taxon's stem catarrhine status, and we continue to maintain that oligopithecines are stem catarrhines that constitute the sister group of a clade containing propliopithecines and Miocene-Recent catarrhines. 相似文献
9.
Bodine-Fowler SC Pierotti DJ Talmadge RJ 《Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology》1995,2(1):P43-P46
Considerable data has been collected on the response of hindlimb muscles to unloading due to both spaceflight and hindlimb suspension. One generalized response to a reduction in load is muscle fiber atrophy, although not all muscles respond the same. For example, predominantly slow extensor muscles like the Sol exhibit a large reduction in fiber size to unloading, while fast extensors like the plantaris and fast flexors like the tibialis anterior show little, if any, atrophy. Our understanding of how muscles respond to microgravity, however, has come primarily from the examination of hindlimb muscles in the unrestrained rat in space. The non-human primate spaceflight paradigm differs considerably from the rodent paradigm in that the monkeys are restrained, usually in a sitting position, while in space. Recently, we examined the effects of microgravity on muscles of the Rhesus monkey by taking biopsies of selected hindlimb muscles prior to and following spaceflights of 14 and 12 day durations (Cosmos 2044 and 2229). Our results revealed that the monkey's response to microgravity differs from that of the rat. The apparent differences in the atrophic response of the hindlimb muscles of the monkey and rat to spaceflight may be attributed to 1) a species difference, 2) a difference in the manner in which the animals were maintained during the flight (i.e., chair restraint or "free-floating"), and/or 3) an ability of the monkeys to counteract the effects of spaceflight with resistive exercise. 相似文献
10.
Kimura T 《Folia primatologica; international journal of primatology》2003,74(1):17-32
Primate appendicular limb bones were measured on the cross-sectional geometry at the mid-length of the humerus and femur and on the external dimensions of long bones of the same individuals. Cross sections were directly measured by means of computer tomography or direct sectioning. The morphometry of bones and locomotor behaviour is discussed from the viewpoint of the functional differentiation between the fore- and hindlimbs. The primate group which daily adopted a relatively terrestrial locomotor type demonstrates robust forelimb bones compared with the group which adopted a fully arboreal locomotor type. In contrast, the arboreal group showed relatively large and long hindlimb bones. The difference resembled the previously reported comparison between terrestrial and arboreal groups among wholly quadrupedal mammals. Humans were more similar to the arboreal group than to the terrestrial group. Parameters of the cross-sectional geometry showed a slightly positive allometry in total primate species. Slopes of the parameters were explained by the influence of muscle force. 相似文献
11.
Morphological features of the jaws and teeth are examined in eight species of platyrrhine monkeys that coexist in the Suriname rainforest. Z-scores calculated from geometric predictions for several features of the feeding apparatus thought to have some functional significance (e. g., tooth dimensions, jaw robusticity, leverage of primary jaw elevators) are compared to a profile of the naturalistic dietary behavior of these species (i. e., proportions of fruit mesocarp, seeds, leaves, and fauna eaten). Several features are found exclusively in those platyrrhines whose dietary preferences are the most limited. Such specializations appear to be associated with a particular protein source exploited by a species to supplement a largely frugivorous diet. Ateles paniscus, which feeds primarily on the mesocarp of ripe fruit, has an adaptive morphology that emphasizes broad incisors. Chiropotes satanas (and to a slightly lesser extent, Pithecia pithecia) is a frugivore/seed predator with large upper and lower canines and a robust mandible. The frugivore/folivore Alouatta seniculus has a relatively large total molar area and effective mandibular condyle height. In all four of these strictly vegetarian species, the leverage of the masseter muscle is greater than that of temporalis. Of the omnivorous species, Cebus apella and C. nigrivittatus exploit both fauna and seeds for protein and exhibit an array of many of the above features, such as large teeth and thick mandibles. Saimiri sciureus, not particularly known for seed predation, departs from Cebus in having less robust canines and a more gracile mandible. All three cebid omnivores have a temporalis with greater leverage than the masseter, indicating a requirement for resisting anteriorly directed forces, for example, using the jaws for vigorous foraging. The lack of any enlarged features, other than incisors, in the omnivorous Saguinus midas may be attributable to the functional constraints of small body size. Because the small size of the gape limits the size of the food parcel ingested, a requirement to enlarge other dentomandibular structures for trituration is alleviated. 相似文献
12.
F Forriol Campos J P Maiques C Dankloff L Gomez Pellico 《Gegenbaurs morphologisches Jahrbuch》1990,136(6):669-676
We studied the podogram from both feet in 1676 school-children of both sexes (663 boys and 1013 girls), aged between 3 and 17 a using 3 footprint measures (footprint angle: Clarke [1933]; footprint index of Chippaux [1947] and Smirak [1960]; arch index [Staheli et al. 1987]) and found clear differences according to age. Our findings showed a tendency in both sexes in early childhood to present a low internal arch until the age of 5 and 6a. 相似文献
13.
Kay RF Schmitt D Vinyard CJ Perry JM Shigehara N Takai M Egi N 《Journal of human evolution》2004,46(1):3-25
Analysis of the teeth, orbital, and gnathic regions of the skull, and fragmentary postcranial bones provides evidence for reconstructing a behavioral profile of Amphipithecidae: Pondaungia, Amphipithecus, Myanmarpithecus (late middle Eocene, Myanmar) and Siamopithecus (late Eocene, Thailand). At 5-8 kg, Pondaungia, Amphipithecus, and Siamopithecus are perhaps the largest known Eocene primates. The dental and mandibular anatomy suggest that large-bodied amphipithecids were hard-object feeders. The shape of the mandibular corpus and stiffened symphysis suggest an ability to resist large internal loads during chewing and to recruit significant amounts of muscle forces from both the chewing and non-chewing sides of the jaw so as to increase bite force during mastication. The large spatulate upper central incisor of Pondaungia and projecting robust canines of all the larger amphipithecids suggest that incisal food preparation was important. The molars of Siamopithecus, Amphipithecus, and Pondaungia have weak shearing crests. This, and the thick molar enamel found in Pondaungia, suggests a diet of seeds and other hard objects low in fiber. In contrast, Myanmarpithecus was smaller, about 1-2 kg; its cheek teeth suggest a frugivorous diet and do not imply seed eating. Postcranial bones (humerus, ulna, and calcaneus) of a single large amphipithecid individual from Myanmar suggest an arboreal quadrupedal locomotor style like that of howler monkeys or lorises. The humeral head is rounded, proximally oriented, and the tuberosities are low indicating an extremely mobile glenohumeral joint. The great thickness of the midshaft cortical bone of the humerus implies enhanced ability to resist bending and torsion, as seen among slow moving primate quadrupeds. The elbow joint exhibits articular features for enhanced stability in habitually flexed positions, features also commonly found in slow moving arboreal quadrupeds. The short distal load arm of the calcaneus is consistent with, but not exclusive to, slow, arboreal quadrupedalism, and suggests no reliance on habitual leaping. 相似文献
14.
Nakano Y 《Zeitschrift für Morphologie und Anthropologie》2002,83(2-3):189-199
To explore the change from the horizontal quadrupedal walking to the vertical climbing in primates, I designed an experiment on an inclined substratum. The subjects were an adult male Japanese macaque and a 2-year-old female white-handed gibbon. The animals moved on a substratum made of bamboo pipe (8 cm diameter). The inclination of the substratum was changed from 15 degrees to 65 degrees in 5-degree increments for the Japanese macaque and from 20 degrees to 70 degrees with 10-degree increments for the white-handed gibbon. I placed surface electrodes and telemetry transmitters on the subjects to record the activity of the long head of the triceps brachii and the long head of the biceps brachii muscles. The Japanese macaque utilized horizontal quadrupedal walking until the incline was 15 degrees. Vertical climbing began at an inclination of 55 degrees. The intermediate locomotor mode was observed between 20 degrees and 50 degrees. The white-handed gibbon changed the locomotor mode from horizontal quadrupedal walking to vertical climbing at 40 degrees. I believe that the difference observed in locomotor mode between these two species was mainly due to differences in the intermembral index. The white-handed gibbon had a large intermembral index, which meant she had longer forelimbs and could therefore change locomotor mode at a lower inclination of the substratum. 相似文献
15.
Schmitt D 《Journal of human evolution》2003,44(1):47-58
The forelimb joints of terrestrial primate quadrupeds appear better able to resist mediolateral (ML) shear forces than those of arboreal quadrupedal monkeys. These differences in forelimb morphology have been used extensively to infer locomotor behavior in extinct primate quadrupeds. However, the nature of ML substrate reaction forces (SRF) during arboreal and terrestrial quadrupedalism in primates is not known. This study documents ML-SRF magnitude and orientation and forelimb joint angles in six quadrupedal anthropoid species walking across a force platform attached to terrestrial (wooden runway) and arboreal supports (raised horizontal poles). On the ground all subjects applied a lateral force in more than 50% of the steps collected. On horizontal poles, in contrast, all subjects applied a medially directed force to the substrate in more than 75% of the steps collected. In addition, all subjects on arboreal supports combined a lower magnitude peak ML-SRF with a change in the timing of the ML-SRF peak force. As a result, during quadrupedalism on the poles the overall SRF resultant was relatively lower than it was on the runway. Most subjects in this study adduct their humerus while on the poles. The kinetic and kinematic variables combine to minimize the tendency to collapse or translate forelimbs joints in an ML plane in primarily arboreal quadrupedal primates compared to primarily terrestrial quadrupedal ones. These data allow for a more complete understanding of the anatomy of the forelimb in terrestrial vs. arboreal quadrupedal primates. A better understanding of the mechanical basis of morphological differences allows greater confidence in inferences concerning the locomotion of extinct primate quadrupeds. 相似文献
16.
17.
18.
Foraging behaviors exist along a continuum from highly sedentary, ambush foraging, to more continuous searching, or active foraging. Foraging strategies, or modes, are defined based upon locomotor behaviors (e.g. percent time moving, moves per minute). In lizards, traits correlated with ambush and active foraging have been of interest for some time; however, general patterns of correlated evolution between locomotor morphology and locomotor behavior have only recently begun to be quantified. In this study, variation in hindlimb morphology is investigated in a model group of lizard species that vary between active foraging and more sedentary (or mixed) foraging mode. Canonical variates analysis reveals that the two active foraging species occupy similar regions of the morphospace, while the two more sedentary species occupy different regions. The active foraging species have a narrow pelvis with shorter tibia and femora. The more sedentary species have a wide pelvis, long tibia and femora, and slightly longer metatarsals. Phylogenetic patterns of trait variation were examined through ancestral character state reconstruction and show morphological shifts in concert with foraging mode in these species. The observed shifts in locomotor morphology are discussed in light of published data on sprint speed and endurance in these species. Together, the data show that linking morphological variation to variation in stride length and stride frequency is critical to understanding the evolution of locomotor performance. Much more stride length and frequency data are needed among ambush, mixed, and active foraging species because these parameters, and their morphological components, are likely correlated with variation in food acquisition mode. 相似文献
19.
Takahashi Y Matsumura A Kimura K 《Zeitschrift für Morphologie und Anthropologie》2002,83(2-3):291-303
We examined gross-anatomically the cruropedal muscles, which control the toe movements, in some species of insectivores, rodents and primates including humans, with a focus on the phylogenetic developments of these muscles including the distribution patterns of the tendons to the toes. Morphological changes corresponding to the phylogenetic advancement from primitive terrestrial mammals to arboreal primates were found in the short extensors and flexors, presumably in association with the enhancement of independent digital mobility. In contrast, the changes which correspond to the acquisition of terrestrial bipedality in humans were identified in the development of extensors and flexors which govern the first toe, as well as in establishment of the peroneus tertius that dorsi-flexes the talocrural joint. 相似文献