首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
The aim of this work was to assess the potential for bacterial oxidation of hydrogen sulphide as a purification method of sour gas. Using a continuous culture of Chlorobium limicola, high efficiencies of oxidation of both soluble and gaseous sulphide were achieved, with efficiencies for the latter exceeding 95%. Sulphide added as aqueous sodium sulphide was converted to sulphur and sulphate with almost total removal of the initial 100 mg S l−1 within 24 h. Gaseous sulphide was oxidized at an efficiency of 95% (approximately 3 mmol S h−1 (unit biomass Abs)−1) over 1 h runs at a gas flow rate of 60 ml min−1. With a sulphur recovery system to prevent sulphur accumulation, an efficiency of 70% was maintained. Biological removal of sulphide represents a potentially important biotechnological process, with high potential for viable scale up.  相似文献   

2.
The green sulfur bacterium Chlorobium limicola UdG6040 exhibited a significant change in the spectral properties of its antenna when transferred from batch culture to a sulfide-limited chemostat. In steady-state continuous cultures, the in vivo absorption maximum of the culture changed to shorter wavelengths according to the dilution rate. The maximum difference observed was of 15 nm when cells were growing at 0.087 h–1. HPLC analyses revealed that the observed spectral change was caused by a partial enrichment of the original BChl c-containing antenna with BChl d molecules together with a change in the homolog composition of both pigments. The relative amount of BChl d reached a maximum value of 50% when cells were growing at 0.087 h–1. The content of BChl d decreased to less than the 22% when the dilution rate was diminished to 0.015 h–1. An unbalance of pigment synthesis at high dilution rates is suspected to be responsible of the changes observed in the antenna composition. Chlorosomes isolated from Chl. limicola UdG6040 growing at 0.070 h–1 contain organised pools of BChl c and BChl d in equal amounts. Received: 2 December 1998 / Accepted: 25 February 1999  相似文献   

3.
The uptake of soluble phosphate by the green sulfur bacterium Chlorobium limicola UdG6040 was studied in batch culture and in continuous cultures operating at dilution rates of 0.042 or 0.064 h–1. At higher dilution rates, washout occurred at phosphate concentrations below 7.1 μM. This concentration was reduced to 5.1 μM when lower dilution rates were used. The saturation constant for growth on phosphate (K μ) was between 2.8 and 3.7 μM. The specific rates of phosphate uptake in continuous culture were fitted to a hyperbolic saturation model and yielded a maximum rate (Va max) of 66 nmol P (mg protein)–1 h–1 and a saturation constant for transport (K t) of 1.6 μM. In batch cultures specific rates of phosphate uptake up to 144 nmol P (mg protein)–1 h–1 were measured. This indicates a difference between the potential transport of cells and the utilization of soluble phosphate for growth, which results in a significant change in the specific phosphorus content. The phosphorus accumulated within the cells ranged from 0.4 to 1.1 μmol P (mg protein)–1 depending on the growth conditions and the availability of external phosphate. Transport rates of phosphate increased in response to sudden increases in soluble phosphate, even in exponentially growing cultures. This is interpreted as an advantage that enables Chl. limicola to thrive in changing environments. Received: 9 February 1998 / Accepted: June 1998  相似文献   

4.
5.
Toxic “sulphide eruptions” sporadically occur in the highly productive inshore regions of the central Namibian Benguela upwelling system. The surf clam Donax serra (Röding, 1798) dominates the intertidal and upper subtidal of large exposed sandy beaches of southern Africa and its recruitment seems to be affected by sulphide events. The reaction of juvenile surf clams to low oxygen concentrations and sulphide occurrence (0.1 mmol l−1) was examined by in vitro exposure experiments in a gas-tight continuous flow system. After 2 h of hypoxic- and hypoxic/sulphidic conditions, clams moved to the sediment surface, aiding their passive transport to areas with more favourable conditions. The clams showed a high sulphide detoxification capacity by oxidising the penetrating hydrogen sulphide to non-toxic thiosulphate. Moreover, juvenile D. serra switched to anaerobic energy production, indicated by the significant accumulation of succinate and, to some extent, alanine. Test animals were not able to reduce their energy requirements enough to withstand long periods of exposure, leading to a median survival time (LT50) of 80 h under hypoxic sulphide incubation. In conclusion, natural “sulphide eruptions”, especially those with a large spatial and temporal extension, have to be considered as an important factor for D. serra recruitment failures. Hydrogen sulphide is assumed to be a potential community structuring factor.  相似文献   

6.
Control of postharvest lemon diseases by biofumigation with the volatile-producing fungus Muscodor albus was investigated. In vitro exposure to M. albus volatile compounds for 3 days killed Penicillium digitatum and Geotrichum citri-aurantii, causes of green mold and sour rot of lemons, respectively. Lemons were wound-inoculated with P. digitatum and placed in closed 11-L plastic boxes with rye grain cultures of M. albus at ambient temperature. There was no contact between the fungus and the fruit. Biofumigation for 24–72 h controlled green mold significantly, even when treatment began 24 h after inoculation. Effectiveness was related to the amount of M. albus present. In tests conducted inside a 11.7-m3 degreening room with 5 ppm ethylene at 20 °C, green mold incidence on lemons was reduced on average from 89.8 to 26.2% after exposure to M. albus for 48 h. Ethylene accelerates color development in harvested citrus fruit. M. albus had no effect on color development. Biofumigation in small boxes immediately after inoculation controlled sour rot, but was ineffective if applied 24 h later. G. citri-aurantii may be less sensitive to the volatile compounds than P. digitatum or escapes exposure within the fruit rind. Biofumigation with M. albus could control decay effectively in storage rooms or shipping packages.  相似文献   

7.
Laccases isolated from Rhus vernicifera Stokes (tree) and Pycnoporus coccineus (fungus) catalyzed the oxidation of isoeugenol (1) and coniferyl alcohol (5) in acetone–water (1:1, v/v). These oxidations follow a first order rate law. In general, the rates of Pycnoporus laccase-catalyzed oxidation of 1 and 5 are approximately three and seven times faster than the corresponding rates of Rhus laccase-catalyzed oxidation, respectively. Thus, synthesis for 2-(4-hydroxyphenyl)coumaran type compounds, such as dehydrodiconiferyl alcohol, can be accomplished by Rhus laccase-catalyzed dehydrogenative polymerization of the corresponding 1-(4-hydroxyphenyl)–1-propene derivatives. The reaction proceeds under very mild reaction conditions. The resulting reaction mixtures are chromatographed on a silica gel column to isolate the products in approximately 30–40% yield.  相似文献   

8.
Conversion of heterocyclic and aromatic aldehydes to the corresponding carboxylic acids was carried out using Acetobacter rancens IFO3297, A. pasteurianus IFO13753 and Serratia liquefaciens LF14. IFO3297 produced 110g 2-furoic acid l-1 from furfural with a 95% molar yield. 5-Hydroxymethyl-2-furancarboxylic acid was produced from the corresponding aldehyde by using whole cells LF14. IFO13753 and LF14 both converted isophthalaldehyde, 2,5-furandicarbaldehyde, 2,5-thiophenedicarbaldehyde and 2,2 biphenyldicarbaldehyde to the corresponding formylcarboxylic acid with 86--91% molar yields.Revisions requested 21 July 2004; Revisions received 7 September 2004  相似文献   

9.
The behavior of Bifidobacterium animalis subsp. lactis Bb 12 under batch cultivation, after continuous culturing for up to 12 d, was monitored in skim milk-based media. Previous continuous culture for longer than 6 d affected the physiology of said microorganism. The minimum inhibitory concentrations of lactic and acetic acids increased from 18 to 26 g/l, whereas the molar ratio of acetic to lactic acid increased from 0.8 to 1.55, when the previous continuous culture increased its duration from 1 to 12 d. The specific lactose consumption rate decreased from 0.94 to 0.77 glactose/gcell dry mass/h within the batch culture timeframe; this was concomitant with greater amounts of acetic and formic acids, and lower amounts of lactic acid produced. The β-galactosidase activity increased as continuous culturing time increased, and reached 446 units/ml by 12 d; however, the rate of enzyme synthesis decreased concomitantly. Succinic acid was produced during the exponential growth and stationary phases of the batch culture, but the former at exponential growth phase was higher as the continuous culturing time was longer. For comparison purposes, batch cultivation of samples taken from continuous cultures by 1 and 12 d was done using a semi-synthetic medium with glucose as carbon source; a pattern similar to that observed when using skim milk-based media was observed.  相似文献   

10.
The fungus Mortierella alpina LPM 301, a producer of arachidonic acid (ARA), was found to possess a unique property of a growth-coupled lipid synthesis. An increase in specific growth rate (μ) from 0.03 to 0.05 h−1 resulted in a two-fold increase in the specific rate of lipid synthesis (milligram lipid (gram per lipid-free biomass) per hour). Under batch cultivation in glucose-containing media with urea or potassium nitrate as nitrogen sources, the ARA content was 46.0 and 60.4% of lipid; 16.4 and 18.8% of dry biomass; and 4.2 and 4.5 g l−1, respectively. Under continuous cultivation of the strain, the productivity of ARA synthesis was 16.2 and 19.2 mg l−1 h−1 at μ=0.05 and 0.03 h−1, respectively.  相似文献   

11.
Phenyl methyl sulfides substituted in thepara position with methyl, fluoro, chloro, bromo, cyano, nitro, amino, acyl, methoxy, thiomethyl and methylsulfinyl groups have been converted to (S) sulfoxides by biotransformation usingHelminthosporium species NRRL 4671. The highest yields and enantiomeric excesses were obtained with bromo, cyano, methoxy, thiomethyl and methylsulfinyl substituents and in two cases (para-Br and -CN) the products could be crystallized to give (S) sulfoxide of ≥ 96% ee.  相似文献   

12.
Oxidation of isoeugenol by Nocardia iowensis   总被引:1,自引:0,他引:1  
Isoeugenol is a starting material for both the synthetic and biotechnological production of vanillin and vanillic acid. Nocardia iowensis DSM 45197 (formerly Nocardia species NRRL 5646) resting cells catalyze the conversion of isoeugenol to vanillic acid, vanillin, vanillyl alcohol and guaiacol. The present study used a variety of chemical, microbial and enzymatic approaches to probe the pathways used by N. iowensis in the oxidation of isoeugenol to these products. Of three possible pathways considered, initial side-chain olefin epoxidation, epoxide hydrolysis to a vicinal diol, and diol cleavage to vanillin and subsequently further oxidation to vanillic acid appears as the most likely route. Isoeugenol was not oxidized to ferulic acid, a well-known microbial transformation precursor for vanillin and vanillic acid. 18O-Labeled oxygen (one atom) and water (two oxygen atoms) were incorporated into vanillic acid during the whole-cell biotransformation reaction with isoeugenol indicating the likely involvement of oxygenase and hydrolase systems in the bioconversion reaction. Vanillin was converted to singly labeled vanillic acid in the presence of H218O suggesting the presence of an aldehyde oxidase. Cell extracts achieved the conversion of isoeugenol to vanillic acid and vanillin without cofactors. Partial fractionation of two enzyme activities supported the presence of isoeugenol monooxygenase and vanillin oxidase activities in N. iowensis.  相似文献   

13.
Batch and continuous cultures conditions were studied in order to increase γ-linolenic acid production by Mucor fragilis CCMI 142, in response to the presence of ethanol. Continuous cultures were used to add ethanol pulses to steady state pellet cultures. It was demonstrated that pellet size, which allowed homogeneous fungal cultures, can be obtained by means of pH adjustment, thus enabling steady state continuous growth at 2.90±0.05.

The 5 and 2% (v/v) ethanol pulses induced hyphal morphological changes with arthrospore formation. A 1% (v/v) pulse of ethanol did not immediately affect growth, but induced morphological changes, which led to autolysis at the pellet core. A 0.5% (v/v) pulse of ethanol did not affect neither the morphology nor the physiology of the microorganism to any significant extent. The 0.5 and 1% (v/v) ethanol pulses resulted in an increase in the proportion of γ-linolenic acid production up to 11%. Data from batch cultures showed a higher enhancement of ethanol, attaining 30% of γ-linolenic acid.

The increase of γ-linolenic acid content observed in batch and continuous conditions appears to be a response associated with stress induced by the ethanol which seems to be of value as an industrial medium component.  相似文献   


14.
The use of O2 uptake as a valid assay for non-cyclic photosynthetic electron flow in membranes from Chlorobium limicola is discussed. It is recommended that methyl viologen, catalase and superoxide dismutase should be added to the experimental medium. The addition of methyl viologen more than doubled the rate of O2 uptake observed on illumination with 1 mM sulphide as donor. Superoxide dismutation was shown to be efficient under the experimental conditions by means of standard additions of potassium superoxide dissolved in dimethylsulphoxide. The highest rates of light stimulated O2 uptake were obtained with sulphide as electron donor, and approached 50 mol O2 · h-1 · mg bacteriochlorophyll c -1 with 0.2 mM sulphide. The presence of 5 mM 2-mercaptoethanol or 3 mM sulphite as electron donor led to lower light stimulated rates of O2 uptake, while 5 mM thiosulphate had little effect. The rates were insensitive to uncoupler. The light stimulated O2 uptake with 0.2 mM sulphide as donor was 20–30% inhibited by 10 M antimycin A and 50 M cyanide.Abbreviations APS Adenosine 5-phosphosulphate - FCCP carbonylcyanide-p-trifluoromethoxyphenylhydrazone - HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid - MeV methyl viologen - P-840 the photoreactive bacteriochlorophyll  相似文献   

15.
The growth of the Spodoptera frugiperda cell line Sf9 was studied in batch and continuous culture. The results of batch cultivations showed that glucose was the preferred energy and carbon source limiting the cell density in both TNM-FH and IPL-41 media. Continuous culture using IPL-41-based feeding medium with different glucose (2.5, 5 and 10 g l−1) and yeast extract concentrations (4, 8 and 16 g l−1) showed that in serum-supplemented medium the maximum cell density was limited by glucose and yeast extract concentration. The transition to glucose limitation caused a decrease in growth rate and viability. A high cell density culture (18 × 106 ml−1) was obtained using a glucose concentration of 10 g l−1 and a yeast extract concentration of 8 g l−1 in the feeding medium. A yeast extract concentration of 16 g l−1 inhibited growth. Unlike mammalian cell cultures, lactate, alanine and ammonia were not involved in growth inhibition. Lactate did not accumulate under aerobic conditions. Ammonia accumulation, if observed, was insignificant. The level of alanine synthesized and excreted into the culture medium never reached an inhibitory level. During glucose limitation alanine did not accumulate and ammonia was released. However, even in the presence of glucose significant amounts of Asp, Glu, Gln, Asn, Ser, Arg and Met were utilized for energy production. The amino groups of these amino acids were transferred to pyruvate or used for nucleic acid synthesis and excreted in the form of alanine into the culture medium. The consumption of His, Lys, Thr, Gly, Val, Leu, Phe, Tyr, Trp and Ile by growing Sf-9 cells was almost equal to their concentration in the biomass.  相似文献   

16.
Competition experiments between Chromatium vinosum and Chlorobium limicola in sulfide-limited continuous culture under photolithoautotrophic conditions resulted in the coexistence of both organisms. The ratio between the two bacteria was dilution-rate as well as pH dependent. The observed coexistence can be explained as a hitherto not reported form of dual substrate limitation. The two substrates involved are the electron donors sulfide (growth-limiting substrate in the reservoir vessel) and extracellular elemental sulfur (formed by Chlorobium as a result of sulfide oxidation). It is argued that, although Chlorobium may have the better affinity for both substrates involved, Chromatium can compete successfully on the basis of its intracellular storage of sulfur. Ecological implication of the observed coexistence with respect to natural blooms are discussed.  相似文献   

17.
The effects of environmental anoxia and anoxic sulphide exposure on metabolism are measured in tissues of the clam, Arctica islandica. Under anoxia the total activity of glycogen phosphorylase and the percentage of the enzyme in the active a form are significantly reduced. Alterations in pyruvate kinase kinetics produce slightly increased Vmax values, strongly increased S0.5 PEP, slightly increased S0.5 ADP in the muscular tissues and mantle, and strongly reduced I50 for alanine (up to 90-fold increased sensitivity). Anoxia also stimulates a reduction of fructose-2,6-bisphosphate levels, an effector of phosphofructokinase, in all tissues tested. These effects are consistent with enzyme modifications induced by phosphorylation to produce a restricted activity. Anoxic sulphide exposure produced similar effects on the glycogenolytic enzyme glycogen phosphorylase (GP), as does anoxia alone. In the course of the experiments, mitochondrial energy metabolism is not affected by sulphide. The accumulation of the anaerobic indicator metabolite succinate is almost identical in adductor and foot under both stresses. The data suggest a similar coordinated metabolic rate control under environmental anoxia and anoxic sulphide exposure, i.e. H2S has no distinctly different effects on the parameters tested. This study provides evidence that while being burrowed in anoxic sediments, the clams are able to withstand the detrimental effects of sulphide for a substantial period of time.  相似文献   

18.
The aim of the present work was to investigate whether uncoupling of catabolism from anabolism, which was often observed in heterotrophic microorganisms under energy-sufficient growth conditions, also occurs in the autotrophic bacterium Methanobacterium thermoautotrophicum. For this purpose, M. thermoautotrophicum was cultivated in continuous cultures that were limited by the trace element iron. The influences of both dilution rate and iron supply rate on the coupling between anabolism and catabolism were investigated. As compared to continuous cultures of M. thermoautotrophicum limited by the energy substrate H2, a 5-fold decrease in the biomass concentration and a 3-fold decrease in H2, CO2, and CH4 conversion rates were observed in iron-limited cultures. However, the specific substrate and product conversion rates increased as compared to the values determined in energy-limited cultures. Thus, iron limitation provoked an uncoupling of catabolism from anabolism. At a dilution rate of 0.096 h−1 and at an iron concentration of 17 μM in the feed, the specific H2 consumption rate was 100% higher than the rate determined under H2-limiting conditions, whereas at a dilution rate of 0.168 h−1, the values differed only by 5%. Uncoupling of catabolism from anabolism also increased dramatically when the iron supply rate was lowered but the dilution rate was kept constant. Thus, the extent of uncoupling is a function of both the dilution rate and the iron supply rate. It was found that the specific consumption rate of H2 increased in parallel with the partial pressure of H2 in the culture medium. This suggested that the catabolic activity of M. thermoautotrophicum was not stringently controlled at the enzymatic level and can be considerably stimulated by the excess of H2 in the medium. Hypotheses as to the fate of the excess energy derived from uncoupled catabolism are discussed, but the physiological reason for the partial uncoupling between catabolism and anabolism remains yet to be clarified.  相似文献   

19.
Biological desulfurization offers several remarkably environmental advantages of operation at ambient temperature and atmospheric pressure, no demand of toxic chemicals as well as the formation of biologically re‐usable sulfur (S0), which has attracted increasing attention compared to conventionally physicochemical approaches in removing hydrogen sulfide from sour gas. However, the low biomass of SOB, the acidification of process solution, the recovery of SOB, and the selectivity of bio‐S0 limit its industrial application. Therefore, more efforts should be made in the improvement of the BDS process for its industrial application via different research perspectives. This review summarized the recent research advances in the microbial capture of hydrogen sulfide from sour gas based on strain modification, absorption enhancement, and bioreactor modification. Several efficient solutions to limitations for the BDS process were proposed, which paved the way for the future development of BDS industrialization.  相似文献   

20.
We have recently showed that molecular hydrogen has great potential for selectively reducing cytotoxic reactive oxygen species, such as hydroxyl radicals, and that inhalation of hydrogen gas decreases cerebral infarction volume by reducing oxidative stress [I. Ohsawa, M. Ishikawa, K. Takahashi, M. Watanabe, K. Nishimaki, K. Yamagata, K.-I. Katsura, Y. Katayama, S. Asoh, S. Ohta, Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals, Nat. Med., 13 (2007) 688-694]. Here we show that the inhalation of hydrogen gas is applicable for hepatic injury caused by ischemia/reperfusion, using mice. The portal triad to the left lobe and the left middle lobe of the liver were completely occluded for 90min, followed by reperfusion for 180min. Inhalation of hydrogen gas (1-4%) during the last 190min suppressed hepatic cell death, and reduced levels of serum alanine aminotransferase and hepatic malondialdehyde. In contrast, helium gas showed no protective effect, suggesting that the protective effect by hydrogen gas is specific. Thus, we propose that inhalation of hydrogen gas is a widely applicable method to reduce oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号