首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Drosophila melanogaster Toll receptor controls embryonic dorsal-ventral axis formation and is crucial for the innate immune response. In both cases, Toll is activated by the enzymatically cleaved form of its ligand Sp?tzle (Spz). During axis formation, Spz is cleaved by the maternally provided serine protease Easter while the Sp?tzle-processing enzyme (SPE) activates Spz after infection. We confirm the role of SPE in immunity and show that it is a zygotic gene specifically expressed in immune tissues implying that the dual activation of Spz is achieved by differential spatiotemporal expression of two similar but distinct serine proteases.  相似文献   

2.
果蝇先天性免疫研究进展   总被引:2,自引:0,他引:2  
曹慧  李宗芸  王秋香 《昆虫知识》2009,46(2):196-202
果蝇是生命科学与人类疾病研究的重要模式生物,虽然不具有人类高度专一的获得性免疫,但也有对病原微生物感染作出快速有效反应的先天性免疫应答系统,主要包括体液免疫,细胞免疫和黑化反应。文章结合国外最新研究,详细介绍果蝇体液免疫中控制抗菌肽合成的Toll信号通路和Imd信号通路中涉及的蛋白及其相互作用,并对果蝇细胞免疫中的吞噬、包埋功能和黑化反应作简要阐述。研究表明,果蝇的Toll和Imd信号通路分别与人类的TLR4和TNRF-1信号通路存在着惊人的相似之处,说明果蝇与人类在免疫调控通路方面可能存在着共同的进化起源。  相似文献   

3.
The identification of the Drosophila melanogaster Toll pathway cascade and the subsequent characterization of TLRs have reshaped our understanding of the immune system. Ever since, Drosophila NF-κB signaling has been actively studied. In flies, the Toll receptors are essential for embryonic development and immunity. In total, nine Toll receptors are encoded in the Drosophila genome, including the Toll pathway receptor Toll. The induction of the Toll pathway by gram-positive bacteria or fungi leads to the activation of cellular immunity as well as the systemic production of certain antimicrobial peptides. The Toll receptor is activated when the proteolytically cleaved ligand Spatzle binds to the receptor, eventually leading to the activation of the NF-κB factors Dorsal-related immunity factor or Dorsal. In this study, we review the current literature on the Toll pathway and compare the Drosophila and mammalian NF-κB pathways.  相似文献   

4.
Parker JS  Mizuguchi K  Gay NJ 《Proteins》2001,45(1):71-80
The Drosophila gene Sp?tzle encodes the activating ligand for the Toll receptor. This signaling pathway is required for dorso-ventral patterning in the early embryo and an antifungal immune response in larvae and adults. The genome sequence of Drosophila shows that there are a total of eight Toll-like receptors and these may function in other aspects of embryonic development and innate immunity. Here we describe five Drosophila homologues of Sp?tzle (Spz2-6) found using an iterative searching method. All five appear to encode proteins containing neurotrophin-like cystine-knot domains. In addition, most retain a characteristic intron-exon structure shared with the prototype Sp?tzle gene. This provides evidence that the family arose by ancient gene duplication events and indicates that the gene products may represent activating ligands for corresponding Toll receptors. Expression studies show that only Spz4 is expressed strongly in larvae and adults and thus may be involved in an ancillary antifungal response mediated by Toll-5. By contrast, Spz6 shows a complex spatial and temporally regulated expression pattern in the late embryo. Thus the new Toll/Sp?tzle families of signaling molecules may have important roles in other aspects of development and immunity.  相似文献   

5.
Toll receptors in Drosophila melanogaster function in morphogenesis and host defense. Mammalian orthologues of Toll, the Toll-like receptors (TLRs), have been studied extensively for their essential functions in controlling innate and adaptive immune responses. We report that TLR8 is dynamically expressed during mouse brain development and localizes to neurons and axons. Agonist stimulation of TLR8 in cultured cortical neurons causes inhibition of neurite outgrowth and induces apoptosis in a dissociable manner. Our evidence indicates that such TLR8-mediated neuronal responses do not involve the canonical TLR-NF-kappaB signaling pathway. These findings reveal novel functions for TLR8 in the mammalian nervous system that are distinct from the classical role of TLRs in immunity.  相似文献   

6.
Tissue and stage-specific expression of the Tolls in Drosophila embryos   总被引:5,自引:0,他引:5  
The Drosophila transmembrane receptor Toll plays a key role in specifying the dorsoventral axis of the embryo. At later stages of development, it controls the immune response of the fly to fungal and Gram-positive bacterial infections. The Drosophila genome has a total of nine Toll-like genes, including the previously characterized Toll (Toll-1) and 18-wheeler (Toll-2). Here we describe the embryonic expression patterns of the seven Toll-like genes Toll-3 through Toll-9. We find that these genes have distinct expression domains and that their expression is dynamically changing throughout embryonic development. This complex and tissue-specific regulation of Toll-like gene expression strongly suggests a role in embryonic development for most Drosophila Tolls. The evolving picture on the Toll family members in Drosophila contrasts with that of mammalian Toll-like receptors, which are predominantly expressed in immune responsive cells where their activation occurs via microbial structural determinants.  相似文献   

7.
天然免疫系统是多细胞动物抵御细菌感染的第一道防线。Akirin是新近发现于果蝇中的天然免疫系统新成员,它在果蝇免疫缺陷(Imd)通路中发挥重要作用。Akirin同源基因广泛存在于从低等多细胞生物到高等脊椎动物中,进化上高度保守。已有的研究表明:Akirin在果蝇Imd通路和脊椎动物TLR通路下游,与NF-κB家族转录因子形成复合物,参与调控免疫相关靶基因的转录,是天然免疫调控机制中不可或缺的转录因子,其过表达或缺失直接影响动物对细菌的防御能力。近年来,Akirin在相关信号通路中的功能研究取得重大进展。该文对Akirin的结构、参与天然免疫的分子调控机制以及基因进化等方面进行综述。  相似文献   

8.
9.
BACKGROUND: Both animals and plants respond rapidly to pathogens by inducing the expression of defense-related genes. Whether such an inducible system of innate immunity is present in the model nematode Caenorhabditis elegans is currently an open question. Among conserved signaling pathways important for innate immunity, the Toll pathway is the best characterized. In Drosophila, this pathway also has an essential developmental role. C. elegans possesses structural homologs of components of this pathway, and this observation raises the possibility that a Toll pathway might also function in nematodes to trigger defense mechanisms or to control development. RESULTS: We have generated and characterized deletion mutants for four genes supposed to function in a nematode Toll signaling pathway. These genes are tol-1, trf-1, pik-1, and ikb-1 and are homologous to the Drosophila melanogaster Toll, dTraf, pelle, and cactus genes, respectively. Of these four genes, only tol-1 is required for nematode development. None of them are important for the resistance of C. elegans to a number of pathogens. On the other hand, C. elegans is capable of distinguishing different bacterial species and has a tendency to avoid certain pathogens, including Serratia marcescens. The tol-1 mutants are defective in their avoidance of pathogenic S. marcescens, although other chemosensory behaviors are wild type. CONCLUSIONS: In C. elegans, tol-1 is important for development and pathogen recognition, as is Toll in Drosophila, but remarkably for the latter r?le, it functions in the context of a behavioral mechanism that keeps worms away from potential danger.  相似文献   

10.
11.
Proteomics of immune-challenged Drosophila melanogaster larvae hemolymph   总被引:1,自引:0,他引:1  
In the last decade, the fruit fly Drosophila melanogaster has emerged as a promising invertebrate model for the investigation of innate immunity, in part because of its well characterised genetics. The information provided by the innumerous reports on Drosophila's immune response indicates that a large number of genes, in addition to the well-known antimicrobial peptide genes, are both up- and down-regulated upon immune challenge. Nevertheless, their contribution to fighting off infection has not been seriously addressed. With the application of recent advances in proteomics, the effects of an immune challenge in the overall modification of Drosophila 2-DE protein patterns were investigated. The aim of this study was to investigate hemolymph proteins differentially expressed between control and immunised larvae sets, which could be related solely to the Drosophila immune response. The list of immune-related protein spots included heat shock proteins and other proteins with chaperone properties, serine proteases, phenol oxidase, and Drosophila antioxidant system components, which accounted for 21% of the total of 70 identified proteins, metabolic enzymes implicated in pathways such as cellular respiration, fatty-acid oxidation, protein biosynthesis, and structural proteins.  相似文献   

12.
13.
14.
15.
进化基因组学在昆虫天然免疫研究中的应用前景   总被引:2,自引:0,他引:2  
整合基因组学和进化论而发展起来的进化基因组学正在逐渐改变传统昆虫学的研究模式。对昆虫天然免疫的研究已不再仅仅依靠实验学方法。3种全基因组序列被破译的模式昆虫(黑腹果蝇、冈比亚按蚊和意大利蜜蜂)将为这些研究引入新的方向。该文将以模式昆虫为代表,简要介绍如何利用进化上的趋同和趋异概念建立一特定昆虫物种的抗微生物肽基因蓝图;以及如何利用基因组数据和进化分析方法鉴定控制昆虫Toll信号通路关键组分Spatzle配体的进化优势位点。  相似文献   

16.
Phagocytosis and comparative innate immunity: learning on the fly   总被引:1,自引:0,他引:1  
Phagocytosis, the engulfment of material by cells, is a highly conserved process that arose before the development of multicellularity. Phagocytes have a key role in embryogenesis and also guard the portals of potential pathogen entry. They discriminate between diverse particles through the array of receptors expressed on their surface. In higher species, arguably the most sophisticated function of phagocytes is the processing and presentation of antigens derived from internalized material to stimulate lymphocytes and long-lived specific immunity. Central to these processes is the generation of a phagosome, the organelle that forms around internalized material. As we discuss in this Review, over the past two decades important insights into phagocytosis have been gleaned from studies in the model organism Drosophila melanogaster.  相似文献   

17.
Toll receptors in innate immunity.   总被引:6,自引:0,他引:6  
Innate immunity is the first-line host defense of multicellular organisms that rapidly operates to limit infection upon exposure to infectious agents. In addition, the cells and molecules operating during this early stage of the immune response in vertebrates have a decisive impact on the shaping of the subsequent adaptive response. Genetic studies initially performed in the fruitfly Drosophila and later in mice have revealed the importance of proteins of the Toll family in the innate immune response. We present here our current understanding of the role of this evolutionary ancient family of proteins that are thought to function as cytokine receptors (Toll in Drosophila) or pattern-recognition receptors (TLRs in mammals) and activate similar, albeit non-identical, signal-transduction pathways in flies and mammals.  相似文献   

18.
Avirulent strains of the endoparasitoid Leptopilina boulardi succumb to a blood cell-mediated melanotic encapsulation response in host larvae of Drosophila melanogaster. Virulent wasp strains effectively abrogate the cellular response with substances introduced into the host that specifically target and effectively suppress one or more immune signaling pathways, including elements that control phenoloxidase-mediated melanotic encapsulation. The present study implicates involvement of the Drosophila Toll pathway in cellular innate immunity by regulating the serine protease inhibitor Serpin 27A (Spn27A), which normally functions as a negative regulator of phenoloxidase. The introduction of Spn27A into normally highly immune competent D. melanogaster larvae significantly reduced their ability to form melanotic capsules around eggs of L. boulardi. This study confirms the role of Spn27A in the melanization cascade and establishes that this pathway and associated blood cell responses can be activated by parasitization. The activation of phenoloxidase and the site-specific localization of the ensuing melanotic response are such critical components of the blood cell response that Spn27A and the signaling elements mediating its activity are likely to represent prime targets for immune suppression by L. boulardi.  相似文献   

19.
Toll-like receptors--taking an evolutionary approach   总被引:2,自引:0,他引:2  
The Toll receptor was initially identified in Drosophila melanogaster for its role in embryonic development. Subsequently, D. melanogaster Toll and mammalian Toll-like receptors (TLRs) have been recognized as key regulators of immune responses. After ten years of intense research on TLRs and the recent accumulation of genomic and functional data in diverse organisms, we review the distribution and functions of TLRs in the animal kingdom. We provide an evolutionary perspective on TLRs, which sheds light on their origin at the dawn of animal evolution and suggests that different TLRs might have been co-opted independently during animal evolution to mediate analogous immune functions.  相似文献   

20.
We have cloned and characterized the first galectin to be identified in Drosophila melanogaster. The amino acid sequence of Drosophila galectin showed striking sequence similarity to invertebrate and vertebrate galectins and contained amino acids that are crucial for binding beta-galactoside sugars. Confirming its identity as a galectin family member, the Drosophila galectin bound beta-galactoside sugars. Structurally, the Drosophila galectin was a tandem repeat galectin containing two carbohydrate recognition domains connected by a unique peptide link. This divalent structure suggests that like mammalian galectins, Drosophila galectin may mediate cell-cell communication or facilitate cross-linking of receptors to trigger signal transduction events. The Drosophila galectin was very abundant in embryonic, larval, and adult Drosophila. During embryogenesis, Drosophila galectin had a unique and specific tissue distribution. Drosophila galectin expression was concentrated in somatic and visceral musculature and in the central nervous system. Similar to other insect lectins, Drosophila galectin may function in both embryogenesis and in host defense. Drosophila galectin was expressed by hemocytes, circulating phagocytic cells, suggesting a role for Drosophila galectin in the innate immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号