首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We previously have shown that insulin treatment of cells greatly increases the activity of phosphatidylinositol (PI) 3-kinase in immunoprecipitates made with an antibody to phosphotyrosine. However, the association of PI 3-kinase activity with the activated insulin receptor is not significant under these conditions. In the present study, we have attempted to reconstitute the association of PI 3-kinase activity with the activated insulin receptor in vitro. PI 3-kinase activity does indeed associate with the autophosphorylated insulin receptor in our in vitro system. The autophosphorylation of the insulin receptor and/or its associated conformational change appear to be necessary for the association of PI 3-kinase activity with the receptor, since kinase negative receptor failed to bind PI 3-kinase activity. After binding, PI 3-kinase or its associated protein seems to be released from the activated receptor after the completion of its tyrosine phosphorylation by the receptor. Tyr960 in the juxtamembrane region of the insulin receptor beta-subunit seems to be involved in the association of PI 3-kinase activity with the receptor, but not C terminus region of the beta-subunit including two tyrosine autophosphorylation sites (Tyr1316 and Tyr1322). The in vitro assay system for the association of PI 3-kinase activity with the insulin receptor can be utilized to study the mechanism of interaction of these molecules and will be an useful method to detect other associated molecules with the insulin receptor.  相似文献   

2.
The structure of the insulin receptor was studied with polyclonal antibodies obtained from rabbits which were immunized with synthetic peptides having a sequence identity to three regions of the alpha-subunit and five regions of the beta-subunit. None of the alpha-subunit antibodies including alpha-Pep8 (residues 40-49 (Ullrich, A., Bell, J.R., Chen, E.Y., Herrera, R., Petruzzelli, L.M., Dull, T.J., Gray, A., Coussens, L., Liao, Y.-C., Tsubokawa, M., Mason, A., Seeburg, P.H., Grunfeld, C., Rosen, O.M., and Ramachandran, J. (1985) Nature 313, 756-761), alpha-Pep7 (12 amino acid C-terminal extension (Ebina, Y., Ellis, L., Jarnagin, K., Ederly, M., Graf, L., Clauser, E., Ou, J.-H., Masiar, F., Kan, Y.W., Goldfine, I.D., Roth, R.A., and Rutter, W.J. (1985) Cell 313, 747-758], or alpha-Pep6 (residues 1-7, 9) immunoprecipitated the human insulin receptor solubilized from IM-9 lymphocytes; however, alpha-Pep8 immunoprecipitated the dithiothreitol-reduced receptor. Antibodies prepared against the N terminus of the beta-subunit (alpha-Pep5, residues 780-790) and the ATP binding site (alpha-Pep3, residues 1013-1022) did not react with the intact receptor under any conditions; however, antibodies to the C terminus of the beta-subunit (alpha-Pep1, residues 1314-1324) and to the juxta-membrane region (alpha-Pep3, residues 952-962) immunoprecipitated the solubilized receptor in both its phosphorylated and nonphosphorylated forms. In contrast, the antibody reactive with the regulatory region of the beta-subunit which contains the major autophosphorylation sites (alpha-Pep2, residues 1143-1154) only precipitated the phosphorylated form. Thus the conformation of the extracellular domain of the receptor is rigid and stabilized by disulfide bonds, whereas several regions of the intracellular domain are accessible to antibodies and undergo conformational changes during autophosphorylation.  相似文献   

3.
Anti-insulin receptor monoclonal antibody MA-10 inhibits insulin receptor autophosphorylation of purified rat liver insulin receptors without affecting insulin binding (Cordera, R., Andraghetti, G., Gherzi, R., Adezati, L., Montemurro, A., Lauro, R., Goldfine, I. D., and De Pirro, R. (1987) Endocrinology 121, 2007-2010). The effect of MA-10 on insulin receptor autophosphorylation and on two insulin actions (thymidine incorporation into DNA and receptor down-regulation) was investigated in rat hepatoma Fao cells. MA-10 inhibits insulin-stimulated receptor autophosphorylation, thymidine incorporation into DNA, and insulin-induced receptor down-regulation without affecting insulin receptor binding. We show that MA-10 binds to a site of rat insulin receptors different from the insulin binding site in intact Fao cells. Insulin does not inhibit MA-10 binding, and MA-10 does not inhibit insulin binding to rat Fao cells. Moreover, MA-10 binding to down-regulated cells is reduced to the same extent as insulin binding. In rat insulin receptors the MA-10 binding site has been tentatively localized in the extracellular part of the insulin receptor beta-subunit based on the following evidence: (i) MA-10 binds to insulin receptor in intact rat cells; (ii) MA-10 immunoprecipitates isolated insulin receptor beta-subunits labeled with both [35S]methionine and 32P; (iii) MA-10 reacts with rat insulin receptor beta-subunits by the method of immunoblotting, similar to an antipeptide antibody directed against the carboxyl terminus of the insulin receptor beta-subunit. Moreover, MA-10 inhibits autophosphorylation and protein-tyrosine kinase activity of reduced and purified insulin receptor beta-subunits. The finding that MA-10 inhibits insulin-stimulated receptor autophosphorylation and reduces insulin-stimulated thymidine incorporation into DNA and receptor down-regulation suggests that the extracellular part of the insulin receptor beta-subunit plays a role in the regulation of insulin receptor protein-tyrosine kinase activity.  相似文献   

4.
The most commonly detected polymorphism in human insulin receptor substrate-1 (IRS-1), a glycine to arginine change at codon 972 (G972R), is associated with an increased risk of Type 2 diabetes and insulin resistance. To determine the molecular mechanism by which this polymorphism may be linked to insulin resistance, we produced recombinant peptides comprising amino acid residues 925-1008 from IRS-1 that contain either a glycine or arginine at codon 972 and the two nearby tyrosine phosphorylation consensus sites (EY(941)MLM and DY(989)MTM), which are known binding sites for the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. The wild type peptide could be phosphorylated at these sites in vitro by purified insulin receptor. Introduction of the G972R polymorphism into the peptide reduced the amount of tyrosine phosphorylation by >60%. Pull-down experiments indicated that there was an association between the IRS-1-(925-1008) peptide and the insulin receptor that was markedly enhanced by the presence of the G972R polymorphism. The use of additional overlapping fragments localized this interaction to domains between residues 950-986 of IRS-1 and residues 966-1271 of the insulin receptor, containing the tyrosine kinase domain of the receptor. In addition, the IRS-1-(925-1008) G972R peptide acted as a competitive inhibitor of insulin receptor and insulin-like growth factor-1 receptor autophosphorylation. Taken together, these data indicate that the G972R naturally occurring polymorphism of IRS-1 not only reduces phosphorylation of the substrate but allows IRS-1 to act as an inhibitor of the insulin receptor kinase, producing global insulin resistance.  相似文献   

5.
Hyperglycemia induces insulin resistance in diabetic patients. It is known that supraphysiological levels of D-glucose or 2-deoxyglucose inhibit the insulin receptor and it is speculated that this effect is mediated by serine phosphorylation of the insulin receptor beta-subunit and other proteins of the insulin signaling chain. To test this hypothesis we prepared point mutations of the human insulin receptor where serine was exchanged to alanine at 16 different positions, either at known phosphorylation sites or at positions which are conserved in different tyrosine kinase receptors. These receptor constructs were expressed in HEK 293 cells and the effect of 2-deoxyglucose (25 mM) on insulin (100 nM) induced receptor autophosphorylation was studied. 2-Deoxyglucose consistently inhibits insulin stimulated autophosphorylation of all constructs to the same degree as observed in wild-type human insulin receptor. The data suggest that none of the chosen serine positions are involved in 2-deoxyglucose induced receptor inhibition.  相似文献   

6.
Insulin binding to the alpha-subunit of the purified insulin receptor changed the interaction between beta-subunits. This conformational change was demonstrated after labeling the receptor's beta-subunit by autophosphorylation in the absence of insulin, and then crosslinking the subunits to each other with bis (sulfosuccinimidyl) suberate. The convalent oligomers were resolved by reduction and denaturing gel electrophoresis. Insulin increased the rate of crosslinking, especially the formation of beta-beta dimers. These results support a conformational change following insulin binding, and may reflect the insulin-induced activation of autophosphorylation.  相似文献   

7.
The insulin receptor purified from skeletal muscle of patients with non-insulin-dependent diabetes mellitus (NIDDM) displayed a 25-55% reduction in insulin-stimulated autophosphorylation and tyrosyl-specific phosphotransferase activity relative to controls. This decrease was not explained by alterations of muscle fiber composition, insulin binding affinity or capacity, or the Km values for ATP; the lower kinase activity was entirely attributed to a decrease in the Vmax of the enzyme. Phosphorylation sites in the beta-subunit of the control and diabetic receptor were identified by tryptic digestion and reverse-phase high performance liquid chromatography. Autophosphorylation occurred primarily in two regions of the beta-subunit: the regulatory region containing Tyr-1146, Tyr-1150, and Tyr-1151, and the C terminus containing Tyr-1316 and 1322. Autophosphorylation of the regulatory region at all three tyrosyl residues (tris-phosphorylation) appears to be necessary to activate the receptor kinase (White, M. F., Shoelson, S. E., Stepman, E. W., Keutmann, H. & Kahn, C. R. (1988) J. Biol. Chem. 263, 2969-2980). The receptor from NIDDM patients showed a decreased level of tris-phosphorylation of the regulatory region which was closely associated (r2 = 0.97) with the decreased kinase activity. In contrast, weak associations were found between kinase activity and the bis-phosphorylated forms of the regulatory region (r2 = 0.51) and the C terminus (r2 = 0.35). Therefore, the reduced formation of the tris-phosphorylated regulatory region in the diabetic receptors suggests that a defective autophosphorylation cascade leading to tris-phosphorylation of the regulatory region may cause, in part, the reduced insulin-stimulated kinase activity of the insulin receptor in muscle of NIDDM patients.  相似文献   

8.
CHO/IRF960/T962 cells express a mutant human insulin receptor in which Tyr960 and Ser962 in the juxtamembrane region of the receptor's beta-subunit are replaced by Phe and Thr, respectively. The mutant insulin receptor undergoes autophosphorylation normally in response to insulin; however, insulin fails to stimulate thymidine incorporation into DNA, glycogen synthesis, and tyrosyl phosphorylation of an endogenous substrate pp185 in these cells. Another putative substrate of the insulin receptor tyrosine kinase is phosphatidylinositol 3-kinase (Ptdlns 3-kinase). We have previously shown that Ptdlns 3-kinase activity in Chinese hamster ovary cells expressing the wild-type human insulin receptor (CHO/IR) increases in both antiphosphotyrosine [anti-Tyr(P)] immunoprecipitates and intact cells in response to insulin. In the present study a new technique (detection of the 85-kDa subunit of Ptdlns 3-kinase using [32P]phosphorylated polyoma virus middle T-antigen as probe) is used to monitor the Ptdlns 3-kinase protein. The 85-kDa subunit of Ptdlns 3-kinase is precipitated by anti-Tyr(P) antibodies from insulin-stimulated CHO/IR cells, but markedly less protein is precipitated from CHO/IRF960/T962 cells. The amount of Ptdlns 3-kinase activity in the immunoprecipitates was also reduced in the CHO/IRF960/T962 cells compared to CHO/IR cells. In intact CHO/IRF960/T962 cells, insulin failed to stimulate phosphate incorporation into one of the products of activated Ptdlns 3-kinase, phosphatidylinositol-3,4-bisphosphate [Ptdlns(3,4)P2], whereas it caused a 12-fold increase in CHO/IR cells. In contrast, phosphate incorporation into another product, phosphatidylinositol trisphosphate [PtdlnsP3], was only partially depressed in the CHO/IRF960/T962 cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Competitive hormone binding studies with membrane and partially purified receptors from Xenopus laevis oocytes revealed that the oocyte possesses high affinity (KD = 1-3 nM) binding sites for both insulin growth factors 1 and 2 (IGF-1 and IGF-2), but not for insulin. Consistent with these findings, IGF-1 activates hexose uptake by Xenopus oocytes with a KA (3 nM) identical with its KD, while IGF-2 and insulin activate hexose uptake with KA values of 50 nM and 200-250 nM, respectively, suggesting activation mediated through an IGF-1 receptor. Both IGF-1 and insulin activate receptor beta-subunit autophosphorylation and, thereby, protein substrate (reduced and carboxyamidomethylated lysozyme, i.e. RCAM-lysozyme) phosphorylation with KA values comparable to their respective KD values for ligand binding and KA values for activation of hexose uptake. The autophosphorylated beta-subunit(s) of the receptor were resolved into two discrete components, beta 1 and beta 2 (108 kDa and 94 kDa, respectively), which were phosphorylated exclusively on tyrosine and which exhibited similar extents of IGF-1-activated autophosphorylation. When added prior to autophosphorylation, RCAM-lysozyme blocks IGF-1-activated autophosphorylation and, thereby, IGF-1-activated protein substrate (RCAM-lysozyme) phosphorylation. Based on these findings, we conclude that IGF-1-stimulated autophosphorylation of its receptor is a prerequisite for catalysis of protein substrate phosphorylation by the receptor's tyrosine-specific protein kinase. The IGF-1 receptor kinase is implicated in signal transmission from the receptor, since anti-tyrosine kinase domain antibody blocks IGF-1-stimulated kinase activity in vitro and, when microinjected into intact oocytes, prevents IGF-1-stimulated hexose uptake.  相似文献   

10.
We have studied a series of insulin receptor molecules in which the 3 tyrosine residues which undergo autophosphorylation in the kinase domain of the beta-subunit (Tyr1158, Tyr1162, and Tyr1163) were replaced individually, in pairs, or all together with phenylalanine or serine by in vitro mutagenesis. A single-Phe replacement at each of these three positions reduced insulin-stimulated autophosphorylation of solubilized receptor by 45-60% of that observed with wild-type receptor. The double-Phe replacements showed a 60-70% reduction, and substitution of all 3 tyrosine residues with Phe or Ser reduced insulin-stimulated tyrosine autophosphorylation by greater than 80%. Phosphopeptide mapping each mutant revealed that all remaining tyrosine autophosphorylation sites were phosphorylated normally following insulin stimulation, and no new sites appeared. The single-Phe mutants showed insulin-stimulated kinase activity toward a synthetic peptide substrate of 50-75% when compared with wild-type receptor kinase activity. Insulin-stimulated kinase activity was further reduced in the double-Phe mutants and barely detectable in the triple-Phe mutants. In contrast to the wild-type receptor, all of the mutant receptor kinases showed a significant reduction in activation following in vitro insulin-stimulated autophosphorylation. When studied in intact Chinese hamster ovary cells, insulin-stimulated receptor autophosphorylation and tyrosine phosphorylation of the cellular substrate pp185 in the single-Phe and double-Phe mutants was progressively lower with increased tyrosine replacement and did not exceed the basal levels in the triple-Phe mutants. However, all the mutant receptors, including the triple-Phe mutant, retained the ability to undergo insulin-stimulated Ser and Thr phosphorylation. Thus, full activation of the insulin receptor tyrosine kinase is dependent on insulin-stimulated Tris phosphorylation of the kinase domain, and the level of autophosphorylation in the kinase domain provides a mechanism for modulating insulin receptor kinase activity following insulin stimulation. By contrast, insulin stimulation of receptor phosphorylation on Ser and Thr residues by cellular serine/threonine kinases can occur despite markedly reduced tyrosine autophosphorylation.  相似文献   

11.
In order to study the role of tyrosine autophosphorylation in insulin receptor signalling, we investigated a mutant human insulin receptor whereby the three major tyrosine autophosphorylation sites at positions 1158, 1162, and 1163 in the receptor beta-subunit were mutated to phenylalanines. When these mutant receptors were expressed in HTC rat hepatoma cells, there was no enhanced beta-subunit autophosphorylation and tyrosine kinase activity. In these cells there was enhanced insulin stimulation of [3H]AIB uptake and [3H]thymidine incorporation when compared to wild type HTC cells. The present study suggests therefore that the presence of the major insulin autophosphorylation sites is not a requirement for insulin stimulation of amino acid transport and mitogenesis.  相似文献   

12.
We studied the structure and function of the human insulin receptor (IR) and a mutant which lacked the last 43 amino acids of the beta-subunit (IR delta ct). This deletion removed tyrosine (Tyr1322, Tyr1316) and threonine (Thr1336) phosphorylation sites. In Chinese hamster ovary (CHO) cells, insulin binding to the mutant receptor was normal, and [35S]methionine labeling indicated that both the IR and IR delta ct were processed normally; however, the beta-subunit of IR delta ct was 5 kDa smaller than that of the IR. The time course of insulin-stimulated autophosphorylation of the partially purified IR delta ct was normal, but the maximum autophosphorylation was reduced 20-30%. Tryptic phosphopeptide mapping confirmed the absence of the C-terminal phosphorylation sites and indicated that phosphorylation of the regulatory region (Tyr1146, Tyr1150, Tyr1151) occurred normally; kinase activity of the IR and IR delta ct was activated normally by insulin-stimulated autophosphorylation. In the intact CHO cells, insulin-stimulated serine and threonine phosphorylation of the IR delta ct was reduced 20%, suggesting that most Ser/Thr phosphorylation sites are located outside of the C terminus. During insulin stimulation, the wild-type and mutant insulin receptor activated the phosphatidylinositol 3-kinase. Moreover, insulin itself or human-specific anti-insulin receptor antibodies stimulated glycogen and DNA synthesis equally in both CHO/IR and CHO/IR delta ct cells. These data suggest that the C terminus plays a minimal role in IR function and signal transmission in CHO cells.  相似文献   

13.
Insulin stimulates autophosphorylation of the insulin receptor on multiple tyrosines in three domains: tyrosines 1316 and 1322 in the C-terminal tail, 1146, 1150 and 1151 in the tyrosine-1150 domain, and possibly 953, 960 or 972 in the juxtamembrane domain. In the present work the sequence of dephosphorylation of the various autophosphorylation sites by particulate and cytosolic preparations of phosphotyrosyl-protein phosphatase from rat liver was studied with autophosphorylated human placental insulin receptor as substrate. Both phosphatase preparations elicited a broadly similar pattern of dephosphorylation. The tyrosine-1150 domain in triphosphorylated form was found to be exquisitely sensitive to dephosphorylation, and was dephosphorylated 3-10-fold faster than the di- and monophosphorylated forms of the tyrosine-1150 domain or phosphorylation sites in other domains. The major route for dephosphorylation of the triphosphorylated tyrosine-1150 domain involved dephosphorylation of one of the phosphotyrosyl pair, 1150/1151, followed by phosphotyrosyl 1146 to generate a species monophosphorylated mainly (greater than 80%) at tyrosine 1150 or 1151. Insulin receptors monophosphorylated in the tyrosine-1150 domain disappeared slowly, and overall the other domains were completely dephosphorylated faster than the tyrosine-1150 domain. Dephosphorylation of the diphosphorylated C-terminal domain yielded insulin receptor in which the domain was singly phosphorylated at tyrosine 1322. Triphosphorylation of the insulin receptor in the tyrosine-1150 domain appears important in activating the receptor tyrosine kinase to phosphorylate other proteins. The extreme sensitivity of the triphosphorylated form of the tyrosine-1150 domain to dephosphorylation may thus be important in terminating or regulating insulin-receptor tyrosine kinase action and insulin signalling.  相似文献   

14.
Using peptides epidermal growth factor receptor (EGFR)-13 and EGFR-14, which correspond to residues 645-657 and 679-692, respectively, in the juxtamembrane, cytosolic region of the epidermal growth factor receptor (EGFR) we have investigated the role of specific regions of the receptor in regulating its autophosphorylation and protein tyrosine kinase activity. EGFR-13, but not EGFR-14, increased autophosphorylation (by twofold) of the full-length and two truncated forms (Delta1022-1186 and a constitutively active receptor kinase domain) of the EGFR. EGFR-13 increased the stoichiometry of tyrosine phosphorylation of the full-length receptor from 4.2 to 10.1 mol Pi/mol EGFR and that of EGFRDelta1022-1186 from 1.0 to 2 mol Pi/mol receptor. Increased receptor autophosphorylation in the presence of EGFR-13 cannot solely be attributed to an increase in tyrosine kinase activity because EGFR-14 and polylysine increased tyrosine kinase activity of EGFRDelta1022-1186 and full-length EGFR, respectively, to the same extent as EGFR-13 without any effects on receptor autophosphorylation. Phosphorylation of EGFR-13 (P-EGFR-13) on the threonine residue corresponding to Thr654 in EGFR obliterated the ability of the peptide to increase autophosphorylation and markedly diminished its capacity to increase receptor tyrosine kinase activity. Additionally, EGFR-13, but not EGFR-14 or P-EGFR-13, decreased the migration of the receptor on nondenaturing gels, indicating that EGFR-13 induces some conformational change. Phosphopeptide maps of the EGFR phosphorylated in the presence of EGFR-13 or pp60(c-src) demonstrated that the additional sites phosphorylated in the presence of EGFR-13 were the same as those phosphorylated by pp60(c-src) (i.e., Y803, Y845, Y891, Y920, and Y1101). Thus, we conclude that EGFR-13, but not EGFR-14 or P-EGFR-13, competes to disrupt interactions between amino acids 645-657 and some other region(s) on the EGFR to either alleviate a conformational constraint or alter dimer conformation. This change increases the protein tyrosine kinase activity of the EGFR and provides access to additional tyrosine autophosphorylation sites in the receptor.  相似文献   

15.
Trypsin exerts insulin-like effects in intact cells and on partially purified preparations of insulin receptors. To elucidate the mechanism of these insulinomimetic effects, we compared the structures of insulin- and trypsin-activated receptor species with their functions, including insulin binding, autophosphorylation, and tyrosine kinase activity. In vitro treatment of wheat germ agglutinin-purified receptor preparations with trypsin resulted in proteolysis of both alpha- and beta-subunits. The activated form of the receptor had an apparent molecular mass of 110 kDa under nonreducing conditions, compared to the 400-kDa intact receptor, and was separated following reduction into an 85-kDa beta-subunit related fragment and a 25-kDa alpha-subunit related fragment. Treatment of whole cells with trypsin prior to isolation of the insulin receptor resulted in proteolytic modification of the alpha-subunit only. In this case, the total molecular mass of the activated species was 116 kDa, comprised of an intact 92-kDa beta-subunit and again a 25-kDa alpha-subunit related fragment. Values of Km for peptide substrate phosphorylation and Ki for inhibition of receptor autophosphorylation, and sites of autophosphorylation within the beta-subunits were similar for receptors activated either by insulin or trypsin. Insulin had no additional effect on the rate of autophosphorylation of the truncated receptor, and no binding of insulin by the truncated receptor was detected either by direct assay or cross-linking with bifunctional reagents. Based on the deduced amino acid sequence of the insulin receptor and the structural studies presented here we concluded that this activated form of the receptor resulted from tryptic cleavage at the dibasic site Arg576-Arg577. This was accompanied by loss of the insulin binding site and separation of alpha-beta heterodimers. As truncation of the alpha-subunit results in beta-subunit activation, it appears that the beta-subunit is a constitutively activated kinase and that the function of the alpha-subunit in the intact receptor is to inhibit the beta-subunit.  相似文献   

16.
Chemical degradation and antipeptide antibodies were used to study alterations in the structure and function of the human placental insulin receptor following autophosphorylation in vitro. Antibodies elicited to residues 1143-1162 (P2) of the human insulin proreceptor immunoprecipitated the native, phosphorylated receptor but not the unphosphorylated receptor. Since this antibody recognizes both forms of the receptor on immunoblots, it was concluded that the accessibility of the P2 domain to the antibody is increased by in vitro autophosphorylation. Chemical cleavage at either tryptophan or methionine residues followed by immunoprecipitation with antipeptide antibodies was used to map the in vitro autophosphorylation sites of the beta subunit of the insulin receptor. Two phosphorylated fragments were resolved. One, recognized by antibody elicited to amino acid residues 1328-1343 (P5), is derived from the carboxyl terminus of the beta subunit and includes tyrosine 1316. The other, recognized by antibody to P2, is located in a domain that includes tyrosine 1150. The rate of phosphorylation of this latter site correlates with the rate of activation of the insulin receptor kinase during in vitro autophosphorylation. The results support the following conclusions: autophosphorylation alters the conformation of the beta subunit of the insulin receptor; autophosphorylation in vitro leads to phosphorylation of tyrosine residues near the carboxyl terminus of the protein and in the P2 domain that includes tyrosine 1150; activation of the insulin receptor kinase correlates with autophosphorylation of the domain containing tyrosine 1150.  相似文献   

17.
The insulin receptor is a complex membrane-spanning glycoprotein composed of two alpha-subunits and two beta-subunits connected to form an alpha 2 beta 2 holoreceptor. Insulin binding to the extracellular alpha-subunits activates intracellular beta-subunit autophosphorylation and substrate kinase activity. The current study was designed to differentiate mechanisms of transmembrane signaling by the insulin receptor, specifically whether individual beta-subunits undergo cis- or trans-phosphorylation. We compared relative kinase activities of trypsin-truncated receptors, alpha beta-half receptors, and alpha 2 beta 2 holoreceptors under conditions that allowed us to differentiate intermolecular and intramolecular events. Compared to the insulin-stimulated holoreceptors, the trypsin-truncated receptor undergoes autophosphorylation at similar tyrosine residues and catalyzes substrate phosphorylation in the absence of insulin at a comparable rate. The truncated receptor sediments on a sucrose gradient at a position consistent with a structure comprising a single beta-subunit attached to a fragment of the alpha-subunit and undergoes autophosphorylation in this form in the absence of insulin. Autophosphorylation of the truncated insulin receptor is independent of receptor concentration, and immobilization of the truncated receptor on a matrix composed of an anti-receptor antibody bound to protein A-Sepharose diminishes neither autophosphorylation nor receptor-catalyzed substrate phosphorylation. Therefore, true intramolecular (cis) phosphorylations, which occur within individual beta-subunits derived from trypsin-truncated receptors, lead to kinase activation. However, insulin-stimulated autophosphorylation of insulin receptor alpha beta heterodimers is concentration-dependent, and both autophosphorylation and kinase activity are markedly reduced following immobilization.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The function of protein kinase C family members depends on two tightly coupled phosphorylation mechanisms: phosphorylation of the activation loop by the phosphoinositide-dependent kinase, PDK-1, followed by autophosphorylation at two positions in the COOH terminus, the turn motif, and the hydrophobic motif. Here we address the molecular mechanisms underlying the regulation of protein kinase C betaII by PDK-1. Co-immunoprecipitation studies reveal that PDK-1 associates preferentially with its substrate, unphosphorylated protein kinase C, by a direct mechanism. The exposed COOH terminus of protein kinase C provides the primary interaction site for PDK-1, with co-expression of constructs of the carboxyl terminus effectively disrupting the interaction in vivo. Disruption of this interaction promotes the autophosphorylation of protein kinase C, suggesting that the binding of PDK-1 to the carboxyl terminus protects it from autophosphorylation. Studies with constructs of the COOH terminus reveal that the intrinsic affinity of PDK-1 for phosphorylated COOH terminus is over an order of magnitude greater than that for unphosphorylated COOH terminus, contrasting with the finding that PDK-1 does not bind phosphorylated protein kinase C effectively. However, effective binding of the phosphorylated species can be induced by the activated conformation of protein kinase C. This suggests that the carboxyl terminus becomes masked following autophosphorylation, a process that can be reversed by the conformational changes accompanying activation. Our data suggest a model in which PDK-1 provides two points of regulation of protein kinase C: 1) phosphorylation of the activation loop, which is regulated by the intrinsic activity of PDK-1, and 2) phosphorylation of the carboxyl terminus, which is regulated by the release of PDK-1 to allow autophosphorylation.  相似文献   

19.
In a previous study, we showed that the rat hepatic insulin receptor (IR) kinase of endosomes (ENs) was transiently activated to levels exceeding those of plasma membrane (PM) receptors following insulin injection. Phosphatase treatment of EN receptors abolished IR kinase activation implicating beta-subunit autophosphorylation as a mediator of the activation process (Khan, M. N., Baquiran, G., Brule, C., Burgess, J., Foster, B., Bergeron, J. J. M., and Posner, B. I. (1989) J. Biol. Chem. 264, 12931-12940). In the present study, the phosphotyrosine (PY) content of the IR beta-subunit in PM and ENs was estimated by two different methods. In one method, direct in vivo labeling with 32Pi followed by receptor immunoprecipitation was carried out. In the second method, immunoblotting with antibodies against the submembrane domain of the IR beta-subunit, encompassing residue 960 (alpha 960), and with antibodies against PY (alpha PY) was used to determine the content of PY/beta-subunit in PM and ENs following injection of insulin. By both methods, it was found that the PY content of PM IR was significantly greater than that of IR in ENs. With doses of 1.5 micrograms of insulin/100 g body weight (50% receptor occupancy) or 15 micrograms/100 g body weight (receptor saturation), the PY/beta-subunit of PM IR attained a level 2.0 to 2.5-fold of that observed for the IR of ENs. Surprisingly, the IR of ENs incorporated 3 to 5 times more PY/beta-subunit than those of PM consequent to autophosphorylation. Exogenous IR kinase activity (poly(Glu:Tyr)) in PM changed only slightly with insulin dose. In contrast, EN receptors exhibited a dose-dependent increase in kinase activity coincident with the decrease in PY/beta-subunit levels. A comparison of the proportion of receptor and kinase activity immunoprecipitated by alpha PY both before and after autophosphorylation indicated that ENs but not PM contained a small population of lightly phosphorylated but highly activated receptors. Since Thr12-Lys (IR kinase residues 1142-1153) efficiently inhibited IR autophosphorylation of both PM and EN receptors, Tris phosphorylation of beta-subunit regulatory tyrosines was unlikely. These results may be explicable by a dephosphorylation-dependent activation of IR kinase, as seen with the src family of tyrosine kinases.  相似文献   

20.
Phosphorylation of the insulin receptor beta-subunit on serine/threonine residues by protein kinase C reduces both receptor kinase activity and insulin action in cultured cells. Whether this mechanism regulates insulin action in intact animals was investigated in rats rendered insulin-resistant by 3 days of starvation. Insulin-stimulated autophosphorylation of the partially purified hepatic insulin receptor beta-subunit was decreased by 45% in starved animals compared to fed controls. This autophosphorylation defect was entirely reversed by removal of pre-existing phosphate from the receptor with alkaline phosphatase, suggesting that increased basal phosphorylation on serine/threonine residues may cause the decreased receptor tyrosine kinase activity. Tryptic removal of a C-terminal region of the receptor beta-subunit containing the Ser/Thr phosphorylation sites similarly normalized receptor autophosphorylation. To investigate which kinase(s) may be responsible for such increased Ser/Thr phosphorylation in vivo, protein kinase C and cAMP-dependent protein kinase A in liver were studied. A 2-fold increase in protein kinase C activity was found in both cytosol and membrane extracts from starved rats as compared to controls, while protein kinase A activity was diminished in the cytosol of starved rats. A parallel increase in protein kinase C was demonstrated by immunoblotting with a polyclonal antibody which recognizes several protein kinase C isoforms. These findings suggest that in starved, insulin-resistant animals, an increase in hepatic protein kinase C activity is associated with increased Ser/Thr phosphorylation which in turn decreases autophosphorylation and function of the insulin receptor kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号