首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acacia is a pantropical genus comprising > 1450 species. Following Vassal's treatment Acacia is considered as a single genus with three subgenera (Acacia, Aculeiferum and Phyllodineae). Acacia caven, A. curvifructa and A. farnesiana belong to subgenus Acacia and the relationship between them is controversial. The aim of this study was to elucidate the relationship between the three species using amplified fragment length polymorphism, analysing 15 populations of these species, and to compare the results obtained with those from a morphological analysis. Genetic diversity indices (percentage of polymorphic loci, genetic diversity) showed that genetic variation in A. caven is higher than that in A. curvifructa and A. farnesiana. Of the total genetic diversity in A. caven and A. farnesiana, most is found within populations (∼70%). Analysis with STRUCTURE showed that the optimal number of clusters (K) was ten, and in all cases where populations were grouped they were geographically close and/or belong to the same variety. The morphological canonical discriminant analysis did not result in a separation between all individuals, indicating that they do not harbour consistent morphological discontinuities. Altogether, the results of our molecular analyses showed the existence of significant differences between A. caven, A. curvifructa and A. farnesiana, which argues for recognizing them as different species. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 593–606.  相似文献   

2.
Summary Leaf diffusive conductance and transpiration rates in response to situations of high evaporative demand were measured in 40 Acacia species varying widely with regard to the morphological and anatomical characters of their assimilatory organs. The measurements took place in south-eastern and central Australia, central Africa and south-western Europe and included species of all three subgenera of Acacia Mill. Soil moisture conditions and consequently the water status of the experimental plants varied between the different measuring sites, some of which were regularly watered. All the species investigated showed a similar daily pattern of diffusive conductance with a morning peak and a subsequent decrease, which was more pronounced in plants growing under water stress, indicating a decisive stomatal regulation of transpiration. A relationship between the structure of assimilatory organs and leaf diffusive conductance or transpiration rates per unit surface area could not be detected in the Australian acacias. However, there are indications that the leaves of the non-Australian species operate on higher conductances than the foliage of the Australian ones. It is suggested that the observed differences in the performance of African and Australian acacias reflect the deciduous or evergreen nature of foliage rather than structural differences. In regard to taxon-specific differentiation this might implicate an ecophysiological character which separates the evergreen species of the geographically isolated subgenus Heterophyllum from the deciduous species of the subgenera Aculeiferum and Acacia with an overlapping area of distribution.  相似文献   

3.
Previous phylogenetic studies have indicated that Acacia Miller s.l. is polyphyletic and in need of reclassification. A proposal to conserve the name Acacia for the larger Australian contingent of the genus (formerly subgenus Phyllodineae) resulted in the retypification of the genus with the Australian A. penninervis. However, Acacia s.l. comprises at least four additional distinct clades or genera, some still requiring formal taxonomic transfer of species. These include Vachellia (formerly subgenus Acacia), Senegalia (formerly subgenus Aculeiferum), Acaciella (formerly subgenus Aculeiferum section Filicinae) and Mariosousa (formerly the A. coulteri group). In light of this fragmentation of Acacia s.l., there is a need to assess relationships of the non‐Australian taxa. A molecular phylogenetic study of Acacia s.l and close relatives occurring in Africa was conducted using sequence data from matK/trnK, trnL‐trnF and psbA‐trnH with the aim of determining the placement of the African species in the new generic system. The results reinforce the inevitability of recognizing segregate genera for Acacia s.l. and new combinations for the African species in Senegalia and Vachellia are formalized. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 500–523.  相似文献   

4.
The DNA sequence structure of 5S DNA units inAcacia species, including representatives from the three subgenera ofAcacia, have been determined. The data was interpreted to suggest that at least three lineages of 5S DNA sequences exist inAcacia and the proposal was made that the lineages be named5S Dna-1, 5S Dna-2, and5S Dna-3. The5S Dna-1 lineage was represented by units fromA. boliviana andA. bidwilli, the5S Dna-2 lineage by units fromA. melanoxylon, A. pycnantha, A. ulicifolia, A. boliviana, A. bidwillii, andA. albida, and the5S Dna-3 lineage by units fromA. bidwillii, A. boliviana, andA. senegal. Based on this interpretation of the sequence data, the Australian species of subg.Phyllodineae grouped together as a cluster, quite separate from the subgeneraAculeiferum andAcacia. As expected from the analyses of morphological characters, the 5S DNA units fromAcacia albida (syn.Faidherbia albida) were quite separate from the otherAcacia spp.  相似文献   

5.
Morphological and RAPD markers were used to assess the relationships among nodulating and non-nodulating species of AfricanAcacia. Non-nodulating species of AfricanAcacia are only found within subg.Aculeiferum sect.Monacanthea. African species of sect.Monacanthea examined were found to form a group distinct from the other African species examined on a morphological and molecular basis. All lack the ability to nodulate, suggesting that non-nodulation may be used as a taxonomic tool. The species of sect.Aculeiferum were separated by RAPD and morphological analysis into two groups depending on whether they were armed with prickles in pairs and/or prickles in threes, or solitary. A third group of species was identified within sect.Acacia: further subdivision of this group was achieved into subsectt.Pluriseriae andUniseriae. The position ofA. albida relative to other AfricanAcacia species was found to be distinct but not totally independent of the genus. The partitioning and distribution of the genetic variability within the genus is further elucidated by the RAPD analysis of populations ofAcacia species. A population analysis ofA. polyacantha demonstrated geographical and site-specific variation.  相似文献   

6.
Chloroplast DNA (cpDNA) restriction site variation was examined in 32 species, representing five subgenera, of Bromus (Poaceae). Thirty-seven phylogenetically informative restriction sites were detected. Cladistic analysis of the restriction site data produced a single most-parsimonious tree of 50 steps. The cladogram indicated two major clades within the genus. One clade included B. trinii of subgenus Neobromus and species of subgenus Ceratochloa. The other was composed of subgenera Festucaria, Stenobromus, and Bromus. Within the second clade, species of subgenus Festucaria appeared in three lineages. The second clade also contained an assemblage of species belonging to subgenera Stenobromus and Bromus in a separate lineage. There was very little resolution of relationships in this assemblage since several species appeared individually in separate lineages. The cpDNA phylogenetic hypothesis did not separate species of subgenera Stenobromus and Bromus into well-defined clades as circumscribed by morphology and cytogenetics. The cpDNA tree is in agreement with the phylogenetic scheme based on traditional data in that: 1) subgenera Neobromus and Ceratochloa were the first to diverge, while Bromus and Stenobromus diverged later; 2) within the genus Bromus species with small chromosomes are ancestral; and 3) subgenera Bromus and Stenobromus probably originated from similar ancestors as Festucaria. The tree based on cpDNA data does not support that: 1) subgenera Neobromus and Ceratochloa did not have a common origin; 2) subgenus Festucaria is monophyletic; and 3) subgenera Stenobromus and Bromus are distinct entities. The mean nucleotide sequence divergence values between pairs of subgenera ranged from p = 0.0 to 0.9. These values suggest that cpDNA evolution in Bromus is slow.  相似文献   

7.
 Intrageneric phylogeny among ten representative Ceanothus species was investigated using DNA sequences of the chloroplast encoded ndhF and rbcL genes. Parsimony analysis of the ndhF sequences identified two main clades corresponding to two subgenera Ceanothus and Cerastes. The phylogenetic results suggest that three monophyletic clades within the subgenus Ceanothus can be delimited on the basis of (1) evergreen or (2) deciduous leaves and (3) thorn presence within the evergreen clade. The estimated divergence time based on rbcL sequences suggests that the two subgenera diverged 18–39 million years ago whereas species within each subgenus diverged more recently. Taken together, the results support the division of Ceanothus into two monophyletic subgenera and are consistent with the postulated recent divergence of many species within each subgenus. Received: 25 September 1996/Accepted: 8 November 1996  相似文献   

8.
Aims A molecular genetic distance study has been used in an initial survey to identify subspecies and genotypes of the weed Acacia nilotica in Australia, information needed to find suitable biocontrol agents. We use patterns of DNA sequence variation (in two DNA fragments) from each of the nine described subspecies of Acacia nilotica (L.) Delile (Leguminosae: Mimosoideae) that is to determine their genetic similarity, to verify if the Australian populations are A. nilotica ssp. indica (Benth.) Brenan, and to establish if any other subspecies are present in Australia. Location Australia and southern Africa through the Arabian peninsular to the Indo‐Pakistan subcontinent. Methods Representative specimens from the global distribution of the nine A. nilotica subspecies were sourced primarily from herbaria sheet specimens where available, and secondarily from field collections. These specimens together with related outgroups from Mimosoideae were genetically analysed using the DNA fragments trnL and internal transcribed spacer one (ITS1). We calculated a similarity index as set out in paup * using upgma (Unweighted Pair‐Group Method Arithmetic average) methods to cluster taxa to produce a genetic distance phenogram. Results Sequence results from ITS1 and trnL DNA fragments identified seven of the described subspecies of A. nilotica. Acacia nilotica ssp. cupressiformis (J. Stewart) Ali & Faruqi and A. nilotica ssp. adstringens (Schumach. & Thonn.) Roberty were not found to be genotypically distinct from A. nilotica ssp. indica and A. nilotica ssp. nilotica, respectively, based on the two DNA fragments. Subspecific ITS1 genotypes were geographically distributed similarly to previous reports that were based on morphology, with the exception that the hemispherica ITS1 genotype also occurred in Somalia. We confirmed that the Australian A. nilotica populations are mostly comprised of subspecies indica, but in addition, some individuals were found to be genetically identical to an unidentified Pakistan genotype not previously reported as occurring in Australia. Main conclusions Australian A. nilotica populations originated from India and Pakistan and we recommend further analysis to determine the complete genetic diversity profile and origins of the Australian populations. We highlight the importance of determining any hybridization between Australian populations of A. nilotica and native subgenus Acacia species. This study demonstrates the importance of genotyping weed species targeted for biocontrol and/or listed host specificity test species that may be easily misidentified. Biocontrol practitioners can justify genetic studies by considering the costs should a project fail through misidentification.  相似文献   

9.
The genus Gephyromantis is a clade within the Malagasy-Comoroan family Mantellidae composed of rainforest frogs that live and breed to varying degrees independently from water. Based on DNA sequences of five mitochondrial and five nuclear genes we inferred the phylogeny of these frogs with full taxon coverage at the species level. Our preferred consensus tree from a partitioned Bayesian analysis of 5843 base pairs of 51 nominal and candidate species supports various major clades within the genus although the basal relationships among these remain unresolved. The data provide strong evidence for the monophyly of the subgenera Gephyromantis (after exclusion of Gephyromantis klemmeri), Laurentomantis, Vatomantis, and Phylacomantis. Species assigned to the subgenus Duboimantis belong to two strongly supported clades of uncertain relationships. G. klemmeri, previously in the subgenus Gephyromantis, was placed with high support sister to the Laurentomantis clade, and the Laurentomantis + G. klemmeri clade was sister to Vatomantis. A reconstruction of ancestral distribution areas indicates a diversification of several subgenera in the northern biogeographic regions of Madagascar and the dispersal out of northern Madagascar for several clades.  相似文献   

10.
Thanwisai A  Kuvangkadilok C  Baimai V 《Genetica》2006,128(1-3):177-204
The sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) were determined for 40 black fly species from Thailand, belonging to 4 subgenera of the genus Simulium, namely Gomphostilbia (12 species), Nevermannia (5 species), Montisimulium (1 species), Simulium sensu stricto (21 species), and an unknown subgenus with one species (Simulium baimaii). The length of the ITS2 ranged from 247 to 308 bp. All black fly species had high AT content, ranging from 71 to 83.8%. Intraindividual variation (clonal variation) occurred in 13 species, ranging from 0.3 to 1.1%. Large intrapopulation and interpopulation heterogeneities exist in S. feuerboni from the same and different locations in Doi Inthanon National Park, northern Thailand. Phylogenetic relationships among 40 black fly species were examined using PAUP (version 4.0b10) and MrBAYS (version 3.0B4). The topology of the trees revealed two major monophyletic clades. The subgenus Simulium and Simulium baimaii were placed in the first monophyletic clade, whereas the subgenera Nevermannia + Montisimulium were placed as the sister group to the subgenus Gomphostilbia in the second monophyletic clade. Our results suggest that S. baimaii belongs to the malyschevi-group or variegatum-group in the subgenus Simulium. The molecular phylogeny generally agrees with existing morphology-based phylogenies.  相似文献   

11.
The taxonomic and phylogenetic concepts within the Sargassum C. Agardh (Sargassaceae) species complex were evaluated through molecular phylogenetic analyses using portions of the chloroplast encoded rbcLS Operon. According to more conservative sequences (rbcL), Turbinaria (Turner) J. Agardh is a close and well‐supported sister lineage to the Sargassum species complex and an appropriate external outgroup for analyses of subgenera and subsections within Sargassum. Both rbcL and more rapidly evolving rbcLS spacer sequences indicated that the East Asiatic genus Myagropsis (Mertens et Turner) Fensholt, along with Sargassum sinicola Setchell et Gardner, represent the closest lineage to Sargassum and form appropriate internal outgroups. The rbcLS spacer region supported three of four subgeneric designations by J. Agardh and sectional levels within the subgenus Sargassum. However, some aspects of Agardh's system were not supported: many of the subsectional ranks or the phyletic concepts; Phyllotrichia was not monophyletic as a subgenus, and its species were also not the most ancestral of Sargassum; and subgenus Sargassum was not the most derived subgenus within the genus. This modern phylogeny suggests a deep evolutionary history for subgenus Sargassum with rapid speciation in closely related subsections and series, and a sister relationship between subgenera Arthrophycus and Bactrophycus.  相似文献   

12.
A cladistic study of Anllastrum, Angophora and Eucalyptus (Myrtaceae). Transformed cladistic; character compatibility; branch and bound, and Farris-Wagner methods gave similar solutions in a cladistic study of Arillastrum, Angophora and Eucalyptus. These analyses, based on morphological characters, indicate that Eucalyptus is a monophyletic group and that its sister taxon is Angophora.
Within Eucalyptus , subgenera Blakella and Corymbia are sister taxa to all other groups; subgenera Monocalyptus, Idiogenes and Gaubaea form a monophyletic group with subgenus Monocalyptus sister to subgenera Idiogenes and Gaubaea ; subgenera Symphyomyrtus and Telocalyptus together also form a monophyletic group and, with Eucalyptus similis (subgenus Eudesmia group 4), are sister to the Monocalyptus group. Eucalyptus subgenus Telocalyptus (4 species), Eucalyptus subgenus Idiogenes (1 species) and Eucalyptus subgenus Gaubaea (2 species) should not be recognized as subgenera and some individual species need further examination. Eucalyptus subgenus Eudesmia is a paraphyletic group.
Some characters are identified as parallelisms, e.g. axillary inflorescences, sepaline operculum, bristle glands, and clustered anthers. A more congruent interpretation of the single operculum of Eucalyptus subgenus Monocalyptus as at least partly petaline rather than solely sepaline in origin is suggested.
The area relationships for the taxa are concordant with those derived from geological and climatological information. New Caledonia is sister area to Australia, and within Australia southwestern Australia is sister area to south-eastern and north-eastern Australia.  相似文献   

13.
 The phylogeny of the genus Gunnera is investigated for the first time. Twelve species representing the six currently recognised subgenera are analysed. Two chloroplast DNA regions, the rbcL gene and the rps16 intron, together provide 46 informative characters out of 2335. A combined analysis of both genes gives four most parsimonious trees, firmly establishing the east South American G. herteri as sister group to the rest of the genus. The African G. perpensa is sister group to two well-supported clades, one including the South American subgenera Misandra and Panke, the other the Australian/New Zealand/Malayan species of subgenera Milligania and Pseudogunnera. Thus, South America is a composite area for Gunnera, showing up at two different levels in the cladogram. Our analysis supports a close biogeographic relationship between Australia and New Zealand. The evolution of some morphological characters is discussed. Lastly, the unusual structure of some of the rbcL sequences is reported. Received July 6, 2000 Accepted October 24, 2000  相似文献   

14.
The systematics and taxonomy of the Neotropical genus Micronycteris are not yet resolved; previous studies evidenced paraphyletic relationships, a number of potential undescribed species, and inadequate diagnostic characters. This revision focuses on the pale-bellied members of the genus using phylogenetic and morphometric tools, an increased sample size with all recognized taxa, and an expanded geographic coverage relative to prior studies. For the genetic analyses (n = 166), four molecular markers were concatenated, one mitochondrial (cytb), one nuclear (Fgb-I7), and two Y-chromosomal (DBY5 and DBY7). In the Bayesian and maximum likelihood analyses, the recognized subgenera Schizonycteris, Leuconycteris, Xenoctenes, and Micronycteris were recovered as monophyletic. The pale-bellied subgenera, Schizonycteris and Leuconycteris, were not sister clades; thus, venter coloration was not monophyletic. Leuconycteris was sister to the dark-bellied Micronycteris, and Schizonycteris was sister to the rest of the genus. Micronycteris schmidtorum was genetically defined for the first time, and it was determined all previous phylogenetic studies used a misidentified M. minuta from Bolivia. Our results showed a sister relationship between M. schmidtorum and M. brosseti, which redefines Leuconycteris. The subgenus Schizonycteris was also redefined, and it presented two well-supported clades from Central America and western Ecuador that are described as new species. Results are supported by a multivariate morphometric analyses (n = 114), karyological, and morphological comparisons. The taxonomic implications are discussed and emended diagnoses presented for the pale-bellied subgenera and for M. schmidtorum.  相似文献   

15.
Sequences of the end of the 5.8S gene and the internal transcribed spacer 2 (ITS‐2) of nuclear ribosomal DNA have been determined for 19 species of the brown algal genus Sargassum (Sargassaceae), representing three subgenera and eight sections (sections are in parentheses): Phyllotrichia, Bactrophycus (Teretia, Spongocarpus, Halochloa and Repentia) and Sargassum (Acanthocarpicae, Malacocarpicae, Zygocarpicae) to assess the taxonomic position of the section Phyllocystae traditionally included within the Bactrophycus. The sequence of Myagropsis myagroides (Mertens ex Turner) Fensholt (Sargassaceae) was used as an outgroup. Sequences of ITS‐2 were analyzed using neighbor‐joining, parsimony and maximum likelihood methods. The results showed the existence of three clades in Sargassum, corresponding to the three subgenera. The subgenus Phyllotrichia is positioned near the outgroup. Two robust clades were obtained, one corresponding to the subgenus Bactrophycus and the other to the subgenus Sargassum. Sargassum mcclurei Setchell and Sargassum quinhonense Nguyen, the two Phyllocystae investigated, are close to species belonging to the section Zygocarpicae in the subgenus Sargassum. A transfer of the section Phyllocystae to the subgenus Sargassum is therefore proposed on the basis of molecular data (ITS‐2) and morphological data (receptacles and basal leaf).  相似文献   

16.
The biogeographical history of major groups of bees with worldwide distributions have often been explained through hypotheses based on Gondwanan vicariance or long distance dispersal events, but until recently these hypotheses have been very difficult, if not impossible, to distinguish. New fossil data, comprehensive information on Mesozoic and Cenozoic coastline positions and the availability of phylogenetically informative DNA markers now makes it feasible to test these hypotheses for some groups of bees. This paper presents historical biogeographical analyses of the genus Xylocopa Latreille, based on phylogenetic analyses of species belonging to 22 subgenera using molecular data from two nuclear genes, elongation factor‐1α (EF‐1α) and phosphoenolpyruvate carboxykinase (PEPCK), combined with previously published morphological and mitochondrial data sets. Phylogenetic analyses based on parsimony and likelihood approaches resulted in several groups of subgenera supported by high bootstrap values (>85%): an American group with the Oriental/Palaearctic subgenera Nyctomelitta and Proxylocopa as sister taxa; a geographically diverse group (Xylocopa s.l); and a group consisting of African and Oriental subgenera. The relationships among these three clades and the subgenus Perixylocopa remained unresolved. The Oriental subgenus Biluna was found to be the sister group of all other carpenter bee subgenera included in this study. Using a relaxed molecular clock calibrated using fossil carpenter bees, we show that the major splits in the carpenter bee phylogeny occurred well after the final breakup of Gondwanaland (the separation of South America and Africa, 100 Mya), but before important Miocene fusion events. Ancestral area analysis showed that the genus Xylocopa most likely had an Oriental‐Palaearctic origin and that the present world distribution of Xylocopa subgenera resulted mainly from independent dispersal events. The influence of Pleistocene glaciations on carpenter bee distributions is also discussed. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 249–266.  相似文献   

17.
The aims of this study were to evaluate the degree of morphological differentiation between six varieties of Acacia caven and to examine their taxonomic validity in the context of other Argentinean species of the genus. To accomplish these purposes, morphological traits have been analyzed using multivariate methods (non parametric ANOVA, phenetic analysis and principal component analysis) on the varieties of A. caven and other six species of the genus, represented in Argentina. The phenogram obtained showed two principal clusters, one grouping all the species of subg. Acacia and the other grouping the species of subg. Aculeiferum. This result agreed with Vassal's infrageneric classification. However, the results of the principal PCA gathered the seven species here included in three groups, which were consistent with Bentham's infrageneric treatment. The ANOVA method indicated that most of the morphometric characters used were statistically sound for differentiation between varieties of A. caven. Further studies, including more species and characters, must be performed in order to clarify the position of Acacia boliviana and the relationships between A. caven and A. curvifructa.  相似文献   

18.
The biogeography of Gunnera L.: vicariance and dispersal   总被引:2,自引:1,他引:1  
Aim The genus Gunnera is distributed in South America, Africa and the Australasian region, a few species reaching Hawaii and southern Mexico in the North. A cladogram was used to (1) discuss the biogeography of Gunnera and (2) subsequently compare this biogeographical pattern with the geological history of continents and the patterns reported for other Southern Hemisphere organisms. Location Africa, northern South America, southern South America, Tasmania, New Zealand, New Guinea/Malaya, Hawaii, North America, Antarctica. Methods A phylogenetic analysis of twenty‐six species of Gunnera combining morphological characters and new as well as published sequences of the ITS region, rbcL and the rps16 intron, was used to interpret the biogeographical patterns in Gunnera. Vicariance was applied in the first place and dispersal was only assumed as a second best explanation. Results The Uruguayan/Brazilian Gunnera herteri Osten (subgenus Ostenigunnera Mattfeld) is sister to the rest of the genus, followed sequentially upwards by the African G. perpensa L. (subgenus Gunnera), in turn sister to all other, American and Australasian, species. These are divided into two clades, one containing American/Hawaiian species, the other containing all Australasian species. Within the Australasian clade, G. macrophylla Blume (subgenus Pseudogunnera Schindler), occurring in New Guinea and Malaya, is sister to a clade including the species from New Zealand and Tasmania (subgenus Milligania Schindler). The southern South American subgenus Misandra Schindler is sister to a clade containing the remaining American, as well as the Hawaiian species (subgenus Panke Schindler). Within subgenus Panke, G. mexicana Brandegee, the only North American species in the genus, is sister to a clade wherein the Hawaiian species are basal to all south and central American taxa. Main conclusions According to the cladogram, South America appears in two places, suggesting an historical explanation for northern South America to be separate from southern South America. Following a well‐known biogeographical pattern of vicariance, Africa is the sister area to the combined southern South America/Australasian clade. Within the Australasian clade, New Zealand is more closely related to New Guinea/Malaya than to southern South America, a pattern found in other plant cladograms, contradictory to some of the patterns supported by animal clades and by the geological hypothesis, respectively. The position of the Tasmanian G. cordifolia, nested within the New Zealand clade indicates dispersal of this species to Tasmania. The position of G. mexicana, the only North American species, as sister to the remaining species of subgenus Panke together with the subsequent sister relation between Hawaii and southern South America, may reflect a North American origin of Panke and a recolonization of South America from the north. This is in agreement with the early North American fossil record of Gunnera and the apparent young age of the South American clade.  相似文献   

19.
A molecular phylogenetic study of Plantago L. (Plantaginaceae) analysed nucleotide variation in the internal transcribed spacers (ITS) of nuclear ribosomal and plastid trnL-F regions. Included are 57 Plantago species, with two Aragoa species as the ingroup and three Veronica species as the outgroup. Phylogenetic analysis using maximum parsimony identified five major clades, corresponding to the taxonomic groups Plantago subgenera Plantago, Coronopus, Psyllium, Littorella and Bougueria . Aragoa is sister to genus Plantago . Plantago subgenus Littorella is sister to the other subgenera of Plantago . The results are in general correlated with a morphological phylogenetic study and iridoid glucoside patterns, but Plantago subgenus Albicans is paraphyletic and should be included in Plantago subgenus Psyllium sensu lato to obtain a monophyletic clade with six sections. Plantago section Hymenopsyllium is more closely related to section Gnaphaloides than to section Albicans . Plantago subgenus Bougueria is sister to subgenus Psyllium s.l. section Coronopus in Plantago subgenus Coronopus is subdivided in two series. Only some of the sections can be resolved into series. DNA variation within genus Plantago is high, a result that would not have been predicted on the basis of morphology, which is relatively stereotyped. If we calibrate a molecular clock based on the divergence of P. stauntoni , endemic to New Amsterdam in the southern Indian Ocean, we calculate the time of the split between Plantago and Aragoa to be 7.1 million years ago, which is congruent with the fossil record.  © 2002 The Linnean Society of London, Botanical Journal of the Linnean Society , 2002, 139 , 323–338.  相似文献   

20.
Phylogenetic relationships of the subgenera of Exorista Meigen (Diptera: Tachinidae) are inferred from morphological data. Our results show that the genus Exorista is not monophyletic and that members of the subgenus Spixomyia Crosskey are divided into two clades. Each subgenus is redefined based on male and female morphological features. The Japanese species of Exorista are revised and classified into five subgenera: Adenia Robineau‐Desvoidy, Exorista Meigen, Podotachina Brauer and Bergenstamm, Ptilotachina Brauer and Bergenstamm, and Spixomyia Crosskey. Thirteen species are recognized, including two newly recorded species, Exorista (Adenia) cuneata Herting and Exorista (Spixomyia) lepis Chao. Exorista cantans Mesnil is transferred to the subgenus Podotachina from Spixomyia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号