首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
After analysis using HPLC and electronic ion spray mass spectroscopy, the purified siderophore produced by the marine-derived Aureobasidium pullulans HN6.2 was found to be fusigen. The purified desferric fusigen still had strong inhibition of growth of the pathogenic Vibrio anguillarum while the fusigen chelated by Fe3+ lost the ability to inhibit the growth of the pathogenic bacterium. The added iron in the medium repressed expression of the hydroxylase gene encoding ornithine N5-oxygenase that catalyzes the N5-hydroxylation of ornithine for the first step of siderophore biosynthesis in the yeast cells while expression of the hydroxylase gene in the yeast cells grown in the medium plus ornithine was enhanced.  相似文献   

4.
5.
The consequences of manipulating abscisic acid (ABA) biosynthesis rates on stomatal response to drought were analysed in wild‐type, a full‐deficient mutant and four under‐producing transgenic lines of N. plumbaginifolia. The roles of ABA, xylem sap pH and leaf water potential were investigated under four experimental conditions: feeding detached leaves with varying ABA concentration; injecting exogenous ABA into well‐watered plants; and withholding irrigation on pot‐grown plants, either intact or grafted onto tobacco. Changes in ABA synthesis abilities among lines did not affect stomatal sensitivity to ABA concentration in the leaf xylem sap ([ABA]xyl), as evidenced with exogenous ABA supplies and natural increases of [ABA]xyl in grafted plants subjected to drought. The ABA‐deficient mutant, which is uncultivable under normal evaporative demand, was grafted onto tobacco stock and then presented the same stomatal response to [ABA]xyl as wild‐type and other lines. This reinforces the dominant role of ABA in controlling stomatal response to drought in N. plumbaginifolia whereas roles of leaf water potential and xylem sap pH were excluded under all studied conditions. However, when plants were submitted to soil drying onto their own roots, stomatal response to [ABA]xyl slightly differed among lines. It is suggested, consistently with all the results, that an additional root signal of soil drying modulates stomatal response to [ABA]xyl.  相似文献   

6.
Iron is an important element for many essential processes in living organisms. To acquire iron, the basidiomycete Ustilago maydis synthesizes the iron‐chelating siderophores ferrichrome and ferrichrome A. The chemical structures of these siderophores have been elucidated long time ago but so far only two enzymes involved in their biosynthesis have been described. Sid1, an ornithine monoxygenase, is needed for the biosynthesis of both siderophores, and Sid2, a non‐ribosomal peptide synthetase (NRPS), is involved in ferrichrome generation. In this work we identified four novel enzymes, Fer3, Fer4, Fer5 and Hcs1, involved in ferrichrome A biosynthesis in U. maydis. By HPLC‐MS analysis of siderophore accumulation in culture supernatants of deletion strains, we show that Fer3, an NRPS, Fer4, an enoyl‐coenzyme A (CoA)‐hydratase, and Fer5, an acylase, are required for ferrichrome A production. We demonstrate by conditional expression of the hydroxymethyl glutaryl (HMG)‐CoA synthase Hcs1 in U. maydis that HMG‐CoA is an essential precursor for ferrichrome A. In addition, we heterologously expressed and purified Hcs1, Fer4 and Fer5, and demonstrated the enzymatic activities by in vitro experiments. Thus, we describe the first complete fungal siderophore biosynthetic pathway by functionally characterizing four novel genes responsible for ferrichrome A biosynthesis in U. maydis.  相似文献   

7.
8.
9.
The ergosterol biosynthesis pathway is well understood in Saccharomyces cerevisiae, but currently little is known about the pathway in plant‐pathogenic fungi. In this study, we characterized the Fusarium graminearum FgERG4 gene encoding sterol C‐24 reductase, which catalyses the conversion of ergosta‐5,7,22,24‐tetraenol to ergosterol in the final step of ergosterol biosynthesis. The FgERG4 deletion mutant ΔFgErg4‐2 failed to synthesize ergosterol. The mutant exhibited a significant decrease in mycelial growth and conidiation, and produced abnormal conidia. In addition, the mutant showed increased sensitivity to metal cations and to various cell stresses. Surprisingly, mycelia of ΔFgErg4‐2 revealed increased resistance to cell wall‐degrading enzymes. Fungicide sensitivity tests revealed that ΔFgErg4‐2 showed increased resistance to various sterol biosynthesis inhibitors (SBIs), which is consistent with the over‐expression of SBI target genes in the mutant. ΔFgErg4‐2 was impaired dramatically in virulence, although it was able to successfully colonize flowering wheat head and tomato, which is in agreement with the observation that the mutant produces a significantly lower level of trichothecene mycotoxins than does the wild‐type progenitor. All of these phenotypic defects of ΔFgErg4‐2 were complemented by the reintroduction of a full‐length FgERG4 gene. In addition, FgERG4 partially rescued the defect of ergosterol biosynthesis in the Saccharomyces cerevisiae ERG4 deletion mutant. Taken together, the results of this study indicate that FgERG4 plays a crucial role in ergosterol biosynthesis, vegetative differentiation and virulence in the filamentous fungus F. graminearum.  相似文献   

10.
Summary Mud1 insertion mutants of Escherichia coli were obtained in which the lac structural genes were fused to the promoter of torA, a gene encoding the trimethylamine N-oxide (TMAO) reductase. Expression of the fusion is induced by TMAO and repressed by oxygen. However, in contrast to the nar operon which codes for the nitrate reductase structural genes, the tor::Mud1 fusion was found to be independent of the positive control exerted by the nirR gene product and not repressed by the molybdenum cofactor. The torA gene which is strongly linked to pyrF (28.3 U) is different from any tor gene already described in E. coli or in Salmonella typhimurium.  相似文献   

11.
We isolated and characterized three spontaneous mutations leading to trimethylamine N-oxide (TMAO)-independent expression of the tor operon encoding the TMAO-reductase anaerobic respiratory system in Escherichia coli. The mutations lie in a new tor regulatory gene, the torS gene, which probably encodes a sensor protein of a two-component regulatory system. One mutation, which leads to full TMAO-constitutive expression, is a 3-amino-acid deletion within the potential N-terminal periplasmic region, suggesting that this region contains the TMAO-detector site. For the other two mutations, a further induction of the tor operon is observed when TMAO is added. Both are single substitutions and affect the linker region located between the detector and the conserved transmitter domains. Thus, as proposed for other sensors, the TorS linker region might play an essential role in propagating conformational changes between the detector and the cytoplasmic signalling regions. The TorR histidine kinase is an unorthodox sensor that contains a receiver and a C-terminal alternative transmitter domain in addition to the domains found in most sensors. Previously, we showed that TMAO induction of the tor operon requires the TorR response regulator and the TorT periplasmic protein. Additional genetic data confirm that torS encodes the sensor partner of TorR and TorT. First, insertion within torS abolishes tor operon expression whatever the growth conditions. Second, overexpressed TorR bypasses the requirement for torS, whereas the torT gene product is dispensable for tor operon expression in a torS constitutive mutant. This supports a signal-transduction cascade from TorT to TorR via TorS.  相似文献   

12.
During exploratory surveys in the tributaries (Penganga and Satnala) of Godavari and (Bheema) Krishna basins, specimens of mahseer were collected. The morpho‐meristic characteristics of these specimens conformed to the taxonomic keys for Tor tor. The mitochondrial COI sequences of these specimens clustered with the T. tor specimens from the River Narmada and were distinct from the other mahseer such as T. khudree and T. mussullah, which are known to exist in the rivers of the region. This confirmed the distribution of T. tor in the rivers of peninsular India and indicated an extended distribution of the known range. The major predominating habitat characteristics of collection areas were cobbles mixed with gravel, and a riparian cover of shrubs and trees. The occurrence of fingerling size specimens in the river suggests that the species has adapted and is likely to have established self‐recruiting populations in these rivers.  相似文献   

13.
14.
Tor2 is an activator of the Rom2/Rho1 pathway that regulates α-factor internalization. Since the recruitment of endocytic proteins such as actin-binding proteins and the amphiphysins precedes the internalization of α-factor, we hypothesized that loss of Tor function leads to an alteration in the dynamics of the endocytic proteins. We report here that endocytic proteins, Abp1 and Rvs167, are less recruited to endocytic sites not only in tor2 but also tor1 mutants. Furthermore, we found that the endocytic proteins Rvs167 and Sjl2 are completely mistargeted to the cytoplasm in tor1Δtor2 ts double mutant cells. We also demonstrate here that the efficiency of endocytic internalization or scission in all tor mutants was drastically decreased. In agreement with the Sjl2 mislocalization, we found that in tor1Δtor2 ts double mutant cells, as well as other tor mutant cells, the overall PIP2 level was dramatically increased. Finally, the cell wall chitin content in tor2 ts and tor1Δtor2ts mutant cells was also significantly increased. Taken together, both functional Tor proteins, Tor1 and Tor2, are essentially required for proper endocytic protein dynamics at the early stage of endocytosis.  相似文献   

15.
Plant male reproductive development is a complex biological process, but the underlying mechanism is not well understood. Here, we characterized a rice (Oryza sativa L.) male sterile mutant. Based on map‐based cloning and sequence analysis, we identified a 1,459‐bp deletion in an adenosine triphosphate (ATP)‐binding cassette (ABC) transporter gene, OsABCG15, causing abnormal anthers and male sterility. Therefore, we named this mutant osabcg15. Expression analysis showed that OsABCG15 is expressed specifically in developmental anthers from stage 8 (meiosis II stage) to stage 10 (late microspore stage). Two genes CYP704B2 and WDA1, involved in the biosynthesis of very‐long‐chain fatty acids for the establishment of the anther cuticle and pollen exine, were downregulated in osabcg15 mutant, suggesting that OsABCG15 may play a key function in the processes related to sporopollenin biosynthesis or sporopollenin transfer from tapetal cells to anther locules. Consistently, histological analysis showed that osabcg15 mutants developed obvious abnormality in postmeiotic tapetum degeneration, leading to rapid degredation of young microspores. The results suggest that OsABCG15 plays a critical role in exine formation and pollen development, similar to the homologous gene of AtABCG26 in Arabidopsis. This work is helpful to understand the regulatory network in rice anther development.  相似文献   

16.
Sphingolipids play critical roles in many physiologically important events in the yeast Saccharomyces cerevisiae. In this study, we found that csg2Δ mutant cells defective in the synthesis of mannosylinositol phosphorylceramide exhibited abnormal intracellular accumulation of an exocytic v‐SNARE, Snc1, under phosphatidylserine synthase gene (PSS1)‐repressive conditions, although in wild‐type cells, Snc1 was known to cycle between plasma membranes and the late Golgi via post‐Golgi endosomes. The mislocalized Snc1 was co‐localized with an endocytic marker dye, FM4‐64, upon labelling for a short time. The abnormal distribution of Snc1 was suppressed by deletion of GYP2 encoding a GTPase‐activating protein that negatively regulates endosomal vesicular trafficking, or expression of GTP‐restricted form of Ypt32 GTPase. Furthermore, an endocytosis‐deficient mutant of Snc1 was localized to plasma membranes in PSS1repressed csg2Δ mutant cells as well as wild‐type cells. Thus, the PSS1repressed csg2Δ mutant cells were indicated to be defective in the trafficking of Snc1 from post‐Golgi endosomes to the late Golgi. In contrast, the vesicular trafficking pathways via pre‐vacuolar endosomes in the PSS1repressed csg2Δ mutant cells seemed to be normal. These results suggested that specific complex sphingolipids and phosphatidylserine are co‐ordinately involved in specific vesicular trafficking pathway.  相似文献   

17.
【目的】构建一个适用于Candida amazonensis抗性标记可重复使用的FLP/FRT基因敲除系统,并通过敲除C.amazonensis的丙酮酸脱羧酶基因(Pyruvate decarboxylase,PDC)对该系统进行初步验证。【方法】以gfpm(绿色荧光蛋白基因)为报告基因,通过添加相应诱导剂评估Spathaspora passalidarum来源启动子(SpXYLp、SpMAL6p、SpMAL1p、SpGAL1p)和Saccharomyces cerevisiae来源Sc GAL1p启动子在C.amazonensis中的诱导调控性能。选择严格诱导型启动子调控FLP重组酶的表达,并在FLP表达盒和潮霉素(Hygromycin B)抗性标记基因(hphm)两端添加同向重复的FRT位点,以PDC基因作为靶基因构建敲除盒PRFg HRP,转化宿主菌C.amazonensis CBS 12363,筛选得到阳性转化子后,通过添加诱导剂,表达FLP重组酶,实现FRT位点间片段切除。【结果】诱导调控实验表明启动子SpGAL1p(受半乳糖诱导)和SpMAL1p(受麦芽糖诱导)是适用于C.amazonensis的严格诱导型启动子。以SpGAL1p调控FLP基因表达,构建的敲除盒PRFg HRP成功转化宿主菌,获得阳性转化子C.amazonensis PDC01,通过添加半乳糖诱导,成功切除基因组中FLP表达盒和抗性标记盒,获得突变株C.amazonensis PDC02。【结论】首次建立了一个适用于C.amazonensis抗性标记可重复使用的FLP/FRT基因敲除系统,并利用该系统成功敲除了C.amazonensis内的PDC基因,为进一步利用代谢工程改造C.amazonensis酵母奠定了良好基础。  相似文献   

18.
Aims: To engineer Streptomyces tenebrarius for producing carbamoyl tobramycin as a main component. Methods and Results: The aprH‐M gene fragment (apramycin biosynthetic gene from GenBank) in S. tenebrarius Tt49 was knocked out by genetic engineering to form S. tenebrarius T106 (△aprH‐M). Compared to the wild‐type strain, mutant strain T106 (△aprH‐M) no longer produced apramycin, while mainly synthesize carbamoyl tobramycin. TLC and HPLC‐MS analyses indicated that the mutant strain significantly increased the production of carbamoyl tobramycin. Conclusions: The metabolic flow for the apramycin and its analogues biosynthesis was blocked by disrupting the aprH‐M gene clusters. The aprH‐M gene clusters might be essential for the biosynthesis of apramycin. The mutant strain T106 mainly synthesized carbamoyl tobramycin. Significance and Impact of Study: The mutant T106 mainly produces carbamoyl tobramycin without synthesizing apramycin, which will reduce cost of postextraction from fermentation products. Therefore, it has good prospects for industrial application.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号