首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mass spectrometry (MS) analysis combined with stable isotopic labeling is a promising method for the relative quantification of aberrant glycosylation in diseases and disorders. We developed a stable isotopic labeling‐based quantitative targeted glycomics (i‐QTaG) technique for the comparative and quantitative analysis of total N‐glycans using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). We established the analytical procedure with the chemical derivatizations (i.e., sialic acid neutralization and stable isotopic labeling) of N‐glycans using a model glycoprotein (bovine fetuin). Moreover, the i‐QTaG using MALDI‐TOF MS was evaluated with various molar ratios (1:1, 1:2, 1:5) of 13C6/12C6‐2‐aminobenzoic acid‐labeled glycans from normal human serum. Finally, this method was applied to direct comparison of the total N‐glycan profiles between normal human sera (n = 8) and prostate cancer patient sera (n = 17). The intensities of the N‐glycan peaks from i‐QTaG method showed a good linearity (R2 > 0.99) with the amount of the bovine fetuin glycoproteins. The ratios of relative intensity between the isotopically 2‐AA labeled N‐glycans were close to the theoretical molar ratios (1:1, 1:2, 1:5). We also demonstrated that the up‐regulation of the Lewis antigen (~82%) in sera from prostate cancer patients. In this proof‐of‐concept study, we demonstrated that the i‐QTaG method, which enables to achieve a reliable comparative quantitation of total N‐glycans via MALDI‐TOF MS analysis, has the potential to diagnose and monitor alterations in glycosylation associated with disease states or biotherapeutics. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:840–848, 2015  相似文献   

2.
Quantitative glycomics represents an actively expanding research field ranging from the discovery of disease‐associated glycan alterations to the quantitative characterization of N‐glycans on therapeutic proteins. Commonly used analytical platforms for comparative relative quantitation of complex glycan samples include MALDI‐TOF‐MS or chromatographic glycan profiling with subsequent data alignment and statistical evaluation. Limitations of such approaches include run‐to‐run technical variation and the potential introduction of subjectivity during data processing. Here, we introduce an offline 2D LC‐MSE workflow for the fractionation and relative quantitation of twoplex isotopically labeled N‐linked oligosaccharides using neutral 12C6 and 13C6 aniline (Δmass = 6 Da). Additional linkage‐specific derivatization of sialic acids using 4‐(4,6‐dimethoxy‐1,3,5‐trizain‐2‐yl)‐4‐methylmorpholinium chloride offered simultaneous and advanced in‐depth structural characterization. The potential of the method was demonstrated for the differential analysis of structurally defined N‐glycans released from serum proteins of patients diagnosed with various stages of colorectal cancer. The described twoplex 12C6/13C6 aniline 2D LC‐MS platform is ideally suited for differential glycomic analysis of structurally complex N‐glycan pools due to combination and analysis of samples in a single LC‐MS injection and the associated minimization in technical variation.  相似文献   

3.
Protein glycosylation involves the addition of monosaccharides in a stepwise process requiring no glycan template. Therefore, identifying the numerous glycoforms, including isomers, can help elucidate the biological function(s) of particular glycans. A method to assess the diversity of the N‐linked oligosaccharides released from human serum without derivatization has been developed using on‐line nanoLC and high resolution TOF MS. The N‐linked oligosaccharides were analyzed with MALDI FT‐ICR MS and microchip LC MS (HPLC–Chip/TOF MS). Two microfluidic chips were employed, the glycan chip (40 nL enrichment column, 43×0.075 mm2 i.d. analytical column) and the high capacity chip (160 nL enrichment column, 140×0.075 mm2 i.d. analytical column), both with graphitized carbon as the stationary phase. Both chips offered good sensitivity and reproducibility in separating a heterogeneous mixture of neutral and anionic oligosaccharides between injections. Increasing the length and volume of the enrichment and the analytical columns improved resolution of the peaks. Complex type N‐linked oligosaccharides were the most abundant oligosaccharides in human serum accounting for ∼96% of the total glycans identified, while hybrid and high mannose type oligosaccharides comprise the remaining ∼4%.  相似文献   

4.
As one of the most important post‐translational modifications, the discovery, isolation, and identification of glycoproteins are becoming increasingly important. In this study, a Con A‐magnetic particle conjugate‐based method was utilized to selectively isolate the glycoproteins and their glycomes from the healthy donor and hepatocellular carcinoma (HCC) case sera. The isolated glycoproteins and their N‐linked glycans were identified by LC‐ESI‐MS/MS and MALDI‐TOF/TOF‐MS, respectively. A total of 93 glycoproteins from the healthy donors and 85 glycoproteins from the HCC cases were identified. There were 34 different glycoproteins shown between the healthy donors (21/34) and the HCC cases (13/34). Twenty‐eight glycans from the healthy donors and 30 glycans from the HCC cases were detected and there were 22 different glycans shown between the healthy donors (10/22) and HCC cases (12/22). Among these glycoproteins, 50 were known to be N‐linked glycoproteins and three novel glycopeptides from two predicted potential glycoproteins were discovered. Moreover, lectin blotting, Western blotting and lectin/glyco‐antibody microarrays were applied to definitely elucidate the change of selective protein expressions and their glycosylation levels, the results indicated that the differences of the identified glycoproteins between the healthy donors and HCC cases were caused by the change of both protein expression and their glycosylation levels.  相似文献   

5.
The MALDI‐TOF MS has already been a main platform for phosphoproteome analysis. However, there are some weaknesses in direct analysis of endogenous phosphopeptides by MALDI‐TOF MS because of the serious suppression effect and poor ionization efficiency, which is brought by the excess of nonphosphopeptides and protein. It is essential to enrich endogenous phosphopeptides from complex biosamples efficiently prior to MALDI‐TOF MS analysis. Herein, we present a time‐saving and detailed protocol for the synthesis of titanium(iv)‐immobilized magnetic mesoporous silica nanoparticles (denoted as Fe3O4@mSiO2‐Ti4+), the subsequent enrichment process, and MALDI‐TOF MS analysis. We tested the LOD, size‐exclusive effect, reproducibility, and stability of Fe3O4@mSiO2‐Ti4+ nanoparticles. Furthermore, the ability of this protocol for identifying endogenous phosphopeptides in healthy human serum and saliva was investigated.  相似文献   

6.
Milk glycoproteins are involved in different functions and contribute to different cellular processes, including adhesion and signaling, and shape the development of the infant microbiome. Methods have been developed to study the complexities of milk protein glycosylation and understand the role of N‐glycans in protein functionality. Endo‐β‐N‐acetylglucosaminidase (EndoBI‐1) isolated from Bifidobacterium longum subsp. infantis ATCC 15697 is a recently isolated heat‐stable enzyme that cleaves the N‐N′‐diacetyl chitobiose moiety found in the N‐glycan core. The effects of different processing conditions (pH, temperature, reaction time, and enzyme/protein ratio) were evaluated for their ability to change EndoBI‐1 activity on bovine colostrum whey glycoproteins using advanced mass spectrometry. This study shows that EndoBI‐1 is able to cleave a high diversity of N‐glycan structures. Nano‐LC‐Chip–Q‐TOF MS data also revealed that different reaction conditions resulted in different N‐glycan compositions released, thus modifying the relative abundance of N‐glycan types. In general, more sialylated N‐glycans were released at lower temperatures and pH values. These results demonstrated that EndoBI‐1 is able to release a wide variety of N‐glycans, whose compositions can be selectively manipulated using different processing conditions. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1323–1330, 2015  相似文献   

7.
Production of pharmaceutical glycoproteins in plants has many advantages in terms of safety and reduced costs. However, plant‐produced glycoproteins have N‐glycans with plant‐specific sugar residues (core β‐1,2‐xylose and α‐1,3‐fucose) and a Lewis a (Lea) epitope, i.e., Galβ(1‐3)[Fucα(1‐4)]GlcNAc. Because these sugar residues and glycan structures seemed to be immunogenic, several attempts have been made to delete them by repressing their respective glycosyltransferase genes. However, until date, such deletions have not been successful in completely eliminating the fucose residues. In this study, we simultaneously reduced the plant‐specific core α‐1,3‐fucose and α‐1,4‐fucose residues in the Lea epitopes by repressing the Guanosine 5′‐diphosphate (GDP)‐D‐mannose 4,6‐dehydratase (GMD) gene, which is associated with GDP‐L‐fucose biosynthesis, in Nicotiana benthamiana plants. Repression of GMD was achieved using virus‐induced gene silencing (VIGS) and RNA interference (RNAi). The proportion of fucose‐free N‐glycans found in total soluble protein from GMD gene‐repressed plants increased by 80% and 95% following VIGS and RNAi, respectively, compared to wild‐type plants. A small amount of putative galactose substitution in N‐glycans from the NbGMD gene‐repressed plants was observed, similar to what has been previously reported GMD‐knockout Arabidopsis mutant. On the other hand, the recombinant mouse granulocyte‐macrophage colony‐stimulating factor (GM‐CSF) with fucose‐deleted N‐glycans was successfully produced in NbGMD‐RNAi transgenic N. benthamiana plants. Thus, repression of the GMD gene is thus very useful for deleting immunogenic total fucose residues and facilitating the production of pharmaceutical glycoproteins in plants.  相似文献   

8.
The peptide‐based quantitation accuracy and precision of LC‐ESI (QSTAR Elite) and LC‐MALDI (4800 MALDI TOF/TOF) were compared by analyzing identical Escherichia coli tryptic digests containing iTRAQ‐labeled peptides of defined abundances (1:1, 2.5:1, 5:1, and 10:1). Only 51.4% of QSTAR spectra were used for quantitation by ProteinPilot Software versus 66.7% of LC‐MALDI spectra. The average protein sequence coverages for LC‐ESI and LC‐MALDI were 24.0 and 18.2% (14.9 and 8.4 peptides per protein), respectively. The iTRAQ‐based expression ratios determined by ProteinPilot from the 57 467 ESI‐MS/MS and 26 085 MALDI‐MS/MS spectra were analyzed for measurement accuracy and reproducibility. When the relative abundances of peptides within a sample were increased from 1:1 to 10:1, the mean ratios calculated on both instruments differed by only 0.7–6.7% between platforms. In the 10:1 experiment, up to 64.7% of iTRAQ ratios from LC‐ESI MS/MS spectra failed S/N thresholds and were excluded from quantitation, while only 0.1% of the equivalent LC‐MALDI iTRAQ ratios were rejected. Re‐analysis of an archived LC‐MALDI sample set stored for 5 months generated 3715 MS/MS spectra for quantitation, compared with 3845 acquired originally, and the average ratios differed by only 3.1%. Overall, MS/MS‐based peptide quantitation performance of offline LC‐MALDI was comparable with on‐line LC‐ESI, which required threefold less time. However, offline LC‐MALDI allows the re‐analysis of archived HPLC‐separated samples.  相似文献   

9.
Glyco‐design of proteins is a powerful tool in fundamental studies of structure–function relationship and in obtaining profiles optimized for efficacy of therapeutic glycoproteins. Plants, particularly Nicotiana benthamiana, are attractive hosts to produce recombinant glycoproteins, and recent advances in glyco‐engineering facilitate customized N‐glycosylation of plant‐derived glycoproteins. However, with exception of monoclonal antibodies, homogenous human‐like β1,4‐galactosylation is very hard to achieve in recombinant glycoproteins. Despite significant efforts to optimize the expression of β1,4‐galactosyltransferase, many plant‐derived glycoproteins still exhibit incomplete processed N‐glycans with heterogeneous terminal galactosylation. The most obvious suspects to be involved in trimming terminal galactose residues are β‐galactosidases (BGALs) from the glycosyl hydrolase family GH35. To elucidate the so far uncharacterized mechanisms leading to the trimming of terminal galactose residues from glycans of secreted proteins, we studied a N. benthamiana BGAL known to be active in the apoplast (NbBGAL1). Here, we determined the NbBGAL1 subcellular localization, substrate specificity and in planta biological activity. We show that NbBGAL1 can remove β1,4‐ and β1,3‐galactose residues on both N‐ and O‐glycans. Transient BGAL1 down‐regulation by RNA interference (RNAi) and BGAL1 depletion by genome editing drastically reduce β‐galactosidase activity in N. benthamiana and increase the amounts of fully galactosylated complex N‐glycans on several plant‐produced glycoproteins. Altogether, our data demonstrate that NbBGAL1 acts on galactosylated complex N‐glycans of plant‐produced glycoproteins.  相似文献   

10.
The primary structure of the B chain of the N‐acetyl‐D ‐galactosamine‐recognizing mistletoe lectin‐3 (ML‐3B) has been deduced from proteolytic digest peptides of the purified glycoprotein, their HPLC‐separation and Edman degradation and confirmation of the peptide sequences by MALDI‐MS. ML‐3B consists of 262 amino acid residues including 10 cysteine moieties. The structure and linkage of the carbohydrate side chains, connected to two N‐glycosylation sites at positions Asn95 and Asn135 of the lectin, were determined by a combination of glycosidase treatment and MALDI‐MS of corresponding glycopeptide fragments. The sequence alignment reveals a high homology with other B chains of type‐II RIPs, although there are remarkable differences in the D ‐galactose‐specific mistletoe lectin‐1B chain. The recently published primary structure of the mistletoe lectin‐3A chain 1 and the now available primary sequence of the 3B chain allowed the construction of a preliminary homology model of ML‐3. The model demonstrates, unequivocally, that ML‐3 is a member of the type‐II RIP family with rigid conservation of the enzymatic active site of the A chain and an identical overall protein fold. Specific amino acid residue exchanges and the different glycosylation pattern in comparison with ML‐1 are discussed and related to the properties of the two glycoproteins. The knowledge of the complete primary structure of mistletoe lectin‐3 is a major contribution towards more insight into the mechanism of the biological activity of commercial mistletoe preparations. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Flea identification is a significant issue because some species are considered as important vectors of several human pathogens that have emerged or re‐emerged recently, such as Bartonella henselae (Rhizobiales: Bartonellaceae) and Rickettsia felis (Rickettsiales: Rickettsiaceae). Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has been evaluated in recent years for the identification of multicellular organisms, including arthropods. A preliminary study corroborated the usefulness of this technique for the rapid identification of fleas, creating a preliminary database containing the spectra of five species of flea. However, longterm flea preservation in ethanol did not appear to be an adequate method of storage in the context of specimen identification by MALDI‐TOF MS profiling. The goal of the present work was to assess the performance of MALDI‐TOF MS in the identification of seven flea species [Ctenocephalides felis (Siphonaptera: Pulicidae), Ctenocephalides canis, Pulex irritans (Siphonaptera: Pulicidae), Archaeopsylla erinacei (Siphonaptera: Pulicidae), Leptopsylla taschenbergi (Siphonaptera: Ceratophyllidae), Stenoponia tripectinata (Siphonaptera: Stenoponiidae) and Nosopsyllus fasciatus (Siphonaptera: Ceratophyllidae)] collected in the field and stored in ethanol for different periods of time. The results confirmed that MALDI‐TOF MS can be used for the identification of wild fleas stored in ethanol. Furthermore, this technique was able to discriminate not only different flea genera, but also the two congeneric species C. felis and C. canis.  相似文献   

12.
While glycosyltransferases are restrictively expressed in invertebrate model organisms, little is known of their glycan end products. One such restrictively expressed glycoepitope was localized to sensory and epithelial cells of leech and Caenorhabditis elegans using the Lan3‐2 monoclonal antibody. A biological function for the neural Lan3‐2 epitope was previously determined in the leech. Here we report on the chemical structure of this mannosidic epitope harvested from whole Hirudo medicinalis. Crude glycans were liberated from glycoproteins by hydrazinolysis. Re‐N‐acetylated glycans were subjected to immunoaffinity purification. The affinity‐purified glycans were fractioned by size chromatography into oligosaccharides and polysaccharides. Lan3‐2 oligosaccharide structure was characterized by gas chromatography of alditol acetates, methylation analysis, 500 MHz 1H NMR spectroscopy, matrix‐assisted laser desorption/ionization mass spectrometry, and electrospray ionization tandem MS‐MS of permethylated derivatives. The predominant components of the Lan3‐2 oligosaccharide fraction were a series of linear β‐(1,4)‐linked mannose polymers. The homologous expression of the Lan3‐2 epitope in C. elegans will facilitate the exploration of its glycosylation pathway. Other invertebrates expressing the Lan3‐2 epitope are Planaria dugesia, Capitella sp. I and Lumbriculus variegatus. The glycoepitope was not detected in the diploblastic animals Hydra littoralis and Aptaisia sp. or in deuterostomes.  相似文献   

13.
Epithelial ovarian cancer is one of the most fatal gynecological malignancies in adult women. As studies on protein N‐glycosylation have extensively reported aberrant patterns in the ovarian cancer tumor microenvironment, obtaining spatial information will uncover tumor‐specific N‐glycan alterations in ovarian cancer development and progression. matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is employed to investigate N‐glycan distribution on formalin‐fixed paraffin‐embedded ovarian cancer tissue sections from early‐ and late‐stage patients. Tumor‐specific N‐glycans are identified and structurally characterized by porous graphitized carbon‐liquid chromatography‐electrospray ionization‐tandem mass spectrometry (PGC‐LC‐ESI‐MS/MS), and then assigned to high‐resolution images obtained from MALDI‐MSI. Spatial distribution of 14 N‐glycans is obtained by MALDI‐MSI and 42 N‐glycans (including structural and compositional isomers) identified and structurally characterized by LC‐MS. The spatial distribution of oligomannose, complex neutral, bisecting, and sialylated N‐glycan families are localized to the tumor regions of late‐stage ovarian cancer patients relative to early‐stage patients. Potential N‐glycan diagnostic markers that emerge include the oligomannose structure, (Hex)6 + (Man)3(GlcNAc)2, and the complex neutral structure, (Hex)2 (HexNAc)2 (Deoxyhexose)1 + (Man)3(GlcNAc)2. The distribution of these markers is evaluated using a tissue microarray of early‐ and late‐stage patients.  相似文献   

14.
Aims: Vibrio identification by means of traditional microbiological methods is time consuming because of the many biochemical tests that have to be performed to distinguish closely related species. This work aimed at evaluating the use of MALDI‐TOF mass spectrometry for the rapid identification of Vibrio (V.) spp. as an advantageous application to rapidly discriminate the most important Vibrio spp. and distinguish Vibrio spp. from closely related bacterial species like Photobacterium damselae and Grimontia hollisae and other aquatic bacteria like Aeromonas spp. Methods and Results: Starting from sub‐colony amounts of pure cultures grown on agar plates, a very simple sample preparation procedure was established and combined with a rapid and automated measurement protocol that allowed species identification within minutes. Closely related species like Vibrio alginolyticus and Vibrio parahaemolyticus or Vibrio cholerae and Vibrio mimicus could thus be differentiated by defining signatures of species‐identifying biomarker ions (SIBIs). As a reference method for species designation and for determination of relationships between strains with molecular markers, partial rpoB gene sequencing was applied. Conclusions: The MALDI‐TOF MS‐based method as well as the rpoB sequence‐based approach for Vibrio identification described in this study produced comparable classification results. The construction of phylogenetic trees from MALDI‐TOF MS and rpoB sequences revealed a very good congruence of both methods. Significance and Impact of the Study: Our results suggest that whole‐cell MALDI‐TOF MS‐based proteometric characterization represents a powerful tool for rapid and accurate classification and identification of Vibrio spp. and related species.  相似文献   

15.
Introduction – Kudzu root (Radix puerariae) is a rich source of isoflavones that are effective in preventing osteoporosis, heart disease and symptoms associated with menopause. The major isoflavonoids in kudzu root extracts were reported as puerarin, daidzin and daidzein. Recently, an unknown isoflavonoid (compound 1) was detected from one‐year‐old kudzu root cultivated in Vietnam. Objective – To identify a novel compound 1 in kudzu root extract and determine the structure of the compound by ESI+ TOF MS‐MS, 1H‐, 13C‐NMR and enzymatic hydrolysis. Methodology – Samples were prepared by extraction of one‐year‐old kudzu root with 50% ethanol and the isoflavonoids were purified using recycling preparative HPLC. Unknown compound 1 was detected using UV‐light at 254 nm in TLC and HPLC analyses. The molecular weight of 1 was determined using a TOF mass spectrometer equipped with an electrospray ion source. The structure of 1 was determined from the 13C and 1H NMR spectra recorded at 100.40 and 400.0 MHz, respectively. Results – ESI+ TOF MS‐MS analysis shows that 1 is a puerarin diglycoside. The interglycosidic linkage of diglycoside determined by 1H‐, 13C‐NMR, and enzymatic hydrolysis suggests that 1 has a glucosyl residue linked to puerarin by an α‐1,6‐glycosidic bond. This compound is the first naturally‐occurring 8‐[α‐D ‐glucopyranosyl‐(1→6)‐β‐D ‐glucopyranosyl]daidzein in kudzu root. The concentration of glucosyl‐α‐1,6‐puerarin in kudzu root was 2.3 mg/g as determined by HPLC. Conclusion – The results indicate that puerarin diglycoside is one of the major isoflavonoids in kudzu root and has a significant impact on the preparation of highly water‐soluble glycosylated puerarin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
The filamentous fungus Aspergillus flavus is an opportunistic soil‐borne pathogen that produces aflatoxins, the most potent naturally occurring carcinogenic compounds known. This work represents the first gel‐based profiling analysis of A. flavus proteome and establishes a 2D proteome map. Using 2DE and MALDI‐TOF‐MS/MS, we identified 538 mycelial proteins of the aflatoxigenic strain NRRL 3357, the majority of which were functionally annotated as related to various cellular metabolic and biosynthetic processes. Additionally, a few enzymes from the aflatoxin synthesis pathway were also identified.  相似文献   

17.
To screen for glycoproteins showing aberrant sialylation patterns in sera of cancer patients and apply such information for biomarker identification, we performed SELDI‐TOF MS analysis coupled with lectin‐coupled ProteinChip arrays (Jacalin or SNA) using sera obtained from lung cancer patients and control individuals. Our approach consisted of three processes (i) removal of 14 abundant proteins in serum, (ii) enrichment of glycoproteins with lectin‐coupled ProteinChip arrays, and (iii) SELDI‐TOF MS analysis with acidic glycoprotein‐compatible matrix. We identified 41 protein peaks showing significant differences (p<0.05) in the peak levels between the cancer and control groups using the Jacalin‐ and SNA‐ProteinChips. Among them, we identified loss of Neu5Ac (α2,6) Gal/GalNAc structure in apolipoprotein C‐III (apoC‐III) in cancer patients through subsequent MALDI‐QIT‐TOF MS/MS. Furthermore, subsequent validation experiments using an additional set of 60 lung adenocarcinoma patients and 30 normal controls demonstrated that there is a higher frequency of serum apoC‐III with loss of α2,6‐linkage Neu5Ac residues in lung cancer patients compared to controls. Our results have demonstrated that lectin‐coupled ProteinChip technology allows the high‐throughput and specific recognition of cancer‐associated aberrant glycosylations, and implied a possibility of its applicability to studies on other diseases.  相似文献   

18.
MS was used to characterize the 24 kDa human growth hormone (hGH) glycoprotein isoform and determine the locus of O‐linked oligosaccharide attachment, the oligosaccharide branching topology, and the monosaccharide sequence. MALDI‐TOF/MS and ESI‐MS/MS analyses of glycosylated 24 kDa hGH tryptic peptides showed that this hGH isoform is a product of the hGH normal gene. Analysis of the glycoprotein hydrolysate by high‐performance anion‐exchange chromatography with pulsed amperometric detection and HPLC with fluorescent detection for N‐acetyl neuraminic acid (NeuAc) yielded the oligosaccharide composition (NeuAc2, N‐acetyl galactosamine1, Gal1). After β‐elimination to release the oligosaccharide from glycosylated 24 kDa hGH, collision‐induced dissociation of tryptic glycopeptide T6 indicated that there had been an O‐linked oligosaccharide attached to Thr‐60. The sequence and branching structure of the oligosaccharide were determined by ESI‐MS/MS analysis of tryptic glycopeptide T6. The mucin‐like O‐oligosaccharide sequence linked to Thr‐60 begins with N‐acetyl galactosamine and branches in a bifurcated topology with one appendage consisting of galactose followed by NeuAc and the other consisting of a single NeuAc. The oligosaccharide moiety lies in the high‐affinity binding site 1 structural epitope of hGH that interfaces with both the growth hormone and the prolactin receptors and is predicted to sterically affect receptor interactions and alter the biological actions of hGH.  相似文献   

19.
For the production of therapeutic proteins in plants, the presence of β1,2‐xylose and core α1,3‐fucose on plants’ N‐glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down‐regulate the endogenous N‐acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco‐engineered line (NbGNTI‐RNAi) showed a strong reduction of plant‐specific N‐glycans, with the result that as much as 90.9% of the total N‐glycans were of high‐mannose type. Therefore, this NbGNTI‐RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI‐RNAi plant was cross‐pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N‐glycan structures that were presented on all of the four occupied N‐glycosylation sites of recombinant GC in NbGNTI‐RNAi plants (GCgnt1) showed that the majority (ranging from 73.3% up to 85.5%) of the N‐glycans had mannose‐type structures lacking potential immunogenic β1,2‐xylose and α1,3‐fucose epitopes. Moreover, GCgnt1 could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI‐RNAi line, producing GC, was stable and the NbGNTI‐RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N‐glycan structures.  相似文献   

20.
Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS) has emerged as a promising tool to rapidly characterize Staphylococcus aureus. Different protocols have been employed, but effects of experimental factors, such as culture condition and sample preparation, on spectrum quality and reproducibility have not been rigorously examined. We applied MALDI‐TOF MS to characterize a model system consisting of five methicillin‐sensitive (MSSA) and five methicillin‐resistant S. aureus isolates (MRSA) under two culture conditions (agar and broth) and using two sample preparation methods [intact cell method and protein extraction method (PEM)]. The effects of these treatments on spectrum quality and reproducibility were quantified. PEM facilitated increases in the number of peaks and mass range width. Broth cultures further improved spectrum quality in terms of increasing the number of peaks. In addition, PEM increased reproducibility in samples prepared using identical culture conditions. MALDI imaging data suggested that the improvement in reproducibility may result from a more homogeneous distribution of sample associated with the broth/PEM treatment. Broth/PEM treatment also yielded the highest rate (96%) of correct classification for MRSA. Taken together, these results suggest that broth/PEM maximizes the performance of MALDI‐TOF MS to characterize S. aureus.

Significance and Impact of the Study

Two culture conditions (agar or broth) and two sample preparation methods (intact cell or protein extraction) were evaluated for their effects on profiling of Staphylococcus aureus using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF MS). Results indicated that MALDI‐enabled profiling of S. aureus is most effective when cultures are grown in broth and processed using a protein extraction‐based approach. These findings should enhance future efforts to maximize the performance of this approach to characterize strains of S. aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号