首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.  相似文献   

2.
Heme oxygenase‐1 (HO‐1) is a stress protein expressed in various pathological conditions associated with oxidative stress. Brain HO‐1 expression and activity in response to LPS treatment showed regional variability with the highest levels in the substantia nigra (SN) and hippocampus. HO‐1 induction by LPS was redox‐sensitive and associated with increased levels of NO synthase and arginase, two proteins involved in the regulation of cellular redox state. Brain HO‐2 and HO‐3 expression, studied by quantitative RT‐PCR, did not show significant changes. Our data suggest an interaction between NO and the HO system in the brain after LPS treatment. As SN and hippocampus are involved in Parkinson's and Alzheimer's diseases, understanding interaction of these proteins in the brain will help to elucidate the mechanisms involved in neurodegeneration.  相似文献   

3.
Incorporation of methionine into brain proteins has been measured by quantitative autoradiography after desmethylimipramine administration in rats. Acute treatment decreased protein synthesis in three regions: hippocampus, hypothalamus and habenula. After chronic treatment the decrease extended to four other regions: substantia nigra, raphe dorsalis, trigeminal nerve and hypophysis. An opposite effect was observed in the retrosplenial cortex.  相似文献   

4.
Previous studies have shown that iron deficiency (ID) increases brain manganese (Mn), but specific regional changes have not been addressed. Weanling rats were fed one of three semipurified diets: control (CN), iron deficient (ID), or iron deficient/manganese fortified (IDMn+). Seven brain regions were analyzed for Mn concentration and amino acid (glutamate, glutamine, taurine, γ-aminobutyric acid) concentrations. Both ID and IDMn+ diets caused significant (p<0.05) increases in Mn concentration across brain regions compared to CN. The hippocampus was the only brain region in which the IDMn+ group accumulated significantly more Mn than both the CN and ID groups. ID significantly decreased GABA concentration in hippocampus, caudate putamen, and globus pallidus compared to CN rats. Taurine was significantly increased in the substantia nigra of the IDMn+ group compared to both ID and CN. ID also altered glutamate and glutamine concentrations in cortex, caudate putamen, and thalamus compared to CN. In the substantia nigra, Mn concentration positively correlated with increased taurine concentration, whereas in caudate putamen, Mn concentration negatively correlated with decreased GABA. These data show that ID is a significant risk factor for central nervous system Mn accumulation and that some of the neurochemical alterations associated with ID are specifically attributable to Mn accumulation.  相似文献   

5.
The metabolism of GABA and other amino acids was studied in the substantia nigra, the hippocampus and the parietal cortex of rats following microinjections of GAMMA-vinyl-GABA during status epilepticus induced by lithium and pilocarpine. GABA metabolism showed striking regional variations. In controls, both GABA concentration and rate of GABA synthesis were highest in the substantia nigra and lowest in cortex, as expected. In substantia nigra, status epilepticus resulted in a 2 1/2 fold decline in the rate of GABA synthesis and in a 307% increase in the turnover time of the GABA pool. In hippocampus, the rate of GABA synthesis was not altered significantly, but the turnover time of the GABA pool was 284% of controls, and the size of that pool increased to 208% of controls. By contrast, in cortex, where seizure activity is limited in this model, the rate of GABA synthesis increased to 230% of controls while pool size and turnover time did not change. Aspartate concentration decreased in all three brain regions. These data suggest that the observed reduction of the rate of GABA synthesis in substantia nigra could play a key role in seizure spread in this model of status epilepticus.Special Issue dedicated to Claude Baxter.  相似文献   

6.
Repeated (once a day for 8 days) but not single administration of estradiol benzoate (10 micrograms/kg, s.c.) induced a sevenfold increase in anterior pituitary gamma-aminobutyric acid (GABA) concentration in male rats. GABA concentration also increased in the median eminence whereas no changes or decreases were observed in other brain regions including hypothalamic arcuate nucleus, lateral septum, hippocampus, caudate nucleus, and substantia nigra. Eight-day estradiol benzoate injection also enhanced the Vmax of median eminence glutamate decarboxylase activity without affecting the Km of the enzyme for glutamic acid. Taken together, these results suggest that repeated administration of estradiol benzoate increases the activity of the tubero-infundibular GABAergic system in male rats.  相似文献   

7.
8.
Heme oxygenase-1 (HO-1) is a stress protein expressed in various pathological conditions associated with oxidative stress. Brain HO-1 expression and activity in response to LPS treatment showed regional variability with the highest levels in the substantia nigra (SN) and hippocampus. HO-1 induction by LPS was redox-sensitive and associated with increased levels of NO synthase and arginase, two proteins involved in the regulation of cellular redox state. Brain HO-2 and HO-3 expression, studied by quantitative RT-PCR, did not show significant changes. Our data suggest an interaction between NO and the HO system in the brain after LPS treatment. As SN and hippocampus are involved in Parkinson's and Alzheimer's diseases, understanding interaction of these proteins in the brain will help to elucidate the mechanisms involved in neurodegeneration.  相似文献   

9.
Polychlorinated biphenyls (PCBs) exposure produces neurodegeneration and induces oxidative stress. Neuroprotective role of quercetin, on PCBs induced apoptosis in hippocampus has not yet been studied. The present study is focused to see whether quercetin supplementation precludes against PCBs induced oxidative stress and hippocampal apoptosis. The results have shown that quercetin at 50 mg/kg bwt/30 days has protected oxidative stress in hippocampus of adult male rats. Quercetin, a free radical scavenger decreased the levels of oxidative stress markers in the hippocampus of simultaneous PCB+quercetin treated rats. The pro-apoptotic and anti-apoptotic molecules such as Bad, Bid, Bax and Bcl2 were altered in the hippocampus of experimental animals. PCBs increased the DNA damage and induced neurodegeneration were assessed by histological studies. PCB induced ROS may be linked to increased hippocampal neuronal apoptosis. Quercetin supplementation decreased the neuronal damage and scavenged the free radicals induced by PCBs and protects PCBs induced apoptosis and oxidative stress.  相似文献   

10.
Brain-derived neurotrophic factor (BDNF) is involved in synaptic development and plasticity, and alterations in BDNF expression or signaling are implicated in drug addiction and psychiatric diseases, such as depression and schizophrenia. In this study, we administered phencyclidine to postnatal and adult rats with different time schedules, and determined the correlations between BDNF expression and the behavioral effects. Both single and repeated phencyclidine injections into adult rats induced BDNF up-regulation in the corticolimbic system and a decrease in prepulse inhibition, both of which were transient. In contrast, subchronic postnatal administration increased BDNF protein and mRNA levels in the hippocampus and entorhinal cortex, which were sustained until 8 weeks of age. In parallel, the postnatal rats treated with phencyclidine developed a persistent decrease in prepulse inhibition at the adult stage. The chronic BDNF increase appeared to contribute to the prepulse inhibition abnormality, as subchronic BDNF infusion into the hippocampus of normal rats mimicked the prepulse inhibition deficits. This study suggests that phencyclidine exposure during brain development induces sustained BDNF up-regulation in the limbic system with a biological link to sensorimotor gating deficits.  相似文献   

11.
M C Carrillo  K Kitani  S Kanai  Y Sato  G O Ivy 《Life sciences》1992,50(25):1985-1992
In a previous study we have shown that chronic administration of (-)deprenyl increases activities of superoxide dismutase (SOD) and catalase (CAT) in rat striatum (1). The present study attempted to clarify how specific the effect of deprenyl is to certain tissues and brain regions in the rat. Two mg/kg/day of deprenyl was continuously infused s.c. in young male Fischer-344 rats. On the 22nd day, rats were sacrificed and enzyme activities of SOD and CAT were determined in several different brain regions and the liver. Activities of both SOD and CAT were significantly increased in striatum and substantia nigra but not in hippocampus, cerebellum or liver. Both types of SOD (i.e. Cu Zn-SOD and Mn-SOD) were significantly increased in striatum, substantia nigra. Interestingly, in cerebral cortices of three different regions, activities also tended to increase (especially those of Mn-SOD), although the increase was not so striking as in substantia nigra and striatum. The results confirm the previous observation that (-)deprenyl can increase free radical scavenger enzyme activities in striatum and provide further evidence that this effect is selective to certain brain regions and tissue types.  相似文献   

12.
It was shown in the experiments on rats that the repeated picrotoxin administration resulted in the kindling of generalized seizures. Generalized convulsions were followed by the development of either postictal depression or explosiveness. The injection of mu-opiate agonist met-enkephalin into hippocampus of kindled rats resulted in the increase in the severity of seizure reactions which were induced by picrotoxin and also in the increase in the number of animals with postictal explosiveness. The injection of dynorphin-A-1-13 (kappa-opiate agonist) into substantia nigra reticulata induced the locomotor depression which was like one in postictal period and resulted in the decrease of picrotoxin-induced seizures severity. It was concluded that mu-opiate system of hippocampus took part in the formation of generator of pathologically enhanced excitation in the structure during kindling and the development of seizure syndrome, providing also the postictal explosiveness. Kappa-opiate system of substantia nigra plays an important role in the activation of the antiepileptic system, limitation of seizures and the development of postictal depression.  相似文献   

13.
We have previously shown that short-lasting reduction of cerebral blood flow by bilateral clamping of carotid arteries (BCCA) results in long-lasting increase in regional GABA concentration and decrease in seizure susceptibility in rats. In the present experiments, the effect of BCCA on GABA turnover and the enzymes involved in GABA synthesis and degradation were studied in rats. Regional GABA turnover was measured by means of GABA accumulation induced by the GABA-transaminase (GABA-T) inhibitor aminooxyacetic acid (AOAA). Fourteen days after BCCA, GABA turnover was significantly increased in hippocampus, substantia nigra and cortex, but not different from sham-operated controls in several other brain regions, including striatum, hypothalamus and cerebellum. The activity of glutamate decarboxylase (GAD) measured ex vivo did not show any changes in investigated structures, while the activity of GABA-T was slightly increased in hippocampus. The increased GABA turnover in some brain regions may explain our previous findings of increased GABA content in these brain regions and decreased sensitivity of BCCA treated animals to the GABAA-receptor antagonist bicuculline.  相似文献   

14.
15.
Activation of glial cells is a prevalent response to neuronal damage in brain disease and ageing, with potential neuroprotective and neurotoxic consequences. We were interested in studying the role of glial activation on dopaminergic neurons of the substantia nigra in an animal model of Parkinson's disease. Thus, we evaluated the effect of a pre-existing glial activation on the dopaminergic neuronal death induced by striatal infusion of 6-hydroxydopamine. We established a model of local glial activation by stereotaxic infusion of interleukin-1beta in the substantia nigra of adult rats. Interleukin-1beta (20 ng) induced a marked activation of astrocytes at days 2, 5 and 10, revealed by heat-shock protein 27 and glial fibrillary acid protein immunohistochemistry, but did not affect the microglial markers OX-42 and heat-shock proteins 32 or 47. Intranigral infusion of interleukin-1beta 5 days before a striatal injection of 6-hydroxydopamine significantly protected nigral dopaminergic cell bodies, but not striatal terminals from the 6-hydroxydopamine lesion. Also, in the animals pre-treated with interleukin-1beta, a significant prevention of 6-hydroxydopamine-induced reduction of adjusting steps, but not of 6-hydroxydopamine-induced amphetamine rotations, were observed. These data show the characterization of a novel model of local astroglial activation in the substantia nigra and support the hypothesis of a neuroprotective role of activated astrocytes in Parkinson's disease.  相似文献   

16.
How widespread is adult neurogenesis in mammals?   总被引:6,自引:0,他引:6  
It is now widely accepted that neurogenesis occurs in two regions of the adult mammalian brain--the hippocampus and the olfactory bulb. There is evidence for adult neurogenesis in several additional areas, including the neocortex, striatum, amygdala and substantia nigra, but this has been difficult to replicate consistently other than in the damaged brain. The discrepancies may be due to variations in the sensitivity of the methods used to detect new neurons.  相似文献   

17.
It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.  相似文献   

18.
19.
Ubiquitin is a highly conserved protein in eukaryotes, and regulates diverse cellular processes. Lys-63-linked poly-ubiquitination has been recently identified to be involved in non-proteolytic processes such as DNA repair and cytokine-mediated signal transduction. Although, the heterodimeric enzymes Ubc13 and Uev are required for ubiquitination, their expressional regulation is not known. We have analyzed changes in their expression during brain development. Northern blot analysis revealed that the expression levels of the two genes were very similar. Expression of both genes decreased gradually during the embryonic stages, then increased in the late postnatal period and was moderate in the adult. In situ hybridization analyses revealed that the expression patterns of the two genes were similar. Expression was observed in various regions in the embryonic brain but became restricted to specific regions after birth. In the adult, their expression was similar in regions such as the cerebral cortex, hippocampus, and substantia nigra, but different in the cerebellum. These results suggest that Ubc13 may be closely associated with Uev1B.  相似文献   

20.
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by cognitive decline and neurodegeneration in the hippocampus. Despite the pathological importance of the hippocampal degeneration in AD, little topographical evidence exists of impaired hippocampal connectivity in patients with AD. To investigate the anatomical connections of the hippocampus, we injected the neurotracer 1,1′-dioctadecyl-3,3,3′3,3′-tetramethyl-indocarbocyanine perchlorate (DiI) into the hippocampi of 5XFAD mice, which were used as an animal model of AD. In wild-type controls, DiI-containing cells were found in the entorhinal cortex, medial septum, locus coeruleus, dorsal raphe, substantia nigra pars compacta, and olfactory bulb. Hippocampal inputs were decreased in multiple brain regions in the 5XFAD mice compared to wild-type littermate mice. These results are the first to reveal alterations at the cellular level in hippocampal connectivity in the brains of 5XFAD mice. These results suggest that anatomical mapping of hippocampal connectivity will elucidate new pathogenic mechanisms and therapeutic targets for AD treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号