首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, core‐shell magnetic metal organic framework (MOF) microspheres were successfully synthesized by coating magnetite particles with mercaptoacetic acid and subsequent reactions with ethanol solutions of Cu(OAc)2 and benzene‐1,3,5‐tricarboxylic acid (designated as H3btc) alternately. The resulting Fe3O4@[Cu3(btc)2] possess strong magnetic responsiveness. We applied the novel nanocomposites in the enrichment of low‐concentration standard peptides, peptides in MYO and BSA tryptic digests and in human urine in combination with MALDI‐TOF MS analysis for the first time. In addition, the Cu3(btc)2 MOF shells exhibit strong affinity to peptides, thus providing a rapid and convenient approach to the concentration of low‐abundance peptides. Notably, peptides at an extremely low concentration of 10 pM could be detected by MALDI‐TOF MS after enrichment with the magnetic MOF composites. In brief, the facile synthesis and efficient enrichment process of the Fe3O4@[Cu3(btc)2] microspheres make them promising candidates for the isolation of peptides in even complex biological environments.  相似文献   

2.
In this work, we report the development of a novel enrichment protocol for peptides by using the microspheres composed of Fe3O4@nSiO2 Core and perpendicularly aligned mesoporous SiO2 shell (designated Fe3O4@nSiO2@mSiO2). The Fe3O4@nSiO2@mSiO2 microspheres possess useful magnetic responsivity which makes the process of enrichment fast and convenient. The highly ordered nanoscale pores (2 nm) and high‐surface areas of the microspheres were demonstrated to have good size‐exclusion effect for the adsorption of peptides. An increase of S/N ratio over 100 times could be achieved by using the microspheres to enrich a standard peptide, and the application of the microspheres to enrich universal peptides was performed by using myoglobin tryptic digest solution. The enrichment efficiency of re‐used Fe3O4@nSiO2@mSiO2 microspheres was also studied. Large‐scale enrichment of endogenous peptides in rat brain extract was achieved by the microspheres. Automated nano‐LC‐ESI‐MS/MS was applied to analyze the sample after enrichment, and 60 unique peptides were identified in total. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel Fe3O4@nSiO2@mSiO2 microspheres makes it a promising candidate for selectively isolation and enrichment of endogenous peptides from complex biological samples.  相似文献   

3.
A sensitive electrochemiluminescence (ECL) biosensor for cholesterol detection based on multifunctional core–shell structured microspheres (Fe3O4@SiO2–Au@mpSiO2) is reported. This microsphere consisted of a core of silica-coated magnetite nanoparticle, an active transition layer of gold nanoparticles and a mesoporous silica shell. Scanning electron microscopy was employed to observe the morphology of the nanomaterials and transmission electron microscopy was used to further confirm the subtle structure of Fe3O4@SiO2–Au@mpSiO2. The microspheres possessed a large surface area that increased enzyme loading, and an active transition layer gold nanoparticles enhanced the ECL signal. They were used to immobilize cholesterol oxidase for cholesterol detection with a high sensitivity, low detection limit and wide linear range. The linear range was from 0.83 to 2.62 mM with a detection limit of 0.28 µM (S/N = 3). Moreover, the reproducibility, stability and selectivity of the biosensor were established.  相似文献   

4.
The novel reductive graphene oxide‐based magnetic molecularly imprinted poly(ethylene‐co‐vinyl alcohol) polymers (rGO@m‐MIPs) were successfully synthesized as adsorbents for six kinds of polychlorinated biphenyls (PCBs) in fish samples. rGO@m‐MIPs was prepared by surface molecular imprinting technique. Besides, Fe3O4 nanoparticles (NPs) were employed as magnetic supporters, and rGO@Fe3O4 was in situ synthesis. Different from functional monomer and cross‐linker in traditional molecularly imprinted polymer, here, 3,4‐dichlorobenzidine was employed as dummy molecular and poly(ethylene‐co‐vinyl alcohol) was adopted as the imprinted polymers. After morphology and inner structure of the magnetic adsorbent were characterized, the adsorbent was employed for disperse solid phase extraction toward PCBs and exhibited great selectivity and high adsorption efficiency. This material was verified by determination of PCBs in fish samples combined with gas chromatography‐mass spectrometry (GC‐MS) method. According to the detection, the low detection limits (LODs) of PCBs were 0.0035–0.0070 µg l−1 and spiked recoveries ranged between 79.90 and 94.23%. The prepared adsorbent can be renewable for at least 16 times and expected to be a new material for the enrichment and determination of PCBs from contaminated fish samples. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
Selective and efficient preconcentration is indispensable for low concentration of phosphopeptides in phosphorylated protein‐related samples prior to MS‐based analysis. Herein, an on‐chip system coupled magnetic SPE with MALDI‐TOF MS was designed. A metal oxide affinity chromatography material, indium oxide, was coated on the surface of Fe3O4 magnetic nanoparticles to prepare the adsorbent, spatially confined with an applied magnetic field. The adsorbent exhibited high selectivity for phosphopeptides in tryptic digests of the mixture of β‐casein and BSA (1:1000) and the mixture of β‐casein, BSA, and ovalbumin (1:100:100). Thanking to the enrichment ability and specificity for phosphopeptides with the adsorbent, the on‐chip magnetic SPE‐MALDI‐TOF MS approach showed high sensitivity with a low detection limit of 4 fmol. In addition, the developed approach was used to analyze phosphopetides in non‐fat milk digests and human serum successfully.  相似文献   

6.
Controlling the internal microstructure and overall morphology of building blocks used to form hybrid materials is crucial for the realization of deterministically designed architectures with desirable properties. Here, integrative spray‐frozen (SF) assembly is demonstrated for forming hierarchically structured open‐porous microspheres (hpMSs) composed of Fe3O4 and reduced graphene oxide (rGO). The SF process drives the formation of a radially aligned microstructure within the sprayed colloidal droplets and also controls the overall microsphere morphology. The spherical Fe3O4/rGO hpMSs contain interconnected open pores, which, when used as a lithium‐ion battery anode, enables them to provide gravimetric and volumetric capacities of 1069.7 mAh g?1 and 686.7 mAh cm?3, much greater than those of samples with similar composition and different morphologies. The hpMSs have good rate and cycling performance, retaining 78.5% capacity from 100 to 1000 mA g?1 and 74.6% capacity over 300 cycles. Using in situ synchrotron X‐ray absorption spectroscopy, the reaction pathway and phase evolution of the hpMSs are monitored enabling observation of the very small domain size and highly disordered nature of FexOy. The reduced capacity fade relative to other conversion systems is due to the good electrical contact between the pulverized FexOy particles and rGO, the overall structural integrity of the hpMSs, and the interconnected open porosity.  相似文献   

7.
A strategy has been applied to chloramphenicol (CAP) detection with chemiluminescence immunoassays (CLIA) based on cheap functionalized Fe3O4@SiO2 magnetic nanoparticles (Fe–MNPs). The strategy that bovine serum albumin (BSA) was immobilized on cheap functionalized Fe–MNPs and that the CAP molecules were then immobilized on BSA, avoided the long process of dialysis for preparation of the BSA‐CAP conjugates. The samples were detected for both methods that utilized two different kinds of functionalized Fe–MNPs (amine‐functionalized Fe3O4@SiO2 and carboxylic acid‐functionalized Fe3O4@SiO2). The sensitivities and limits of detection (LODs) of the two methods were obtained and compared based on inhibition curves. The 50% inhibition concentrations (IC50) values of the two methods were about 0.024 ng ml?1 and 0.046 ng ml?1 respectively and LODs were approximately 0.0002 ng ml?1 and 0.001 ng ml?1 respectively. These methods were much more sensitive than that of any traditional enzyme‐linked immunosorbent assay (ELISA) previously reported. Therefore, such chemiluminescence methods could be easily adapted for small molecule detection in a variety of foods using Fe–MNPs.  相似文献   

8.
Hybrid magnetic Fe3O4@SiO2-poly(ethylene oxide)-maltose (Fe3O4@SiO2-PEO-mal) nanoparticles synthesized by our group can be used as affinity adsorption carriers for direct separation of maltose binding protein-fused Hep I (MBP-Hep I) from a crude enzyme solution in a magnetic field. In this work, different PEO molecular weights for Fe3O4@SiO2-PEO-mal nanoparticles were used for characterizing of MBP-Hep I immobilization. The results showed that all four kinds of Fe3O4@SiO2-PEO-mal magnetic nanoparticles (6k, 20k, 35k and 100k for PEO) exhibited excellent adsorption capacities and the adsorption ratio increased as the PEO molecular weight increased from 6k to 100k. All four kinds of immobilized MBP-Hep I exhibited significantly improved stability at 30 °C compared with free MBP-Hep I and their half-lives were 20–50 times that of the free MBP-Hep I. Fe3O4@SiO2-PEO-mal nanoparticles with a PEO molecular weight of 100k were best able to immobilize MBP-Hep I (Fe3O4@SiO2-PEO100k-mal-MBP-Hep I). The molecular weight distribution profiles and anticoagulant activities, obtained from heparin depolymerization by free Hep I, free MBP-Hep I and Fe3O4@SiO2-PEO100k-mal-MBP-Hep I were the same. Furthermore, Fe3O4@SiO2-PEO100k-mal-MBP-Hep I exhibited reasonable reusability during enzymatic production of low molecular weight heparins (LMWHs).  相似文献   

9.
A simple and template‐free method for preparing three‐dimensional (3D) porous γ‐Fe2O3@C nanocomposite is reported using an aerosol spray pyrolysis technology. The nanocomposite contains inner‐connected nanochannels and γ‐Fe2O3 nanoparticles (5 nm) uniformly embedded in a porous carbon matrix. The size of γ‐Fe2O3 nanograins and carbon content can be controlled by the concentration of the precursor solution. The unique structure of the 3D porous γ‐Fe2O3@C nanocomposite offers a synergistic effect to alleviate stress, accommodate large volume change, prevent nanoparticles aggregation, and facilitate the transfer of electrons and electrolyte during prolonged cycling. Consequently, the nanocomposite shows high‐rate capability and long‐term cyclability when applied as an anode material for Na‐ion batteries (SIBs). Due to the simple one‐pot synthesis technique and high electrochemical performance, 3D porous γ‐Fe2O3@C nanocomposites have a great potential as anode materials for rechargeable SIBs.  相似文献   

10.
Chen H  Liu S  Li Y  Deng C  Zhang X  Yang P 《Proteomics》2011,11(5):890-897
The oleic acid‐functionalized magnetite nanoparticles (OA‐Fe3O4) with mean diameter of about 15 nm were synthesized through a low‐cost, one‐pot method and were designed as hydrophobic probes to realize the convenient, efficient and fast concentration of low‐concentration peptides followed by MALDI‐TOF‐MS analysis. The capability of OA‐Fe3O4 nanoparticles in concentration of low‐abundance peptides from simple and complex solutions were evaluated by comparing them with a sort of C8‐modified magnetic microspheres. Samples of standard peptide solution, protein digest solution and human serum were introduced in the evaluating process, and the OA‐Fe3O4 nanoparticles exhibited good surface affinity toward low‐concentration peptides  相似文献   

11.
Understanding and controlling the interaction between the polymer methyldopa (2‐amino‐3‐(3,4‐dihydroxyphenyl)‐2‐methyl‐propanoic acid) (PMDP)–γ‐Fe2O3 nanoparticles and biological fluids is important if the potential of nanoparticles (NPs) in biomedicine is to be realized. Physicochemical studies on the interactions between proteins and NPs are influenced by the surface properties of the NPs. To identify the effects of the NP surface, interactions between human serum albumin (HSA) and PMDP–γ‐Fe2O3 NPs were investigated. Here, the adsorption of HSA onto small (10–30 nm diameter) PMDP–γ‐Fe2O3 NPs was quantitatively analyzed using spectroscopic methods. The fluorescence quenching data were checked for the inner‐filter effect, the main confounding factor in the observed quenching. The binding constants, Ka, were calculated at different temperatures, using a nonlinear fit to the experimental data, and the thermodynamic parameters ?H, ?S and ?G were given. The obtained thermodynamic signature suggests that hydrophobic interactions at least are present. This result indicates that the structure of the protein turns from a structureless denatured state at pH 3 into an ordered biologically active native state on addition of PMDP–γ‐Fe2O3 NPs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Hierarchical hollow NiCo2S4 microspheres with a tunable interior architecture are synthesized by a facile and cost‐effective hydrothermal method, and used as a cathode material. A three‐dimensional (3D) porous reduced graphene oxide/Fe2O3 composite (rGO/Fe2O3) with precisely controlled particle size and morphology is successfully prepared through a scalable facile approach, with well‐dispersed Fe2O3 nanoparticles decorating the surface of rGO sheets. The fixed Fe2O3 nanoparticles in graphene efficiently prevent the intermediates during the redox reaction from dissolving into the electrolyte, resulting in long cycle life. KOH activation of the rGO/Fe2O3 composite is conducted for the preparation of an activated carbon material–based hybrid to transform into a 3D porous carbon material–based hybrid. An energy storage device consisting of hollow NiCo2S4 microspheres as the positive electrode, the 3D porous rGO/Fe2O3 composite as the negative electrode, and KOH solution as the electrolyte with a maximum energy density of 61.7 W h kg?1 is achieved owing to its wide operating voltage range of 0–1.75 V and the designed 3D structure. Moreover, the device exhibits a high power density of 22 kW kg?1 and a long cycle life with 90% retention after 1000 cycles at the current density of 1 A g?1.  相似文献   

13.
In this work, for the first time, a novel C60‐functionalized magnetic silica microsphere (designated C60‐f‐MS) was synthesized by radical polymerization of C60 molecules on the surface of magnetic silica microspheres. The resulting C60‐f‐MS microsphere has magnetite core and thin C60 modified silica shell, which endow them with useful magnetic responsivity and surface affinity toward low‐concentration peptides and proteins. As a result of their excellent magnetic property, the synthesized C60‐f‐MS microspheres can be easily separated from sample solution without ultracentrifuge. The C60‐f‐MS microspheres were successfully applied to the enrichment of low‐concentration peptides in tryptic protein digest and human urine via a MALDI‐TOF MS analysis. Moreover, they were demonstrated to have enrichment efficiency for low‐concentration proteins. Due to the novel materials maintaining excellent magnetic properties and admirable adsorption, the process of enrichment and desalting is very fast (only 5 min), convenient and efficient. As it has been demonstrated in the study, newly developed fullerene‐derivatized magnetic silica materials are superior to those already available in the market. The facile and low‐cost synthesis as well as the convenient and efficient enrichment process of the novel C60‐f‐MS microspheres makes it a promising candidate for isolation of low‐concentration peptides and proteins even in complex biological samples such as serum, plasma, and urine or cell lysate.  相似文献   

14.
Metal oxides, such as Fe3O4, hold promise for future battery applications due to their abundance, low cost, and opportunity for high lithium storage capacity. In order to better understand the mechanisms of multiple‐electron transfer reactions leading to high capacity in Fe3O4, a comprehensive investigation on local ionic transport and ordering is made by probing site occupancies of anions (O2?) and cations (Li+, Fe3+/Fe2+) using multiple synchrotron X‐ray and electron‐beam techniques, in combination with ab‐initio calculations. Results from this study provide the first experimental evidence that the cubic‐close‐packed (ccp) O‐anion array in Fe3O4 is sustained throughout the lithiation and delithiation processes, thereby enabling multiple lithium intercalation and conversion reactions. Cation displacement/reordering occurs within the ccp O‐anion framework, which leads to a series of phase transformations, starting from the inverse spinel phase and turning into intermediate rock‐salt‐like phases (LixFe3O4; 0 < x < 2), then into a cation‐segregated phase (Li2O?FeO), and finally converting into metallic Fe and Li2O. Subsequent delithiation and lithiation processes involve interconversion between metallic Fe and FeO‐like phases. These results may offer new insights into the structure‐determined ionic transport and electrochemical reactions in metal oxides, and those of other compounds sharing a ccp anion framework, reminiscent of magnetite.  相似文献   

15.
Analysis of protein glycosylation remains a significant challenge due to the low abundance of glycoproteins or N‐glycopeptides. Here we have synthesized an amino‐functionalized metal‐organic framework (MOF) MIL‐101(Cr)‐NH2 whose surface is grafted with a hydrophilic dendrimer poly(amidoamine) (PAMAM) for N‐glycopeptide enrichment based on the hydrophilic interactions. The selected substrate MOF MIL‐101(Cr) owns high surface area which provides nice support for peptide adsorption. In addition, the MOF displayed a good hydrophilic property after being modified with amino groups. Most importantly, the grafted hydrophilic dendrimer PAMAM was firstly applied in the postsynthetic modification of MOFs. And this functionalization route using macromolecular dendrimer opens a new perspective in MOFs design. Owing to its long dendritic chains and abundant amino groups, our material displayed dual hydrophilic property. In the enrichment of standard glycoprotein HRP digestion, the functional MOF material was shown to have low detection limit (1 fmol/μL) and good selectivity when the concentration of nonglycopeptides was 100 fold higher than the target N‐glycopeptides. All the results proved that MIL‐101(Cr)‐NH2@PAMAM has great potential in the glycoproteome analysis.  相似文献   

16.
MS was used to characterize the 24 kDa human growth hormone (hGH) glycoprotein isoform and determine the locus of O‐linked oligosaccharide attachment, the oligosaccharide branching topology, and the monosaccharide sequence. MALDI‐TOF/MS and ESI‐MS/MS analyses of glycosylated 24 kDa hGH tryptic peptides showed that this hGH isoform is a product of the hGH normal gene. Analysis of the glycoprotein hydrolysate by high‐performance anion‐exchange chromatography with pulsed amperometric detection and HPLC with fluorescent detection for N‐acetyl neuraminic acid (NeuAc) yielded the oligosaccharide composition (NeuAc2, N‐acetyl galactosamine1, Gal1). After β‐elimination to release the oligosaccharide from glycosylated 24 kDa hGH, collision‐induced dissociation of tryptic glycopeptide T6 indicated that there had been an O‐linked oligosaccharide attached to Thr‐60. The sequence and branching structure of the oligosaccharide were determined by ESI‐MS/MS analysis of tryptic glycopeptide T6. The mucin‐like O‐oligosaccharide sequence linked to Thr‐60 begins with N‐acetyl galactosamine and branches in a bifurcated topology with one appendage consisting of galactose followed by NeuAc and the other consisting of a single NeuAc. The oligosaccharide moiety lies in the high‐affinity binding site 1 structural epitope of hGH that interfaces with both the growth hormone and the prolactin receptors and is predicted to sterically affect receptor interactions and alter the biological actions of hGH.  相似文献   

17.
8‐Amino‐5‐chloro‐7‐phenylpyrido[3,4‐d]pyridazine‐1,4(2H,3H)dione (L‐012) was recently synthesized as a new chemiluminescence (CL) probe; the light intensity and the sensitivity of L‐012 are higher than those of other CL probes such as luminol. Previously, our group developed four lophine‐based CL enhancers of the horseradish peroxidase (HRP)‐catalyzed CL oxidation of luminol, namely 2‐(4‐hydroxyphenyl)‐4,5‐diphenylimidazole (HDI), 2‐(4‐hydroxyphenyl)‐4,5‐di(2‐pyridyl)imidazole (HPI), 4‐(4,5‐diphenyl‐1H‐imidazol‐2‐yl)phenylboronic acid (DPA), and 4‐[4,5‐di(2‐pyridyl)‐1H‐imidazol‐2‐yl]phenylboronic acid (DPPA), and showed that DPPA was suitable for the photographic detection of HRP. In this study, we replaced luminol with L‐012 and evaluated these as L‐012‐dependent CL enhancers. In addition, to detect HRP and/or H2O2 with higher sensitivity, each detection condition for the L‐012–HRP–H2O2 enhanced CL was optimized. All the derivatives enhanced the L‐012‐dependent CL as well as luminol CL; HPI generated the highest enhanced luminescence. Under optimized conditions for HRP detection, the detection limit of HRP was 0.08 fmol. By contrast, the detection limit of HRP with the enhanced L‐012‐dependent CL using 4‐iodophenol, which is a common enhancer of luminol CL, was 1.1 fmol. With regard to H2O2 detection, the detection limits for enhanced CL with HPI and 4‐iodophenol were 0.29 and 1.5 pmol, respectively. Therefore, it is demonstrated that HPI is the most superior L‐012‐dependent CL enhancer. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
The polymerization of proteins can create newly active and large bio‐macromolecular assemblies that exhibit unique functionalities depending on the properties of the building block proteins and the protein units in polymers. Herein, the first enzymatic polymerization of horseradish peroxidase (HRP) is reported. Recombinant HRPs fused with a tyrosine‐tag (Y‐tag) through a flexible linker at the N‐ and/or Ctermini are expressed in silkworm, Bombyx mori. Trametes sp. laccase (TL) is used to activate the tyrosine of Y‐tagged HRPs with molecular O2 to form a tyrosyl‐free radical, which initiates the tyrosine coupling reaction between the HRP units. A covalent dityrosine linkage is also formed through a HRP‐catalyzed self‐crosslinking reaction in the presence of H2O2. The addition of H2O2 in the self‐polymerization of Y‐tagged HRPs results in lower activity of the HRP polymers, whereas TL provides site‐selectivity, mild reaction conditions and maintains the activity of the polymeric products. The cocrosslinking of Y‐tagged HRPs and HRP‐protein G (Y‐HRP‐pG) units catalyzed by TL shows a higher signal in enzyme‐linked immunosorbent assay (ELISA) than the genetically pG‐fused HRP, Y‐HRP‐pG, and its polymers. This new enzymatic polymerization of HRP promises to provide highly active and functionalized polymers for biomedical applications and diagnostics probes.  相似文献   

19.
The MALDI‐TOF MS has already been a main platform for phosphoproteome analysis. However, there are some weaknesses in direct analysis of endogenous phosphopeptides by MALDI‐TOF MS because of the serious suppression effect and poor ionization efficiency, which is brought by the excess of nonphosphopeptides and protein. It is essential to enrich endogenous phosphopeptides from complex biosamples efficiently prior to MALDI‐TOF MS analysis. Herein, we present a time‐saving and detailed protocol for the synthesis of titanium(iv)‐immobilized magnetic mesoporous silica nanoparticles (denoted as Fe3O4@mSiO2‐Ti4+), the subsequent enrichment process, and MALDI‐TOF MS analysis. We tested the LOD, size‐exclusive effect, reproducibility, and stability of Fe3O4@mSiO2‐Ti4+ nanoparticles. Furthermore, the ability of this protocol for identifying endogenous phosphopeptides in healthy human serum and saliva was investigated.  相似文献   

20.
Aqueous rechargeable Ni‐Fe batteries featuring an ultra‐flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber‐shaped Ni‐Fe batteries will enable textile‐based energy supply for wearable electronics. However, the development of fiber‐shaped Ni‐Fe batteries is currently challenged by the performance of fibrous Fe‐based anode materials. In this context, this study describes the fabrication of sulfur‐doped Fe2O3 nanowire arrays (S‐Fe2O3 NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S‐Fe2O3 NWAs/CNTF). Encouragingly, first‐principle calculations reveal that S‐doping in Fe2O3 can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S‐Fe2O3 NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm?2 at 4 mA cm?2. This value is almost sixfold higher than that of the pristine Fe2O3 NWAs/CNTF electrode. When a cathode containing zinc‐nickel‐cobalt oxide (ZNCO)@Ni(OH)2 NWAs heterostructures is used, 0.46 mAh cm?2 capacity and 67.32 mWh cm?3 energy density are obtained for quasi‐solid‐state fiber‐shaped NiCo‐Fe batteries, which outperform most state‐of‐the‐art fiber‐shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high‐performance Fe‐based anodes and may inspire new development for the next‐generation wearable Ni‐Fe batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号