首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small archeal modifier proteins (SAMPs) are related to ubiquitin in tertiary structure and in their isopeptide linkage to substrate proteins. SAMPs also function in sulfur mobilization to form biomolecules such as molybdopterin and thiolated tRNA. While SAMP1 is essential for anaerobic growth and covalently attached to lysine residues of its molybdopterin synthase partner MoaE (K240 and K247), the full diversity of proteins modified by samp1ylation is not known. Here, we expand the knowledge of proteins isopeptide linked to SAMP1. LC‐MS/MS analysis of ‐Gly‐Gly signatures derived from SAMP1 S85R conjugates cleaved with trypsin was used to detect sites of sampylation (23 lysine residues) that mapped to 11 target proteins. Many of the identified target proteins were associated with sulfur metabolism and oxidative stress including MoaE, SAMP‐activating E1 enzyme (UbaA), methionine sulfoxide reductase homologs (MsrA and MsrB), and the Fe‐S assembly protein SufB. Several proteins were found to have multiple sites of samp1ylation, and the isopeptide linkage at SAMP3 lysines (K18, K55, and K62) revealed hetero‐SAMP chain topologies. Follow‐up affinity purification of selected protein targets (UbaA and MoaE) confirmed the LC‐MS/MS results. 3D homology modeling suggested sampy1ylation is autoregulatory in inhibiting the activity of its protein partners (UbaA and MoaE), while occurring on the surface of some protein targets, such as SufB and MsrA/B. Overall, we provide evidence that SAMP1 is a ubiquitin‐like protein modifier that is relatively specific in tagging its protein partners as well as proteins associated with oxidative stress response.  相似文献   

2.
Ubiquitination refers to the covalent addition of ubiquitin (Ub) to substrate proteins or other Ub molecules via the sequential action of three enzymes (E1, E2, and E3). Recent advances in mass spectrometry proteomics have made it possible to identify and quantify Ub linkages in biochemical and cellular systems. We used these tools to probe the mechanisms controlling linkage specificity for UbcH5A. UbcH5A is a promiscuous E2 enzyme with an innate preference for forming polyubiquitin chains through lysine 11 (K11), lysine 48 (K48), and lysine 63 (K63) of Ub. We present the crystal structure of a noncovalent complex between Ub and UbcH5A. This structure reveals an interaction between the Ub surface flanking K11 and residues adjacent to the E2 catalytic cysteine and suggests a possible role for this surface in formation of K11 linkages. Structure-guided mutagenesis, in vitro ubiquitination and quantitative mass spectrometry have been used to characterize the ability of residues in the vicinity of the E2 active site to direct synthesis of K11- and K63-linked polyubiquitin. Mutation of critical residues in the interface modulated the linkage specificity of UbcH5A, resulting in generation of more K63-linked chains at the expense of K11-linkage synthesis. This study provides direct evidence that the linkage specificity of E2 enzymes may be altered through active-site mutagenesis.  相似文献   

3.
The ubiquitination of NEMO with linear ubiquitin chains by the E3-ligase LUBAC is important for the activation of the canonical NF-κB pathway. NEMO ubiquitination requires a dual target specificity of LUBAC, priming on a lysine on NEMO and chain elongation on the N terminus of the priming ubiquitin. Here we explore the minimal requirements for these specificities. Effective linear chain formation requires a precise positioning of the ubiquitin N-terminal amine in a negatively charged environment on the top of ubiquitin. Whereas the RBR-LDD region on HOIP is sufficient for targeting the ubiquitin N terminus, the priming lysine modification on NEMO requires catalysis by the RBR domain of HOIL-1L as well as the catalytic machinery of the RBR-LDD domains of HOIP. Consequently, target specificity toward NEMO is determined by multiple LUBAC components, whereas linear ubiquitin chain elongation is realized by a specific interplay between HOIP and ubiquitin.  相似文献   

4.
5.
The ubiquitin-proteasome pathway plays a crucial role in many cellular processes by degrading substrates tagged by polyubiquitin chains, linked mostly through lysine 48 of ubiquitin. Although polymerization of ubiquitin via its six other lysine residues exists in vivo as part of various physiological pathways, the molecular mechanisms that determine the type of polyubiquitin chains remained largely unknown. We undertook a systematic, in vitro, approach to evaluate the role of E2 enzymes in determining the topology of polyubiquitin. Because this study was performed in the absence of an E3 enzyme, our data indicate that the E2 enzymes are capable of directing the ubiquitination process to distinct subsets of ubiquitin lysines, depending on the specific E2 utilized. Moreover, our findings are in complete agreement with prior analyses of lysine preference assigned to certain E2s in the context of E3 (in vitro and in vivo). Finally, our findings support the rising notion that the functional unit of E2 is a dimer. To our knowledge, this is the first systematic indication for the involvement of E2 enzymes in specifying polyubiquitin chain assembly.  相似文献   

6.
The BRCA1 tumor suppressor forms a heterodimer with the BARD1 protein, and the resulting complex functions as an E3 ubiquitin ligase that catalyzes the synthesis of polyubiquitin chains. In theory, polyubiquitination can occur by isopeptide bond formation at any of the seven lysine residues of ubiquitin. The isopeptide linkage of a polyubiquitin chain is a particularly important determinant of its cellular function, such that K48-linked chains commonly target proteins for proteasomal degradation, while K63 chains serve non-proteolytic roles in various signaling pathways. To determine the isopeptide linkage formed by BRCA1/BARD1-dependent polyubiquitination, we purified a full-length heterodimeric complex and compared its linkage specificity with that of E6-AP, an E3 ligase known to induce proteolysis of its cellular substrates. Using a comprehensive mutation analysis, we found that E6-AP catalyzes the synthesis of K48-linked polyubiquitin chains. In contrast, however, the BRCA1/BARD1 heterodimer directs polymerization of ubiquitin primarily through an unconventional linkage involving lysine residue K6. Although heterologous substrates of BRCA1/BARD1 are not known, BRCA1 autoubiquitination occurs principally by conjugation with K6-linked polymers. The ability of BRCA1/BARD1 to form K6-linked polyubiquitin chains suggests that it may impart unique cellular properties to its natural enzymatic substrates.  相似文献   

7.
The eight different types of ubiquitin (Ub) chains that can be formed play important roles in diverse cellular processes. Linkage‐selective recognition of Ub chains by Ub‐binding domain (UBD)‐containing proteins is central to coupling different Ub signals to specific cellular responses. The motif interacting with ubiquitin (MIU) is a small UBD that has been characterized for its binding to monoUb. The recently discovered deubiquitinase MINDY‐1/FAM63A contains a tandem MIU repeat (tMIU) that is highly selective at binding to K48‐linked polyUb. We here identify that this linkage‐selective binding is mediated by a single MIU motif (MIU2) in MINDY‐1. The crystal structure of MIU2 in complex with K48‐linked polyubiquitin chains reveals that MIU2 on its own binds to all three Ub moieties in an open conformation that can only be accommodated by K48‐linked triUb. The weak Ub binder MIU1 increases overall affinity of the tMIU for polyUb chains without affecting its linkage selectivity. Our analyses reveal new concepts for linkage selectivity and polyUb recognition by UBDs.  相似文献   

8.
Unanchored polyubiquitin chains are emerging as important regulators of cellular physiology with diverse roles paralleling those of substrate‐conjugated polyubiquitin. However tools able to discriminate unanchored polyubiquitin chains of different isopeptide linkages have not been reported. We describe the design of a linker‐optimized ubiquitin‐binding domain hybrid (t‐UBD) containing two UBDs, a ZnF‐UBP domain in tandem with a linkage‐selective UBA domain, which exploits avidity effects to afford selective recognition of unanchored Lys48‐linked polyubiquitin chains. Utilizing native MS to quantitatively probe binding affinities we confirm cooperative binding of the UBDs within the synthetic protein, and desired binding specificity for Lys48‐linked ubiquitin dimers. Furthermore, MS/MS analyses indicate that the t‐UBD, when applied as an affinity enrichment reagent, can be used to favor the purification of endogenous unanchored Lys48‐linked polyubiquitin chains from mammalian cell extracts. Our study indicates that strategies for the rational design and engineering of polyubiquitin chain‐selective binding in nonbiological polymers are possible, paving the way for the generation of reagents to probe unanchored polyubiquitin chains of different linkages and more broadly the ‘ubiquitome’. All MS data have been deposited in the ProteomeXchange with identifier PXD004059 ( http://proteomecentral.proteomexchange.org/dataset/PXD004059 ).  相似文献   

9.
We describe a new class of reagents for identifying substrates, adaptors, and regulators of HECT and RING E3s. UBAITs (Ub iquitin‐A ctivated I nteraction T raps) are E3‐ubiquitin fusion proteins and, in an E1‐ and E2‐dependent manner, the C‐terminal ubiquitin moiety forms an amide linkage to proteins that interact with the E3, enabling covalent co‐purification of the E3 with partner proteins. We designed UBAITs for both HECT (Rsp5, Itch) and RING (Psh1, RNF126, RNF168) E3s. For HECT E3s, trapping of interacting proteins occurred in vitro either through an E3 thioester‐linked lariat intermediate or through an E2 thioester intermediate, and both WT and active‐site mutant UBAITs trapped known interacting proteins in yeast and human cells. Yeast Psh1 and human RNF126 and RNF168 UBAITs also trapped known interacting proteins when expressed in cells. Human RNF168 is a key mediator of ubiquitin signaling that promotes DNA double‐strand break repair. Using the RNF168 UBAIT, we identify H2AZ—a histone protein involved in DNA repair—as a new target of this E3 ligase. These results demonstrate that UBAITs represent powerful tools for profiling a wide range of ubiquitin ligases.  相似文献   

10.
Ubiquitin enzymes in the regulation of immune responses   总被引:1,自引:0,他引:1  
Ubiquitination plays a central role in the regulation of various biological functions including immune responses. Ubiquitination is induced by a cascade of enzymatic reactions by E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme, and E3 ubiquitin ligase, and reversed by deubiquitinases. Depending on the enzymes, specific linkage types of ubiquitin chains are generated or hydrolyzed. Because different linkage types of ubiquitin chains control the fate of the substrate, understanding the regulatory mechanisms of ubiquitin enzymes is central. In this review, we highlight the most recent knowledge of ubiquitination in the immune signaling cascades including the T cell and B cell signaling cascades as well as the TNF signaling cascade regulated by various ubiquitin enzymes. Furthermore, we highlight the TRIM ubiquitin ligase family as one of the examples of critical E3 ubiquitin ligases in the regulation of immune responses.  相似文献   

11.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

12.
RING (really interesting new gene) and U-box E3 ligases bridge E2 ubiquitin-conjugating enzymes and substrates to enable the transfer of ubiquitin to a lysine residue on the substrate or to one of the seven lysine residues of ubiquitin for polyubiquitin chain elongation. Different polyubiquitin chains have different functions. Lys(48)-linked chains target proteins for proteasomal degradation, and Lys(63)-linked chains function in signal transduction, endocytosis and DNA repair. For this reason, chain topology must be tightly controlled. Using the U-box E3 ligase CHIP [C-terminus of the Hsc (heat-shock cognate) 70-interacting protein] and the RING E3 ligase TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) with the E2s Ubc13 (ubiquitin-conjugating enzyme 13)-Uev1a (ubiquitin E2 variant 1a) and UbcH5a, in the present study we demonstrate that Ubc13-Uev1a supports the formation of free Lys(63)-linked polyubiquitin chains not attached to CHIP or TRAF6, whereas UbcH5a catalyses the formation of polyubiquitin chains linked to CHIP and TRAF6 that lack specificity for any lysine residue of ubiquitin. Therefore the abilities of these E2s to ubiquitinate a substrate and to elongate polyubiquitin chains of a specific topology appear to be mutually exclusive. Thus two different classes of E2 may be required to attach a polyubiquitin chain of a particular topology to a substrate: the properties of one E2 are designed to mono-ubiquitinate a substrate with no or little inherent specificity for an acceptor lysine residue, whereas the properties of the second E2 are tailored to the elongation of a polyubiquitin chain using a defined lysine residue of ubiquitin.  相似文献   

13.
Wickliffe KE  Lorenz S  Wemmer DE  Kuriyan J  Rape M 《Cell》2011,144(5):769-781
Ubiquitin chains of different topologies trigger distinct functional consequences, including protein degradation and reorganization of complexes. The assembly of most ubiquitin chains is promoted by E2s, yet how these enzymes achieve linkage specificity is poorly understood. We have discovered that the K11-specific Ube2S orients the donor ubiquitin through an essential noncovalent interaction that occurs in addition to the thioester bond at the E2 active site. The E2-donor ubiquitin complex transiently recognizes the acceptor ubiquitin, primarily through electrostatic interactions. The recognition of the acceptor ubiquitin surface around Lys11, but not around other lysines, generates a catalytically competent active site, which is composed of residues of both Ube2S and ubiquitin. Our studies suggest that monomeric E2s promote linkage-specific ubiquitin chain formation through substrate-assisted catalysis.  相似文献   

14.
Cav1.2 is the pore‐forming subunit of L‐type voltage‐gated calcium channel (LTCC) that plays an important role in calcium overload and cell death in Alzheimer's disease. LTCC activity can be regulated by estrogen, a sex steroid hormone that is neuroprotective. Here, we investigated the potential mechanisms in estrogen‐mediated regulation of Cav1.2 protein. We found that in cultured primary neurons, 17β‐estradiol (E2) reduced Cav1.2 protein through estrogen receptor α (ERα). This effect was offset by a proteasomal inhibitor MG132, indicating that ubiquitin–proteasome system was involved. Consistently, the ubiquitin (UB) mutant at lysine 29 (K29R) or the K29‐deubiquitinating enzyme TRAF‐binding protein domain (TRABID) attenuated the effect of ERα on Cav1.2. We further identified that the E3 ligase Mdm2 (double minute 2 protein) and the PEST sequence in Cav1.2 protein played a role, as Mdm2 overexpression and the membrane‐permeable PEST peptides prevented ERα‐mediated Cav1.2 reduction, and Mdm2 overexpression led to the reduced Cav1.2 protein and the increased colocalization of Cav1.2 with ubiquitin in cortical neurons in vivo. In ovariectomized (OVX) APP/PS1 mice, administration of ERα agonist PPT reduced cerebral Cav1.2 protein, increased Cav1.2 ubiquitination, and improved cognitive performances. Taken together, ERα‐induced Cav1.2 degradation involved K29‐linked UB chains and the E3 ligase Mdm2, which might play a role in cognitive improvement in OVX APP/PS1 mice.  相似文献   

15.
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.  相似文献   

16.
At least eight types of ubiquitin chain exist, and individual linkages affect distinct cellular processes. The only distinguishing feature of differently linked ubiquitin chains is their structure, as polymers of the same unit are chemically identical. Here, we have crystallized Lys 63‐linked and linear ubiquitin dimers, revealing that both adopt equivalent open conformations, forming no contacts between ubiquitin molecules and thereby differing significantly from Lys 48‐linked ubiquitin chains. We also examined the specificity of various deubiquitinases (DUBs) and ubiquitin‐binding domains (UBDs). All analysed DUBs, except CYLD, cleave linear chains less efficiently compared with other chain types, or not at all. Likewise, UBDs can show chain specificity, and are able to select distinct linkages from a ubiquitin chain mixture. We found that the UBAN (ubiquitin binding in ABIN and NEMO) motif of NEMO (NF‐κB essential modifier) binds to linear chains exclusively, whereas the NZF (Npl4 zinc finger) domain of TAB2 (TAK1 binding protein 2) is Lys 63 specific. Our results highlight remarkable specificity determinants within the ubiquitin system.  相似文献   

17.
Cellular adaptation to proteotoxic stress at the endoplasmic reticulum (ER) depends on Lys48‐linked polyubiquitination by ER‐associated ubiquitin ligases (E3s) and subsequent elimination of ubiquitinated retrotranslocation products by the proteasome. The ER‐associated E3 gp78 ubiquitinates misfolded proteins by transferring preformed Lys48‐linked ubiquitin chains from the cognate E2 Ube2g2 to substrates. Here we demonstrate that Ube2g2 synthesizes linkage specific ubiquitin chains by forming an unprecedented homodimer: The dimerization of Ube2g2, mediated primarily by electrostatic interactions between two Ube2g2s, is also facilitated by the charged ubiquitin molecules. Mutagenesis studies show that Ube2g2 dimerization is required for ER‐associated degradation (ERAD). In addition to E2 dimerization, we show that a highly conserved arginine residue in the donor Ube2g2 senses the presence of an aspartate in the acceptor ubiquitin to position only Lys48 of ubiquitin in proximity to the donor E2 active site. These results reveal an unanticipated mode of E2 self‐association that allows the E2 to effectively engage two ubiquitins to specifically synthesize Lys48‐linked ubiquitin chains.  相似文献   

18.
Ubiquitin-conjugating enzymes (E2s) have a dominant role in determining which of the seven lysine residues of ubiquitin is used for polyubiquitination. Here we show that tethering of a substrate to an E2 enzyme in the absence of an E3 ubiquitin ligase is sufficient to promote its ubiquitination, whereas the type of the ubiquitin conjugates and the identity of the target lysine on the substrate are promiscuous. In contrast, when an E3 enzyme is introduced, a clear decision between mono- and polyubiquitination is made, and the conjugation type as well as the identity of the target lysine residue on the substrate becomes highly specific. These features of the E3 can be further regulated by auxiliary factors as exemplified by MDMX (Murine Double Minute X). In fact, we show that this interactor reconfigures MDM2-dependent ubiquitination of p53. Based on several model systems, we propose that although interaction with an E2 is sufficient to promote substrate ubiquitination the E3 molds the reaction into a specific, physiologically relevant protein modification.  相似文献   

19.
The downregulation of cell surface receptors by endocytosis is a fundamental requirement for the termination of signalling responses and ubiquitination is a critical regulatory step in receptor regulation. The K5 gene product of Kaposi's sarcoma‐associated herpesvirus is an E3 ligase that ubiquitinates and downregulates several cell surface immunoreceptors, including major histocompatibility complex (MHC) class I molecules. Here, we show that K5 targets the membrane proximal lysine of MHC I for conjugation with mixed linkage polyubiquitin chains. Quantitative mass spectrometry revealed an increase in lysine‐11, as well as lysine‐63, linked polyubiquitin chains on MHC I in K5‐expressing cells. Using a combination of mutant ubiquitins and MHC I molecules expressing a single cytosolic lysine residue, we confirm a functional role for lysines‐11 and ‐63 in K5‐mediated MHC I endocytosis. We show that lysine‐11 linkages are important for receptor endocytosis, and that complex mixed linkage polyubiquitin chains are generated in vivo.  相似文献   

20.
Polyubiquitination can mediate several different biochemical functions, determined in part by which lysine of ubiquitin is used to link the polyubiquitin chain. Among the HECT domain ubiquitin ligases, some, such as human E6AP, preferentially catalyze the formation of K48-linked polyubiquitin chains, while others, including Saccharomyces cerevisiae Rsp5 and human Itch, preferentially catalyze the formation of K63-linked chains. The features of HECT E3s that determine their chain type specificities have not been identified. We show here that chain type specificity is a function solely of the Rsp5 HECT domain, that the identity of the cooperating E2 protein does not influence the chain type specificity, that single chains produced by Rsp5 contain between 12 and 30 ubiquitin moieties, and that the determinants of chain type specificity are located within the last 60 amino acids of the C lobe of the HECT domain. Our results are also consistent with a simple sequential-addition mechanism for polyubiquitination by Rsp5, rather than a mechanism involving the formation of either E2- or E3-linked polyubiquitin chain transfers.Ubiquitin can be covalently conjugated to proteins in several ways (20). Ubiquitin is sometimes conjugated via an isopeptide bond to a single lysine residue of a target protein and in other cases to multiple lysines. Less commonly, it is conjugated to the terminal amino group of a target (11) or even to cysteine side chains via a thioester bond (6). In all of these cases, a single ubiquitin might be conjugated at a given site (monoubiquitination), or multiple ubiquitins can be linked via one of the seven lysine residues of ubiquitin to form shorter oligoubiquitin chains (2- to 4-ubiquitin moieties) or longer polyubiquitin chains (>4-ubiquitin moieties). The chains might also be branched or linear, and if linear, either homogeneous or heterogeneous with respect to linkages (25). There are only a few cases for which we have a mechanistic understanding of how the enzymes of the ubiquitin system direct the generation of these distinct ubiquitin modifications. This is an important problem, because the different modes of ubiquitin conjugation have the potential to signal different biochemical fates. For example, lysine 29 (K29)- and K48-linked polyubiquitin chains are associated with proteasomal degradation, while K63-linked polyubiquitin chains have nonproteasomal functions in various signaling and trafficking pathways (4). All seven internal lysines of ubiquitin have been shown to be used for chain formation in vivo (34). The specific functions of some linkage types are uncharacterized, and there is the potential that some of these might mediate yet-to-be-discovered functions of polyubiquitin.For polyubiquitination reactions that involve RING and RING-like U-box ubiquitin ligases, the type of polyubiquitin chains formed appears to be directed primarily by the cooperating E2 enzyme. This is presumably because the E3 is functioning primarily as a docking protein, with the chemistry of ubiquitination occurring between the E2 and the substrate protein. The best-characterized examples of this are reactions that involve Ubc13 and Mms2. Mms2 is a catalytically inactive E2-like enzyme that binds ubiquitin noncovalently and dimerizes with ubiquitin-charged Ubc13. The orientation of the Mms2-bound ubiquitin molecule allows only K63 to approach the Ubc13 ubiquitin-thioester bond, so that this combination of E2s promotes only K63-linked polyubiquitin chains (49). The Ubc13/Mms2-competent RING E3s include Rad5 (46, 47), Shprh (48), Chfr (5), and TRAF6 (12). Similar steric considerations, at the level of the E2∼ubiquitin complex (the thioester bond is represented by ∼), are likely to explain the chain type specificities of other E2/RING E3 combinations. The chemical environment surrounding specific lysine residues of ubiquitin might also contribute to chain type specificity by, for example, promoting deprotonation of the amino group of specific lysine side chains.In contrast to RING E3s, HECT domain E3s directly catalyze protein ubiquitination. Ubiquitin-charged E2 enzymes transfer ubiquitin to the active-site cysteine within the HECT domain in a transthiolation reaction, preserving the high-energy ubiquitin thioester bond (40). Substrate ubiquitination then occurs by nucleophilic attack of the E3-ubiquitin thioester bond by a lysine side chain of the target protein, although the mechanism of polyubiquitination, as discussed below, has been unclear. The HECT domain is approximately 350 amino acids in length and is always found at the carboxyl-terminal end of HECT E3 proteins. Structural information is available for the HECT domains of human E6AP/Ube3A (19), WWP1 (50), Smurf2 (33), and Nedd4L1 (PDB 2ONI). All have an amino-terminal lobe (N lobe) of about 250 amino acids that contains the E2 binding site, and the structure of the E6AP/UbcH7 complex and detailed mutagenesis revealed the key determinants of E2/E3 interaction (13, 14, 19). All E2s that are known to function with HECT E3s belong to the group most similar to human UbcH7 and yeast Ubc4 and Ubc5. These E2s have a conserved phenylalanine residue in the loop between β3 and β4 strands (F63 in UbcH7) that is critical for the E2-HECT domain interaction. The carboxyl-terminal lobe (C lobe) of the HECT domain, consisting of about 100 amino acids, contains the active-site cysteine. The N and C lobes are connected by a short unstructured linker of 4 residues, and the differing orientations of the N and C lobes in the four HECT structures, together with mutagenesis of the WWP1 linker (50), strongly suggest that flexibility around the linker sequence is critical for protein ubiquitination. The flexibility is likely to be required to juxtapose the E2 and E3 active-site cysteines, which were separated by approximately 40 Å in the E6AP-UbcH7 structure, for the transthiolation reaction (19). The flexibility around the linker might also be required for the ability of the E3∼ubiquitin complex to search three-dimensional space for accessible lysine residues on the target protein or on a polyubiquitin chain.The simplest model for polyubiquitination by HECT E3s is that it is a processive reaction in which single ubiquitin molecules are added sequentially to the distal end of a substrate-linked chain during the course of a single round of substrate binding. Alternative models have been proposed (17), most notably the “indexation” model, in which a thioester-linked polyubiquitin chain is built on the E3 active-site cysteine and then the chain is transferred in bulk to the substrate (50). While indirect results supporting this model have been reported (53), the most obvious prediction of the model is that a thioester-linked chain on the E3 should be detectable, and this has not been reported or, to our knowledge, observed. An alternative “seesaw” model has also been suggested, in which multiple chain transfer events occur between the E2 and E3 to build a thioester-tethered chain, which would be transferred in bulk to the substrate. Each of these models faces significant conceptual problems, and all have been difficult to prove or disprove. The results presented here provide new support for the simple sequential-addition model.Regardless of the mechanism, it is clear that different HECT E3s have specificities for the types of polyubiquitin chains that they synthesize. E6AP/Ube3A is a human HECT E3 that is hijacked by the human papillomavirus (HPV) E6 oncoprotein to target p53 for ubiquitin-mediated degradation, and disruption of expression in E6AP/Ube3A in brain neurons is the cause of Angelman syndrome (41). E6AP is highly specific for catalysis of K48-linked polyubiquitination (25, 53), consistent with the fact that p53 is targeted for proteasomal degradation in HPV E6-expressing cells. Human KIAA10 HECT E3 preferentially catalyzes both K48 and K29 linkages (52). In contrast, Saccharomyces cerevisiae Rsp5 preferentially synthesizes K63 chains in vitro and in vivo (23, 24, 38). Rsp5 contains an N-terminal C2 domain and three WW domains in the central region of the protein, and there are nine human HECT E3s that share this domain organization (21). Two of these, Nedd4-1 and Itch/AIP4, have also been shown to preferentially synthesize K63 chains in vitro (25, 44), although Itch/AIP4 was also reported to form K29 chains in vivo (7). The chain type specificity of human Huwe1/ArfBP1, whose reported substrates include p53, ARF, Mcl1, C-Myc, and N-Myc, is still unclear. It was shown to synthesize K48 chains on N-Myc (55), which was contrary to a previous report showing that Huwe1/ArfBP1 preferentially assembles K63 chains on C-Myc (1). Importantly, the chain type specificities of most HECT E3s have not been determined, and based on the few characterized examples, it is not possible to identify the sequence or structural determinants that distinguish or predict, for example, K48-specific and K63-specific E3s. The goals of the current study were to characterize the polyubiquitination reaction catalyzed by HECT E3s and to identify the determinants of HECT E3s that confer specificity for the synthesis of polyubiquitin chain types. Our results indicate that the C-terminal lobe of the HECT domain contains the critical features that determine chain type specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号