首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was initiated considering the lack of comprehensive characteristics profile of PRR4 in tears of healthy subjects. Therefore, detailed characterizations of PRR4 from basal tears employing in‐gel and in‐solution digestions for MS systems are presented herein. First, pooled tear samples (n = 10) were utilized to identify PRR4‐rich region/spots in 1DE/2DE gels employing LC‐MALDI‐MS and 1DE‐LC‐ESI‐LTQ‐Orbitrap‐MS systems. PRR4‐rich region and ten spots with vast polymorphisms (Mr: 17–30 kDa, pI: 3.0–6.6) were identified in 1DE and 2DE gels, respectively. In addition, combinations of four types of PTMs, which are methylation, acetylation, oxidation, and pyroglutamate formation, were identified in these ten PRR4 spots. Furthermore, a targeted data‐acquisition approach was utilized to identify PRR4 isoforms in individual tear samples (n = 61) by in‐solution digestion combined with a LC‐ESI‐LTQ‐Orbitrap‐MS system. Importantly, a new PRR4 isoform designated as PRR4‐N3 in addition to PRR4 (gi154448886) and pHL E1F1 (gi1050983) was identified. Moreover, different combinations of these three PRR4 isoforms identified in the individual tear samples could be categorized into six distinguished groups. Conclusively, these findings provide fundamental insight into the complex characteristics profile of PRR4 isoforms and their PTMs in tears of healthy individuals.  相似文献   

2.
Edwardsiella ictaluri is a facultative intracellular Gram‐negative bacterium causing enteric septicemia of catfish (ESC), the most prevalent disease affecting farm‐raised channel catfish in the United States. Despite its economic importance, studies addressing high‐throughput proteomics were not possible because of lack of comprehensive protein database. Here, we report the first high‐throughput proteomics analysis of E. ictaluri using 2‐D LC ESI MS/MS and 2‐DE MALDI TOF/TOF MS. Proteins identified in this study and predicted from the whole E. ictaluri genome were clustered into functional groups using clusters of orthologous groups (COG), and their subcellular locations were predicted. Possible functional relationships among proteins were determined using pathway analysis. The total number of unique E. ictaluri proteins identified using both 2‐D LC and 2‐DE approaches was 788, of which 15.48% (122) were identified by both methods while 78.43% (618) and 6.09% (48) were unique in 2‐D LC and 2‐DE, respectively. COG groupings and subcellular localizations were quite similar between our data set and proteins predicted from the whole genome. Twelve pathways were significantly represented in our dataset (p <0.05). Results from this study provided experimental evidence for many proteins that were predicted from the E. ictaluri genome annotation, and they should accelerate future functional and comparative studies aimed at understanding virulence mechanisms of this important pathogen.  相似文献   

3.
With its predicted proteome of 1550 proteins (data set Etalon) Helicobacter pylori 26695 represents a perfect model system of medium complexity for investigating basic questions in proteomics. We analyzed urea‐solubilized proteins by 2‐DE/MS (data set 2‐DE) and by 1‐DE‐LC/MS (Supprot); proteins insoluble in 9 M urea but solubilized by SDS (Pellet); proteins precipitating in the Sephadex layer at the application side of IEF (Sephadex) by 1‐DE‐LC/MS; and proteins precipitating close to the application side within the IEF gel by LC/MS (Startline). The experimental proteomics data of H. pylori comprising 567 proteins (protein coverage: 36.6%) were stored in the Proteome Database System for Microbial Research ( http://www.mpiib‐berlin.mpg.de/2D‐PAGE/ ), which gives access to raw mass spectra (MALDI‐TOF/TOF) in T2D format, as well as to text files of peak lists. For data mining the protein mapping and comparison tool PROMPT ( http://webclu.bio.wzw.tum.de/prompt/ ) was used. The percentage of proteins with transmembrane regions, relative to all proteins detected, was 0, 0.2, 0, 0.5, 3.8 and 6.3% for 2‐DE, Supprot, Startline, Sephadex, Pellet, and Etalon, respectively. 2‐DE does not separate membrane proteins because they are insoluble in 9 M urea/70 mM DTT and 2% CHAPS. SDS solubilizes a considerable portion of the urea‐insoluble proteins and makes them accessible for separation by SDS‐PAGE and LC. The 2‐DE/MS analysis with urea‐solubilized proteins and the 1‐DE‐LC/MS analysis with the urea‐insoluble protein fraction (Pellet) are complementary procedures in the pursuit of a complete proteome analysis. Access to the PROMPT‐generated diagrams in the Proteome Database allows the mining of experimental data with respect to other functional aspects.  相似文献   

4.
The tears, a critical body fluid of the surface of the eye, contain an unknown number of molecules including proteins/peptides, lipids, small molecule metabolites, and electrolytes. There have been continued efforts for exploring the human tear proteome to develop biomarkers of disease. In this study, we used the high speed TripleTOF 5600 system as the platform to analyze the human tear proteome from healthy subjects (3 females and 1 male, average age: 36±14). We have identified 1543 proteins in the tears with less than 1% false discovery rate, which represents the largest number of human tear proteins reported to date. The data set was analyzed for gene ontology (GO) and compared with the human plasma proteome, NEIBank lacrimal gland gene dataset and NEIBank cornea gene dataset. This comprehensive tear protein list may serve as a reference list of human tear proteome for biomarker research of ocular diseases or establishment of MRM (Multiple Reaction Monitoring) assays for targeted analysis. Tear fluid is a useful and an accessible source not only for evaluating ocular surface tissues (cornea and conjunctiva), inflammation, lacrimal gland function and a number of disease conditions, such as dry eye as well as response to treatment.  相似文献   

5.
Herbivorous insects can cause severe cellular changes to plant foliage following infestations, depending on feeding behaviour. Here, a proteomic study was conducted to investigate the influence of green peach aphid (Myzus persicae Sulzer) as a polyphagous pest on the defence response of Arabidopsis thaliana (L.) Heynh after aphid colony establishment on the host plant (3 days). Analysis of about 574 protein spots on 2‐DE gels revealed 31 differentially expressed protein spots. Twenty out of these 31 differential proteins were selected for analysis by mass spectrometry. In 12 of the 20 analysed spots, we identified seven and nine proteins using MALDI‐TOF‐MS and LC‐ESI‐MS/MS, respectively. Of the analysed spots, 25% contain two proteins. Different metabolic pathways were modulated in Arabidopsis leaves according to aphid feeding: most corresponded to carbohydrate, amino acid and energy metabolism, photosynthesis, defence response and translation. This paper has established a survey of early alterations induced in the proteome of Arabidopsis by M. persicae aphids. It provides valuable insights into the complex responses of plants to biological stress, particularly for herbivorous insects with sucking feeding behaviour.  相似文献   

6.
7.
Sjögren's syndrome (SS) is an autoimmune disease that results in pathological dryness of mouth and eye. The diagnosis of SS depends on both clinical evaluation and specific antibodies. The goal of this study was to use quantitative proteomics to investigate changes in tear proteins in a rabbit model of SS‐associated dry eye, induced autoimmune dacryoadenitis (IAD). Proteomic analysis was performed by iTRAQ and nano LC‐MS/MS on tears collected from the ocular surface, and specific proteins were verified by high resolution MRM. It was found that in the tears of IAD rabbits at 2 and 4 weeks after induction, S100 A6, S100 A9, and serum albumin were upregulated, whereas serotransferrin (TF), prolactin‐inducible protein (PIP), polymeric immunoglobulin receptor (pIgR), and Ig gamma chain C region were downregulated. High resolution MRM with mTRAQ labeling verified the changes in S100 A6, TF, PIP, and pIgR. Our results indicated significant changes of tear proteins in IAD rabbits, suggesting these proteins could potentially be used as biomarkers for the diagnosis and prognosis of dry eye. Several of these proteins were also found in the tears of non‐SS dry eye patients indicating a common basis of ocular surface pathology, however, pIgR appears to be unique to SS.  相似文献   

8.
Abstract

We compared the 2DE coupled to MALDI‐TOF‐MS and ESI‐MS/MS analysis (2DE‐MS) and the on‐line 2D nanoLC, followed by nanoESI‐MS/MS analysis (2DLC‐MS), for the separation and identification of proteins in high abundance protein‐depleted human plasma. Identification of proteins in the plasma by the two methods demonstrated that the majority of the identified protein set was unique to each method. Therefore, if a comprehensive coverage of the proteome identification is desired, it is ideal to apply both methods. The 2DE‐MS method is amenable to protein spot‐based quantitation, whereas the 2DLC‐MS method may provide an advantage of the high throughput application.  相似文献   

9.
10.
Changes in leaf soluble proteome were explored in 3‐month‐old plants of metallicolous (M) and nonmetallicolous (NM) Agrostis capillaris L. populations exposed to increasing Cu concentrations (1–50 μM) to investigate molecular mechanisms underlying plant responses to Cu excess and tolerance of M plants. Plants were cultivated on perlite (CuSO4 spiked‐nutrient solution). Soluble proteins, extracted by the trichloroacetic acid/acetone procedure, were separated with 2‐DE (linear 4–7 pH gradient). Analysis of CCB‐stained gels (PDQuest) reproducibly detected 214 spots, and 64 proteins differentially expressed were identified using LC‐MS/MS. In both populations, Cu excess impacted both light‐dependent (OEE, cytochrome b6‐f complex, and chlorophyll a‐b binding protein), and ‐independent (RuBisCO) photosynthesis reactions, more intensively in NM leaves (ferredoxin‐NADP reductase and metalloprotease FTSH2). In both populations, upregulation of isocitrate dehydrogenase and cysteine/methionine synthases respectively suggested increased isocitrate oxidation and enhanced need for S‐containing amino‐acids, likely for chelation and detoxification. In NM leaves, an increasing need for energetic compounds was indicated by the stimulation of ATPases, glycolysis, pentose phosphate pathway, and Calvin cycle enzymes; impacts on protein metabolism and oxidative stress increase were respectively suggested by the rise of chaperones and redox enzymes. Overexpression of a HSP70 may be pivotal for M Cu tolerance by protecting protein metabolism. All MS data have been deposited in the ProteomeXchange with the dataset identifier PXD001930 ( http//proteomecentral.proteomexchange.org/dataset/PXD001930 ).  相似文献   

11.
Necrotrophic fungal pathogen Cochliobolus miyabeanus causes brown spot disease in rice leaves upon infection, resulting in critical rice yield loss. To better understand the rice–C. miyabeanus interaction, we employed proteomic approaches to establish differential proteomes of total and secreted proteins from the inoculated leaves. The 2DE approach after PEG‐fractionation of total proteins coupled with MS (MALDI‐TOF/TOF and nESI‐LC‐MS/MS) analyses led to identification of 49 unique proteins out of 63 differential spots. SDS‐PAGE in combination with nESI‐LC‐MS/MS shotgun approach was applied to identify secreted proteins in the leaf apoplast upon infection and resulted in cataloging of 501 unique proteins, of which 470 and 31 proteins were secreted from rice and C. miyabeanus, respectively. Proteins mapped onto metabolic pathways implied their reprogramming upon infection. The enzymes involved in Calvin cycle and glycolysis decreased in their protein abundance, whereas enzymes in the TCA cycle, amino acids, and ethylene biosynthesis increased. Differential proteomes also generated distribution of identified proteins in the intracellular and extracellular spaces, providing a better insight into defense responses of proteins in rice against C. miyabeanus. Established proteome of the rice–C. miyabeanus interaction serves not only as a good resource for the scientific community but also highlights its significance from biological aspects.  相似文献   

12.
13.
During infection by herpes simplex virus type‐1 (HSV‐1) the host cell undergoes widespread changes in gene expression and morphology in response to viral replication and release. However, relatively little is known about the specific proteome changes that occur during the early stages of HSV‐1 replication prior to the global damaging effects of virion maturation and egress. To investigate pathways that may be activated or utilised during the early stages of HSV‐1 replication, 2‐DE and LC‐MS/MS were used to identify cellular proteome changes at 6 h post infection. Comparative analysis of multiple gels representing whole cell extracts from mock‐ and HSV‐1‐infected HEp‐2 cells revealed a total of 103 protein spot changes. Of these, 63 were up‐regulated and 40 down‐regulated in response to infection. Changes in selected candidate proteins were verified by Western blot analysis and their respective cellular localisations analysed by confocal microscopy. We have identified differential regulation and modification of proteins with key roles in diverse cellular pathways, including DNA replication, chromatin remodelling, mRNA stability and the ER stress response. This work represents the first global comparative analysis of HSV‐1 infected cells and provides an important insight into host cell proteome changes during the early stages of HSV‐1 infection.  相似文献   

14.
Anorexia nervosa is an eating disorder often associated with intestinal disorders. To explore the underlying mechanisms of these disorders, the colonic proteome was evaluated during activity‐based anorexia. Female C57Bl/6 mice were randomized into three groups: Control, Limited Food Access (LFA) and Activity‐Based Anorexia (ABA). LFA and ABA mice had a progressive limited access to food but only ABA mice had access to an activity wheel. On colonic mucosal protein extracts, a 2D PAGE‐based comparative proteomic analysis was then performed and differentially expressed proteins were identified by LC‐ESI‐MS/MS. Twenty‐seven nonredundant proteins that were differentially expressed between Control, LFA, and ABA groups were identified. ABA mice exhibited alteration of several mitochondrial proteins involved in energy metabolism such as dihydrolipoyl dehydrogenase and 3‐mercaptopyruvate sulfurtransferase. In addition, a downregulation of mammalian target of rapamycin (mTOR) pathway was observed leading, on the one hand, to the inhibition of protein synthesis, evaluated by puromycin incorporation and mediated by the increased phosphorylation of eukaryotic elongation factor 2, and on the other hand, to the activation of autophagy, assessed by the increase of the marker of autophagy, form LC3‐phosphatidylethanolamine conjugate/Cytosolic form of Microtubule‐associated protein 1A/1B light chain 3 (LC3II/LC3I) ratio. Colonic mucosal proteome is altered during ABA suggesting a downregulation of energy metabolism. A decrease of protein synthesis and an activation of autophagy were also observed mediated by mTOR pathway.  相似文献   

15.
The culture filtrate proteins (CFPs) from Mycobacterium tuberculosis have been shown to induce protective immune responses in human and animal models, making them a promising source of candidate targets for tuberculosis drugs, vaccines, and diagnostics. The constituents of the M. tuberculosis CFP proteome are complex and vary with growth conditions. To effectively profile CFPs, gel‐based prefractionation is usually performed before MS analysis. In this study, we describe a novel prefractionation approach by which the proteome is divided into seven partially overlapping fractions by biomimetic affinity chromatography (BiAC) using a six‐column cascade. The LC‐MS/MS analysis of individual fractions identified a total of 541 CFPs, including 61 first‐time identifications. Notably, ~1/3 (20/61) of these novel CFPs are membrane proteins, among which nine proteins have 2–14 transmembrane domains. In addition, ~1/4 (14/61) of the CFPs are basic proteins with pI values greater than 9.0. Our data demonstrate that biomimetic affinity chromatography prefractionation markedly improves protein detection by LC‐MS/MS, and the coverage of basic and hydrophobic proteins in particular is remarkably increased.  相似文献   

16.
The aim of this study was to obtain a comprehensive overview of the phloem sap protein profile of Lupinus texensis, with a special focus on proteins binding Fe and Zn. L. texensis was chosen as model plant given the simplicity to obtain exudates from sieve elements. Protein profiling by 2DE revealed 249 spots, and 54 of them were unambiguously identified by MALDI‐MS and ESI‐MS/MS. The largest number of identified protein species belongs to protein modification/turnover and general metabolism (19–21%), followed by redox homeostasis (9%) and defense and cell structural components (7%). This protein profile is similar to that reported in other plant species, suggesting that the phloem sap proteome is quite conserved. Staining of 2DE gels for Fe‐containing proteins and affinity chromatography experiments revealed the presence of two low molecular weight Fe‐binding proteins in phloem sap: a metallothionein‐like protein type 2B identified in the Fe‐affinity chromatography, and a second protein identified with both Fe staining methods. This protein species had a molecular weight of 13.5 kDa, a pI of 5.6 and 51% homology to a phloem‐specific protein from Medicago truncatula. Zinc affinity chromatography revealed four Zn‐binding proteins in phloem sap, one belonging to the dehydrin family and three Zn finger proteins.  相似文献   

17.
Rabies is a neurotropic virus that causes a life threatening acute viral encephalitis. The complex relationship of rabies virus (RV) with the host leads to its replication and spreading toward the neural network, where viral pathogenic effects appeared as neuronal dysfunction. In order to better understand the molecular basis of this relationship, a proteomics study on baby hamster kidney cells infected with challenge virus standard strain of RV was performed. This cell line is an in vitro model for rabies infection and is commonly used for viral seed preparation. The direct effect of the virus on cellular protein machinery was investigated by 2‐DE proteome mapping of infected versus control cells followed by LC‐MS/MS identification. This analysis revealed significant changes in expression of 14 proteins, seven of these proteins were viral and the remaining were host proteins with different known functions: cytoskeletal (capping protein, vimentin), anti‐oxidative stress (superoxide dismutase), regulatory (Stathmin), and protein synthesis (P0). Despite of limited changes appeared upon rabies infection, they present a set of interesting biochemical pathways for further investigation on viral‐host interaction.  相似文献   

18.
The mouse liver microsome proteome was investigated using ion trap MS combined with three separation workflows including SDS‐PAGE followed by reverse‐phase LC of in‐gel protein digestions (519 proteins identified); 2‐D LC of protein digestion (1410 proteins); whole protein separation on mRP heat‐stable column followed by 2‐D LC of protein digestions from each fraction (3‐D LC; 3703 proteins). The higher number of proteins identified in the workflow corresponded to the lesser percentage of run‐to‐run reproducibility. Gel‐based method yielded a number of predicted membrane proteins similar to LC‐based workflows.  相似文献   

19.
20.
The Escherichia coli proteome was digested with trypsin and fractionated using SPE on a C18 SPE column. Seven fractions were collected and analyzed by CZE‐ESI‐MS/MS. The separation was performed in a 60‐cm‐long linear polyacrylamide‐coated capillary with a 0.1% v/v formic acid separation buffer. An electrokinetic sheath‐flow electrospray interface was used to couple the separation capillary with an Orbitrap‐Velos operating in higher‐energy collisional dissociation mode. Each CZE‐ESI‐MS/MS run lasted 50 min and total MS time was 350 min. A total of 23 706 peptide spectra matches, 4902 peptide IDs, and 871 protein group IDs were generated using MASCOT with false discovery rate less than 1% on the peptide level. The total mass spectrometer analysis time was less than 6 h, the sample identification rate (145 proteins/h) was more than two times higher than previous studies of the E. coli proteome, and the amount of sample consumed (<1 μg) was roughly fourfold less than previous studies. These results demonstrate that CZE is a useful tool for the bottom‐up analysis of prokaryote proteomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号