首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The myelin basic protein gene (MBP) can confer the susceptibility to multiple sclerosis, because its protein product is the main protein component of myelin of the central nervous system and a potential autoimmune antigen in the disease. A possible association of multiple sclerosis with alleles and genotypes of a microsatellite repeat (TGGA) n , located to the 5 side from the first exon of MBP in ethnic Russians (126 patients with definite multiple sclerosis and 142 healthy controls from Central Russia) was analyzed in a case–control study. Upon separation of the tetranucleotide repeat amplification products in 1.5% agarose gel, one can see two distinct bands that can be analyzed as two allele groups (A and B). The distribution of allele A and B group frequencies as well as phenotype frequency of alleles B and genotype frequency of A/A differs significantly in multiple sclerosis patients and healthy controls. Alleles A and genotype A/A are associated with multiple sclerosis. We also analyzed the association of multiple sclerosis with combined bearing of alleles and genotypes A and B of MBP and groups of alleles of the DRB1 gene of the major histocompatibility complex that correspond to serological specificities DR1-DR18. The comparison of subgroups of multiple sclerosis patients and healthy individuals, stratified according to HLA-DRB1 phenotypes, has shown a reliable increase in the phenotype frequency of allele B in healthy individuals and the genotype A/A frequency in patients, only among DR4- and DR5-positive individuals. No significant difference was found in the MBP allele and genotype distribution between multiple sclerosis patients and healthy individuals in combined groups of (DR4,DR5)-negative individuals, i.e., in the group of carriers of any phenotype except DR4 and DR5. Thus, MBP or some other nearby gene is involved in the multiple sclerosis development in Russians, predominantly (or exclusively) among DR4 and DR5 carriers. In this case, without stratification of analyzed individuals by the MBP alleles, multiple sclerosis is associated only with DR2(15), but not DR4 and DR5 alleles of DRB1. The results obtained are in favor of the genetic heterogeneity of multiple sclerosis, and suggest the possibility of epistatic interactions between the MBP and DRB1 genes.  相似文献   

2.
The author generalizes and analyzes the published data and her own findings related to the cellular and molecular mechanisms underlying a demyelinating disease, multiple sclerosis. The mechanisms of the immunopathogenic process in multiple sclerosis, the involvement of microglia and astrocytes in destruction of the myelin sheaths, and injury of oligodendrocytes are discussed. Experimental models used for examination of the processes of demyelination of the nerve tissue in vitro (tissue cultures) and in vivo (experimental allergic encephalomyelitis) are also described.  相似文献   

3.
Despite its name, minor spliceosome alterations are often involved in human disease origin. Work by Reber et al ( 2016 ) in this issue of The EMBO Journal now demonstrates a connection between minor spliceosome components and FUS/TLS, one of the major proteins aggregating in the brain of patients affected by amyotrophic lateral sclerosis (ALS). This finding has important implications as it extends the spectrum of diseases where minor spliceosome plays a role. It may also represent a new opportunity for specific therapeutic targets.  相似文献   

4.

Background  

The etiology of multiple sclerosis (MS) is at present not fully elucidated, although it is considered to result from the interaction of environmental and genetic susceptibility factors. In this work we aimed at testing the Early B-cell Factor (EBF1) gene as a functional and positional candidate risk factor for this neurological disease. Axonal damage is a hallmark for multiple sclerosis clinical disability and EBF plays an evolutionarily conserved role in the expression of proteins essential for axonal pathfinding. Failure of B-cell differentiation was found in EBF-deficient mice and involvement of B-lymphocytes in MS has been suggested from their presence in cerebrospinal fluid and lesions of patients.  相似文献   

5.
Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels of interferon-β-inducible genes with an increased expression of interleukin-10 and a milder disease course in untreated multiple sclerosis patients, whereas other studies reported an association with a poor response to treatment with interferon-β. In the present study, we found that untreated multiple sclerosis patients with an increased expression of interferon-β-inducible genes in peripheral blood mononuclear cells and interferon-β-treated multiple sclerosis patients had decreased CD4+ T-cell reactivity to the autoantigen myelin basic protein ex vivo. Interferon-β-treated multiple sclerosis patients had increased IL10 and IL27 gene expression levels in monocytes in vivo. In vitro, neutralization of interleukin-10 and monocyte depletion increased CD4+ T-cell reactivity to myelin basic protein while interleukin-10, in the presence or absence of monocytes, inhibited CD4+ T-cell reactivity to myelin basic protein. Our findings suggest that spontaneous expression of interferon-β-inducible genes in peripheral blood mononuclear cells from untreated multiple sclerosis patients and treatment with interferon-β are associated with reduced myelin basic protein-induced T-cell responses. Reduced myelin basic protein-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.  相似文献   

6.
Proinflammatory cytokines interleukin-6 (IL-6), interferon-γ (IFNg) and tumor necrosis factor (TNF) play an important role in the pathogenesis of multiple sclerosis. Based on the published data concerning the effects of the SNPs G(−308)A of TNF, A(+874)T of IFNG, and G(−174)C of IL-6 on the production of these cytokines, we investigated the relation of these polymorphisms with multiple sclerosis. Linkage and association of alleles of these genes with multiple sclerosis were analyzed by transmission disequilibrium test. In a group of 104 nuclear families of Russian ethnicity, the TNF*(−308)A allele was more frequently transmitted from healthy heterozygous parents to affected children (p = 0.01). Linkage/association of IFNG and IL-6 alleles with multiple sclerosis was not detected. Thus, the data obtained indicate that TNF is involved in susceptibility to multiple sclerosis in Russians.  相似文献   

7.
 Autoimmune diseases, such as rheumatoid arthritis, Crohn's disease, and multiple sclerosis, are regulated by multiple genes. Major histocompatibility complex (MHC) genes have the strongest effects, but non-MHC genes also contribute to disease susceptibility/severity. In this paper, we describe a new non-MHC quantitative trait locus, Cia8, on rat Chromosome (Chr) 7 that controls collagen-induced arthritis severity in F2 progeny of DA and F344 inbred rats, and present an updated localization of Cia4 on the same chromosome. We also describe the location of mouse and human genes, orthologous to the genes in the genomic intervals containing Cia4 and Cia8, and provide evidence that the segment of rat Chr 7 containing Cia4 and Cia8 is homologous to segments of mouse Chr 10 and 15 and human Chr 8, 12, and 19. Received: 1 November 1998 / Revised: 24 January 1999  相似文献   

8.
Multiple sclerosis (MS) is a chronic inflammatory disease affecting the central nervous system (CNS). Despite introducing multiple immunomodulatory approaches for MS, there are still major concerns about possible ways for improving remyelination in this disease. Microglia exert essential roles in regulation of myelination processes, and interaction between colony-stimulating factor 1 (CSF1) with its receptor CSF1R is considered as a key regulator of microglial differentiation and survival. The aim of this study was to investigate possible roles for a CSF1R inhibitor PLX3397 in recovery of central myelination processes. Chronic demyelination was induced in mice by addition of 0.2% cuprizone to the chow for 12 weeks. Next, animals were undergoing a diet containing 290 mg/kg PLX3397 to induce microglial ablation. The PLX3397 treatment caused a significant decrease in the rate of expression for the CSF1/CSF1R axis, and a reduction in the protein expressions for the microglial marker Iba-1 and for the oligodendrocyte marker Olig-2. Findings from Luxol fast blue (LFB) staining and transmission electron microscopy (TEM) showed an increase in the rate of myelination for the mice receiving PLX3397. The rate of destruction in the nerve fibers and the extent of the gaps formed between layers of myelin sheaths was also reduced after the treatment with PLX3397. In addition, animals experienced an improvement in recovery of motor deficit after receiving PLX3397 (for all P < 0.05). It could be concluded that PLX3397 could retain myelination in the MS model possibly through regulation of the myelin environment.  相似文献   

9.
In the past 5 years, around 350 patients have received haematopoietic stem cell (HSC) transplantation for an autoimmune disease, with 275 of these registered in an international data base in Basel under the auspices of the European League Against Rheumatism (EULAR) and the European Group for Blood and Marrow Transplantation(EBMT). Most patients had either a progressive form of multiple sclerosis (MS; n = 88) or scleroderma (now called systemic sclerosis; n = 55). Other diseases were rheumatoid arthritis (Ra n = 40), juvenile idiopathic arthritis (JIA; n = 30), systemic lupus erythematosus (SLE; n = 20), idiopathic thrombocytopenic purpura (ITP; n = 7) and others. The procedure-related mortality was around 9%, with between-disease differences, being higher in systemic sclerosis and JIA and lower in RA (one death only). Benefit has been seen in around two-thirds of cases. No one regimen was clearly superior to another, with a trend toward more infectious complications with more intense regimens. Prospective, controlled randomized trials are indicated and being planned.  相似文献   

10.
Abstract

Amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disease that mainly affects motor neurons. Despite intensive research efforts inspired by the mile-stone discovery linking the Cu/Zn superoxide dismutase 1 (SOD1) gene to a subset of familial cases, the mechanisms underlying disease pathogenesis are still largely unknown. Nonetheless, the recent finding of a second gene associated with familial form of the disease, ALS2, is likely to be of great help in elucidating the key pathways involved in motor neuron degeneration. Here, we provide evidence that the JNK/SAPK pathway plays a critical neuroprotective role in susceptible motor neurons in ALS. The involvement of the JNK/SAPK pathway integrates our knowledge about these two known genetic factors into a single pathogenic pathway involved in both sporadic and familial ALS.  相似文献   

11.

Background

Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.

Methods and Findings

We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident. Adaptive transfer of alternatively activated myeloid (M2) cells, which homed to the spleen and exhibited immune suppressive activity in G93A mutant superoxide dismutase-1 (mSOD1) mice at a stage before emergence of disease symptoms, resulted in earlier appearance of disease symptoms and shorter life expectancy. The same protocol mitigated the inflammation-induced disease model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), which requires circulating T cells for disease induction. Analysis of whole peripheral blood samples obtained from 28 patients suffering from sporadic ALS (sALS), revealed a two-fold increase in the percentage of circulating MDSCs (LIN−/LowHLA-DRCD33+) compared to controls.

Conclusions

Taken together, these results emphasize the distinct requirements for fighting the inflammatory neurodegenerative disease, multiple sclerosis, and the neurodegenerative disease, ALS, though both share a local inflammatory component. Moreover, the increased levels of circulating MDSCs in ALS patients indicates the operation of systemic mechanisms that might lead to an impairment of T cell reactivity needed to overcome the disease conditions within the CNS. This high level of suppressive immune cells might represent a risk factor and a novel target for therapeutic intervention in ALS at least at the early stage.  相似文献   

12.
Background:Etiology of multiple sclerosis is non-clarified. It seems that environmental factors impact epigenetic in this disease. Micro-RNAs (MIR) as epigenetic factors are one of the most important factors in non-genetically neurodegenerative diseases. It has been found MIR-144 plays a main role in the regulation of many processes in the central nervous system. Here, we aimed to investigation of MIR-144 expression alteration in Multiple sclerosis (MS) patients.Methods:In this study 32 healthy and 32 MS patient''s blood sample were analyzed by quantitative Real-Time PCR method and obtained data analyzed by REST 2009 software.Results:Analysis of Real-Time PCR data revealed that miR-144 Increase significantly in MS patients compared to healthy controls.Conclusion:The increase of MIR-144 expression in MS patients is obvious. MIR-144 can be used as a biomarker of MS and help to early diagnosis and treatment of this disease.Key Words: MicroRNA (miRNA), MiRNA-144, Multiple Sclerosis (MS)  相似文献   

13.

Background

Despite the high frequency of cognitive impairment in multiple sclerosis, its assessment has not gained entrance into clinical routine yet, due to lack of time-saving and suitable tests for patients with multiple sclerosis.

Objective

The aim of the study was to compare the paradigm of visual search with neuropsychological standard tests, in order to identify the test that discriminates best between patients with multiple sclerosis and healthy individuals concerning cognitive functions, without being susceptible to practice effects.

Methods

Patients with relapsing remitting multiple sclerosis (n = 38) and age-and gender-matched healthy individuals (n = 40) were tested with common neuropsychological tests and a computer-based visual search task, whereby a target stimulus has to be detected amongst distracting stimuli on a touch screen. Twenty-eight of the healthy individuals were re-tested in order to determine potential practice effects.

Results

Mean reaction time reflecting visual attention and movement time indicating motor execution in the visual search task discriminated best between healthy individuals and patients with multiple sclerosis, without practice effects.

Conclusions

Visual search is a promising instrument for the assessment of cognitive functions and potentially cognitive changes in patients with multiple sclerosis thanks to its good discriminatory power and insusceptibility to practice effects.  相似文献   

14.
Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system. In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome, but not all patients with this syndrome develop multiple sclerosis over time, and currently, there is no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop clinically defined multiple sclerosis. Here, we took advantage of the capabilities of targeted mass spectrometry to establish a diagnostic molecular classifier with high sensitivity and specificity able to differentiate between clinically isolated syndrome patients with a high and a low risk of developing multiple sclerosis. Based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase in cerebrospinal fluid, we built a statistical model able to assign to each patient a precise probability of conversion to clinically defined multiple sclerosis. Our results are of special relevance for patients affected by multiple sclerosis as early treatment can prevent brain damage and slow down the disease progression.Multiple sclerosis is an inflammatory, demyelinating, and neurodegenerative disease of the central nervous system, and although the etiology of the disease is not fully understood, it is probably caused by the interaction of a complex genetic architecture and environmental factors. Multiple sclerosis affects over 2 million people worldwide, and it is typically diagnosed between ages 20 and 40, thus making a significant impact on public health and its economy (1).In most patients, the disease initiates with an episode of neurological disturbance referred to as clinically isolated syndrome. However, not all patients with this syndrome develop multiple sclerosis over time (2), and currently, the magnetic resonance imaging (MRI) abnormalities and the presence of IgG oligoclonal bands in cerebrospinal fluid (CSF) are used as predictors for later conversion to clinically definite multiple sclerosis (CDMS)1 (35). Although such abnormalities are considered important factors that influence the likelihood of developing CDMS, there is currently no clinical test that can conclusively establish whether a patient with a clinically isolated syndrome will eventually develop CDMS.The lack of diagnostic and prognostic biomarkers is a common problem for many diseases lacking a complete etiology, which is the case for most neurological disorders related to the central nervous system such as Parkinson''s and Alzheimer''s diseases, schizophrenia, and multiple sclerosis. In the particular case of multiple sclerosis, early treatment of patients with a clinically isolated syndrome can prevent brain damage and slow down the disease progression (6). Therefore, the availability of a diagnostic test in the initial stages of the disease is not only desirable but also of extreme relevance to attenuate the degenerative effects of the disease.Biomarker validation has traditionally been dominated by enzyme linked immuno-sorbent assays (ELISA), but recent advances in proteomics techniques have enabled the measurement of a subset of selected proteins over a large dynamic concentration range in multiple samples. Targeted mass spectrometry has thus become the method of choice when quantifying simultaneously a panel of proteins across many different biological samples (79). In particular, selected reaction monitoring (SRM) is the gold standard targeted mass spectrometry method for protein quantification due to its high precision, reliability, and throughput (1013). This targeted mass spectrometry method is performed on triple quadrupole instruments, in which a predefined peptide precursor ion is first isolated, and then selected fragment ions arising from its collisional dissociation are measured over time. Each pair of precursor and fragment ion is called a transition, and multiple transitions can be coordinately measured and used to conclusively identify and quantify a peptide in a clinical complex sample.In a previous study, we used a screening mass spectrometric approach to discover potential markers for multiple sclerosis conversion in patients that initially presented a clinical isolated syndrome (14). In that discovery phase, quantitative mass spectrometry with iTRAQ labeling was used to measure protein abundances in pooled CSF samples from patients presenting a clinical isolated syndrome that either remained normal (CIS) or had eventually converted to clinically definite multiple sclerosis (CDMS) (n = 60). In the initial screening, several proteins exhibited significant differences in abundance when comparing these two groups of patients. The abundance change in one of the altered proteins, chitinase 3-like 1 (CH3L1), was confirmed by ELISA in CSF of individual patients, whereas for others, such as semaphorin 7A (SEM7A) and ala-β-his-dipeptidase (CNDP1), their abundance changes were confirmed by targeted mass spectrometry in follow-up studies with independent cohorts (15). Moreover, the levels of CH3L1 were associated with brain MRI abnormalities and disability progression during the follow-up period, as well as with shorter time to conversion to clinically definite multiple sclerosis (14).We now set out to establish a diagnostic protein classifier with high sensitivity and specificity able to differentiate between patients with a clinically isolated syndrome that have either a high or a low risk of developing clinically definite multiple sclerosis over time. For this purpose, CSF samples from an independent patient cohort from the one used in the discovery study were collected, and a set of preselected protein biomarker candidates were systematically quantified by targeted mass spectrometry (SRM) and evaluated for their classification power. Out of this study, we established a protein classifier based on the combination of abundances of proteins chitinase 3-like 1 and ala-β-his-dipeptidase, which is able to differentiate with high sensitivity and specificity between patients with a clinically isolated syndrome that have either a high or low risk of developing clinically definite multiple sclerosis. Moreover, the statistical model built around this protein classifier enables clinicians to easily assign to each patient a precise probability of conversion to clinically definite multiple sclerosis (Fig. 1).Open in a separate windowFig. 1.General workflow used in the present study. Initially, protein candidates identified in our previous discovery studies—together with several proteins described by other groups—were selected and quantified by targeted mass spectrometry (SRM) in a relatively large cohort individual patients. Protein quantities were then evaluated by their capability of classifying patients with clinical isolated syndrome, and thus, the best prognostic protein combination was identified.  相似文献   

15.
Oxidative stress leads to lipid peroxidation and may contribute to the pathogenesis of lesions in multiple sclerosis (MS), an autoimmune disease characterized by inflammatory as well as degenerative phenomena. Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are a new class of sensitive specific markers for in vivo lipid peroxidation. In this study 26 patients (15 females and 11 males; mean age 48.2 ± 15.2 year; mean disease duration 10.0 ± 6.5 year) with secondary progressive MS (SPMS) and 12 healthy controls were enrolled. In patients with multiple sclerosis the lipid peroxidation as the level of urine isoprostanes and the level of thiobarbituric acid reactive species (TBARS) in plasma were estimated. Moreover, we estimated the total antioxidative status (TAS) in plasma. It was found that the urine isoprostanes level was over 6-fold elevated in patients with SPMS than in control (P < 0.001). In SPMS patients TBARS level was also statistically higher than in controls (P < 0.01). However, we did not observed any difference of TAS level in serum between SPMS patients and controls (P > 0.05). In patients with SPMS the lipid peroxidation and oxidative stress measured as the increased level of isoprostanes was observed. Thus, we suggest that the level of isoprostanes may be used as non-invasive marker for a determination of oxidative stress what in turn, together with clinical symptoms, may determine an specific antioxidative therapy in SPMS patients.  相似文献   

16.
Exposure to heavy metals has been associated to a higher incidence of multiple sclerosis. In this work, we present a possible relationship between serum mercury levels and development of multiple sclerosis in Isfahan, the third largest city in Iran. Seventy-four patients affected by multiple sclerosis were retrieved from multiple sclerosis (MS) clinic in Isfahan, Iran. By matching sex and age, 74 healthy volunteers were chosen as control group. Blood samples were collected and serum mercury content was determined. Serum mercury level in MS patients was significantly higher than controls (9.6 ± 10.17 vs. 5.7 ± 8.6, P = 0.037). Concerning all MS patients, serum mercury value was significantly higher than the mercury concentration founded in control subjects {odd ratio: 2.39 (CI, 1.96–2.94), P = 0.00}. Serum mercury level is higher in MS patients with odd ratio equal to 2.39 compared with healthy individuals. It may reveal that high mercury levels in serum might help MS development in susceptible individuals. More studies with larger sample size are needed to confirm this hypothesis.  相似文献   

17.

Background

Systemic sclerosis (SSc), a progressive disease characterized by excessive accumulation of connective tissue components. Although most patients have long survival, some of them progress rapidly to death. Pulmonary system involvement and pulmonary hypertension are the most frequent cause of death. When the patient with SSc is to be operated, the anesthetic procedure could be a serious problem. In this article, we report a combined spinal – epidural technique in a patient with progressive SSc and the anesthetic considerations that could be recommended for these patients.

Case presentation

A 68-year-old woman who had a history of progressive systemic sclerosis, pulmonary fibrosis, kyphoscoliosis and decreased oral apertura underwent total hip arthroplasty. This operation was performed successfully under combined spinal epidural anesthesia.

Conclusion

Systemic sclerosis is a complex disease that involves multiple organ systems. Every aspects of anesthetic care may be altered or hindered by the pathogenesis of disease. Although the choice of regional or general anesthesia is unclear, to choose combined spinal epidural anesthesia may be useful.  相似文献   

18.
Functional disruption and neuronal loss followed by progressive dysfunction of the nervous system underlies the pathogenesis of numerous disorders defined as “neurodegenerative diseases”. Multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system resulting in serious neurological dysfunctions and disability, is one of the most common neurodegenerative diseases. Recent studies suggest that disturbances in mitochondrial functioning are key factors leading to neurodegeneration. In this review, we consider data on mitochondrial dysfunctions in multiple sclerosis, which were obtained both with patients and with animal models. The contemporary data indicate that the axonal degeneration in multiple sclerosis largely results from the activation of Ca2+-dependent proteases and from misbalance of ion homeostasis caused by energy deficiency. The genetic studies analyzing association of mitochondrial DNA polymorphic variants in multiple sclerosis suggest the participation of mitochondrial genome variability in the development of this disease, although questions of the involvement of individual genomic variants are far from being resolved.  相似文献   

19.
Biomarkers are decision‐making tools at the basis of clinical diagnostics and essential for guiding therapeutic treatments. In this context, autoimmune diseases represent a class of disorders that need early diagnosis and steady monitoring. These diseases are usually associated with humoral or cell‐mediated immune reactions against one or more of the body's own constituents. Autoantibodies fluctuating in biological fluids can be used as disease biomarkers and they can be, thus, detected by diagnostic immunoassays using native autoantigens. However, it is now accepted that post‐translational modifications may affect the immunogenicity of self‐protein antigens, triggering an autoimmune response and creating neo‐antigens. In this case, post‐translationally modified peptides represent a more valuable tool with respect to isolated or recombinant proteins. In fact, synthetic peptides can be specifically modified to mimic neo‐antigens and to selectively detect autoantibodies as disease biomarkers. A ‘chemical reverse approach’ to select synthetic peptides, bearing specific post‐translational modifications, able to fishing out autoantibodies from patients' biological fluids, can be successfully applied for the development of specific in vitro diagnostic/prognostic assays of autoimmune diseases. Herein, we report the successful application of this approach to the identification of biomarkers in different autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Copyright © 2009 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

20.

Objective

Fabry disease is a rare X-linked inherited lysosomal storage disorder affecting multiple organ systems. It includes central nervous system involvement via micro- and macroangiopathic cerebral changes. Due to its clinical symptoms and frequent MRI lesions, Fabry disease is commonly misdiagnosed as multiple sclerosis. We present an overview of cases from Fabry centres in Germany initially misdiagnosed with multiple sclerosis and report the clinical, MR-tomographical, and laboratory findings.

Methods

Eleven Fabry patients (one male, ten females) initially diagnosed with multiple sclerosis were identified from 187 patient records (5.9%) and analyzed for presenting symptoms, results of the initial diagnostic workup, and the clinical course of the disease.

Results

Four patients were identified as having a “possible” history of MS, and 7 patients as “definite” cases of multiple sclerosis (revised McDonald criteria). On average, Fabry disease was diagnosed 8.2 years (±9.8 years) after the MS diagnosis, and 12.8 years after onset of first symptoms (±10.3 years). All patients revealed white matter lesions on MRI. The lesion pattern and results of cerebrospinal fluid examination were inconsistent and non-specific. White matter lesion volumes ranged from 8.9 mL to 34.8 mL (mean 17.8 mL±11.4 mL). There was no association between extra-neurological manifestations or enzyme activity and lesion load.

Conclusion

There are several anamnestic and clinical hints indicating when Fabry disease should be considered a relevant differential diagnosis of multiple sclerosis, e.g. female patients with asymmetric, confluent white matter lesions on MRI, normal spinal MR imaging, ectatic vertebrobasilar arteries, proteinuria, or lack of intrathecally derived immunoglobulin synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号