首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The degree of nutrient enhancement during the newborn period may modulate programming of appetite-regulating hormones, body composition, and propensity to adult obesity in intrauterine growth-restricted (IUGR) newborns. Pregnant rats received, from day 10 to term gestation and throughout lactation, ad libitum food (AdLib) or 50% food restriction (FR) to produce IUGR newborns. AdLib vs. FR offspring were studied at day 1, and, to create two distinct groups of newborn catch-up growth (immediate, delayed) among the IUGR newborns, cross-fostering techniques were employed. The four groups of pups at 3 wk were IUGR immediate catch-up growth (FR/AdLib), IUGR delayed catch-up growth (FR/FR), control (AdLib/AdLib), and lactation FR control (AdLib/FR). From 3 wk to 9 mo, all offspring had AdLib rat chow. Maternal FR during pregnancy resulted in IUGR pups (6.0 +/- 0.3 vs. 7.1 +/- 0.3 g, P < 0.01) with decreased leptin (0.66 +/- 0.03 vs. 1.63 +/- 0.12 ng/ml, P < 0.001) and increased ghrelin (0.43 +/- 0.03 vs. 0.26 +/- 0.02 ng/ml, P < 0.001). Maternal FR during lactation (FR/FR) further impaired IUGR offspring growth at 3 wk. However, by 9 mo, these pups attained normal body weight, percent body fat, and plasma leptin levels. Conversely, IUGR offspring nursed by AdLib dams (FR/AdLib) exhibited rapid catch-up growth at 3 wk and continued accelerated growth, resulting in increased weight, percent body fat, and plasma leptin levels. Thus the degree of newborn nutrient enhancement and timing of IUGR newborn catch-up growth may determine the programming of orexigenic hormones and offspring obesity.  相似文献   

2.
Maternal nutrient restriction results in intrauterine growth restriction (IUGR) newborns that develop obesity despite normal postweaning diet. The epidemic of metabolic syndrome is attributed to programmed "thrifty phenotype" and exposure to Western diets. We hypothesized that programmed IUGR newborns would demonstrate greater susceptibility to obesity and metabolic abnormalities in response to high-fat diet. From day 10 to term gestation and lactation, control pregnant rats received ad libitum (AdLib) food, whereas study rats were 50% food restricted (FR). Cross-fostering techniques resulted in three offspring groups: control (AdLib/AdLib), FR during pregnancy (FR/AdLib), and FR during lactation (AdLib/FR). At 3 weeks, offspring were weaned to laboratory chow or high-fat calorie diet (9% vs. 17% calorie as fat). Body composition, appetite hormones, and glucose and lipid profiles were determined in 9-mo-old male and female offspring. High-fat diet had no effect on body weight of AdLib/AdLib, but significantly increased weights of FR/AdLib and AdLib/FR offspring. High-fat diet significantly increased body fat, reduced lean body mass, and accentuated plasma leptin but not ghrelin levels in both sexes in all groups. In males, high-fat diet caused a significant increase in glucose levels in all three groups with increased insulin levels in AdLib/AdLib and AdLib/FR, but not in FR/AdLib. In females, high-fat diet had no effect on glucose but significantly increased basal insulin among all three groups. High-fat diet caused hypertriglyceridemia in all three groups although only food-restricted females exhibited hypercholesterolemia. Sex and offspring phenotype-associated effects of high-fat diet indicate differing pathophysiologic mechanisms that require specific therapeutic approaches.  相似文献   

3.
With the worldwide epidemic of metabolic syndrome (MetS), the proportion of women that are overweight/obese and overfed during pregnancy has increased. The resulting abnormal uterine environment may have deleterious effects on fetal metabolic programming and lead to MetS in adulthood. A balanced/restricted diet and/or physical exercise often improve metabolic abnormalities in individuals with obesity and type 2 diabetes mellitus (T2D). We investigated whether reducing fat intake during the periconceptual/gestation/lactation period in mothers with high-fat diet (HFD)-induced obesity could be used to modify fetal/neonatal MetS programming positively, thereby preventing MetS. First generation (F1) C57BL/6J female mice with HFD-induced obesity and T2D were crossed with F1 males on control diet (CD). These F1 females were switched to a CD during the periconceptual/gestation/lactation period. At weaning, both male and female second generation (F2) mice were fed a HFD. Weight, caloric intake, lipid parameters, glucose, and insulin sensitivity were assessed. Sensitivity/resistance to the HFD differed significantly between generations and sexes. A similar proportion of the F1 and F2 males (80%) developed hyperphagia, obesity, and T2D. In contrast, a significantly higher proportion of the F2 females (43%) than of the previous F1 generation (17%) were resistant (P<0.01). Despite having free access to the HFD, these female mice were no longer hyperphagic and remained lean, with normal insulin sensitivity and glycemia but mild hypercholesterolemia and glucose intolerance, thus displaying a "satiety phenotype." This suggests that an appropriate dietary fatty acid profile and intake during the periconceptual/gestation/lactation period helps the female offspring to cope with deleterious intrauterine conditions.  相似文献   

4.
Few reports show whether a high‐fat (HF) dietary environment in the fetal period affects immune function or the development of lifestyle‐related disease at maturity. We examined the influence of an HF dietary environment in the fetal period on postnatal metabolic and immune function. A total of 16 pregnant mice were given control (CON) diet and 16 were given HF diet in the gestational period, from mating to delivery. After delivery lactating mice were given either CON or HF diet, resulting in four groups. After weaning, the offspring mice were given the same diet that their mothers received during lactation. HF dietary intake in the postnatal period increased fat pad weights, serum glucose, and leptin levels. An HF diet in the fetal period resulted in fewer splenic lymphocytes, a thinner thymic cortex, and impaired antigen‐specific immune reactions. Furthermore, tumor necrosis factor (TNF)‐α production and serum triglyceride levels were elevated in the fetal HF group. In addition, the HF‐HF group showed a consistent decrease in ovalbumin (OVA)‐specific IgG and elevation of IgE, associated with advanced fatty changes in the liver. Results from this study suggest that HF environment during the fetal period induces epigenetic propensity toward obesity and immunological burden in part due to increased adipose tissue mass, significant reduction in the number of immune cells and decreased activities of immune cells.  相似文献   

5.
It was hypothesized that sub-optimal progesterone concentrations during the late embryo and early fetal period may act to compromise conceptus development in dairy cattle. The aim of the present study was to test this hypothesis by supplementing pregnant cows with exogenous progesterone following pregnancy diagnosis. The study population consisted of 1098 pregnant lactating cows. Pregnancy was diagnosed by transrectal ultrasonography between 36 and 42 days after insemination. Animals found to be pregnant were randomly assigned to the Control (untreated cows, n = 549) or Treatment (n = 549) groups. Cows in group Treatment were fitted at pregnancy diagnosis with a progesterone releasing intravaginal device (PRID) containing 1.55 g of progesterone, for 28 days. Cows were then subjected to a further diagnosis by palpation per rectum on Day 90 of gestation. Pregnancy loss was registered in 95 (8.7%) cows on Day 90 of pregnancy: 66 (12%) in group Control and 29 (5.3%) in group Treatment. Logistic regression analysis indicated that there were no significant effects of herd, bull, milk production, service number, days in milk at pregnancy and lactation number. Based on the odds ratio, treated cows were 2.4 (1/0.41) times less likely to miscarry, whereas the risk of pregnancy loss was 1.6 times higher in cows that became pregnant during the warm period in comparison to the cool period. These results support the hypothesis that sub-optimal progesterone concentrations in high producer dairy cows may compromise conceptus development. Under these conditions, intra-vaginal progesterone supplementation has the potential to reduce the incidence of pregnancy loss during the early fetal period.  相似文献   

6.
The effects of maternal 50% food restriction (FR) during the last week of gestation and/or lactation on pituitary-gonadal axis (at birth and weaning), on circulating levels of leptin (at weaning), and on the onset of puberty have been determined in rats at birth and at weaning. Maternal FR during pregnancy has no effect at term on the litter size, on the basal level of testosterone in male pups, and on the drastic surge of circulating testosterone that occurs 2 h after birth. At weaning, similar retardation of body growth is observed in male and female pups from mothers exposed to FR. This undernutrition induces the most drastic effects when it is performed during both gestation and lactation or during lactation alone. Drastic retardation of testicle growth with reduction of cross-sectional area and intratubular lumen of the seminiferous tubules is observed in male pups from mothers exposed to undernutrition during both gestation and lactation or during lactation alone. Maternal FR during the perinatal period reduces circulating levels of FSH in male pups without affecting LH and testosterone concentrations. Maternal FR does not affect circulating levels of LH, estradiol, and progesterone in female pups. Female pups from mothers exposed to FR during both gestation and lactation show a significant increase of plasma FSH as well as a drastic retardation of ovarian growth. The follicular population was also altered. The number of antral follicles of small size (vesicular follicles) was increased, although the number of antral follicles of large size (graafian follicles) was reduced. Maternal FR occurring during both late gestation and lactation (male and female pups), during lactation alone (male and female pups), or during late gestation (female pups) induces a drastic reduction of plasma leptin and fat mass in pups at weaning. The onset of puberty is delayed in pups of both sexes from mothers exposed to FR during lactation and during both gestation and lactation. In conclusion, these data demonstrate that a perinatal growth retardation induced by maternal FR has long-term consequences on both size and histology of the genitals, on plasma gonadotropins and leptin levels, on fat stores at weaning, and on the onset of puberty.  相似文献   

7.
We investigated the effects of dietary fatty acids of different chain lengths during pregnancy in the rat on the susceptibility of offspring to later-life obesity and the underlying mechanisms. Pregnant rats were fed three different diets: standard (STD), high medium-chain fatty acids (MCFA); and high long-chain fatty acids (LCFA). The male offspring were assigned to three groups: STD control, MCFA and LCFA according to the maternal diets and suckled by dams fed with STD during pregnancy and lactation. After weaning, the offspring were fed with STD from 3 to 8 weeks of age. At the age of 8 weeks, rats in three groups: high-fat diet (HFD) control, MCFA and LCFA were fed with HFD until 14 weeks of age in an attempt to induce obesity, and rats in the HFD control group were selected randomly from the STD control group. Body weight and body fat content were decreased in the MCFA group accompanied by down-regulated mRNA expression of fatty acid synthase and acetyl-coA carboxylase 1, and increased mRNA and protein expression of adenosine monophosphate (AMP)-activated protein kinase (AMPK), carnitine palmitoyltransferase 1 and uncoupling protein 3 compared with the corresponding controls at 3, 8 and 14 weeks of age. The results suggested that the MCFA diet during pregnancy prevented later-life obesity in the offspring when they were exposed to HFD in later life, which might be related to programming of the expression of genes involved in fatty acid metabolism.  相似文献   

8.
Maternal undernutrition (MUN) during pregnancy results in intrauterine growth-restricted (IUGR) fetuses and small placentas. Although reduced fetal nutrient supply has been presumed to be etiologic in IUGR, MUN-induced placental dysfunction may occur prior to detectable fetal growth restriction. Placental growth impairment may result from apoptosis signaled by mitochondria in response to reduced energy substrate. Therefore, we sought to determine the presence of mitochondrial-induced apoptosis under MUN and ad libitum diet (AdLib) pregnancies. Pregnant rats were fed an AdLib or a 50% MUN diet from embryonic day 10 (E10) to E20. At E20, fetuses and placentas from proximal- and mid-horns (extremes of nutrient/oxygen supply) were collected. Right-horn placentas were used to quantify apoptosis. Corresponding left-horn placentas were separated into basal (hormone production) and labyrinth (feto-maternal exchange) zones, and protein expression of the mitochondrial pathway was determined. Our results show that the MUN placentas had significantly increased apoptosis, with lower expression of cytosolic and mitochondrial anti-apoptotic Bcl2 and Bcl-X(L), and significantly higher expression of pro-apoptotic Bax and Bak especially in the labyrinth zone. This was paralleled by higher coimmunostaining with the mitochondrial marker manganese superoxide dismutase (MnSOD), indicating transition of pro-apoptotic factors to the mitochondrial membrane. Also, cytosolic cytochrome c and activated caspases-9 and -3 were significantly higher in all MUN. Conversely, peroxisome proliferator-activator receptor-γ (PPARγ), a member of the nuclear receptor family with anti-apoptotic properties, was significantly downregulated in both zones and horns. Our results suggest that MUN during rat pregnancy enhances mitochondria-dependent apoptosis in the placenta, probably due to the downregulation of PPARγ expression.  相似文献   

9.
Epigenetic regulation in mammals begins in the first stages of embryogenesis. This prenatal programming determines, in part, phenotype expression in adult life. Some species, particularly dairy cattle, are conceived during the maternal lactation, which is a period of large energy and nutrient needs. Under these circumstances, embryo and fetal development compete for nutrients with the mammary gland, which may affect prenatal programming and predetermine phenotype at adulthood. Data from a specialized dairy breed were used to determine the transgenerational effect when embryo development coincides with maternal lactation. Longitudinal phenotypic data for milk yield (kg), ratio of fat-protein content in milk during first lactation, and lifespan (d) from 40,065 cows were adjusted for environmental and genetic effects using a Bayesian framework. Then, the effect of different maternal circumstances was determined on the residuals. The maternal-related circumstances were 1) presence of lactation, 2) maternal milk yield level, and 3) occurrence of mastitis during embryogenesis. Females born to mothers that were lactating while pregnant produced 52 kg (MonteCarlo standard error; MCs.e. = 0.009) less milk, lived 16 d (MCs.e. = 0.002) shorter and were metabolically less efficient (+0.42% milk fat/protein ratio; MCs.e.<0.001) than females whose fetal life developed in the absence of maternal lactation. The greater the maternal milk yield during embryogenesis, the larger the negative effects of prenatal programming, precluding the offspring born to the most productive cows to fully express their potential additive genetic merit during their adult life. Our data provide substantial evidence of transgenerational effect when pregnancy and lactation coincide. Although this effect is relatively low, it should not be ignored when formulating rations for lactating and pregnant cows. Furthermore, breeding, replacement, and management strategies should also take into account whether the individuals were conceived during maternal lactation because, otherwise, their performance may deviate from what it could be expected.  相似文献   

10.
Women entering pregnancy with a high body weight and fat mass have babies at increased risk of becoming overweight or obese in childhood and later life. It is not known, whether exposure to a high level of maternal nutrition before pregnancy and exposure to a high transplacental nutrient supply in later pregnancy act through similar mechanisms to program later obesity. Using the pregnant sheep we have shown that maternal overnutrition in late pregnancy results in an upregulation of PPARγ activated genes in fetal visceral fat and a subsequent increase in the mass of subcutaneous fat in the postnatal lamb. Exposure to maternal overnutrition during the periconceptional period alone, however, results in an increase in total body fat mass in female lambs only with a dominant effect on visceral fat depots. Thus the early programming of later obesity may result from ‘two hits’, the first occurring as a result of maternal overnutrition during the periconceptional period and the second occurring as a result of increased fetal nutrition in late pregnancy. Whilst a short period of dietary restriction during the periconceptional period reverses the impact of periconceptional overnutrition on the programming of obesity, it also results in an increased lamb adrenal weight and cortisol stress response, together with changes in the epigenetic state of the insulin like growth factor 2 (IGF2) gene in the adrenal. Thus, not all of the effects of dietary restriction in overweight or obese mother in the periconceptional period may be beneficial in the longer term.  相似文献   

11.
OBJECTIVE: To investigate whether bone resorption markers change during pregnancy and lactation, and how they are correlated with human placental lactogen (hPL) and PRL. SUBJECTS: Young women before pregnancy, during pregnancy and during a 12-month post-delivery period (study group; n = 22); and age- and weight-matched normal cycling women (control group; n = 22) for a 20-month-period participated in the study. RESULTS: In the study group, women both during pregnancy (from the 8th up to the 38th week) and during a 6-month period of lactation, pyridinoline and deoxypyridinoline urinary levels were significantly higher than those of pre-pregnancy and control women. They returned to basal values at the 12th post-delivery month. During pregnancy there were early and late peak increases, at the 8th and 32nd week, respectively. At the 32nd, 34th, 36th and 38th week of pregnancy, pyridinoline and deoxypyridinoline urinary values were significantly correlated with hPL serum levels. CONCLUSIONS: During pregnancy the maternal bone resorption seems to vary critically at early and late stages. A complete reversal of these variations seems to occur after lactation. Further studies could evaluate if changes in placental function are capable of differently interfering with maternal bone resorption.  相似文献   

12.
Maternal obesity (MO) predisposes offspring to metabolic disorders, but the mechanisms remain poorly defined. Recent studies emphasize the importance of brown adipose tissue (BAT) in maintaining metabolic health, and MO was recently demonstrated to impair BAT thermogenic function in offspring. The current study aimed to investigate the mechanisms leading to the impairment in fetal BAT development due to MO. Female C57BL/6J mice were fed a control diet or a 60% high-fat diet for 10 weeks, mated and maintained on their respective diets during pregnancy. Fetal tissue was collected at E18.5, the late stage of pregnancy. Fetal BAT contained more triglycerides compared to the control, which was correlated with higher expression of white adipogenic markers. On the other hand, the expression of BAT markers was down-regulated in the MO fetal BAT. Based on RNA-sequencing analyses, genes related to mitochondriogenesis and myogenesis were found to be down-regulated, while those related to white adipocyte differentiation were up-regulated in MO fetal BAT. Because brown adipocytes are derived from myogenic progenitors, the down-regulation of myogenic genes might partially explain hampered brown adipogenesis in MO fetal BAT. Consistently, mitochondrial DNA and mitochondrial biogenesis markers were also down-regulated in MO fetal BAT. MicroRNA-sequencing identified that miR-204-5p expression was elevated in MO fetal BAT. This microRNA targeted the 3′-untranslated regions of PGC1α and Sirt1 mRNA to suppress their expression and impair mitochondriogenesis. In summary, MO impaired fetal BAT development through suppressing myogenesis and brown adipogenesis while enhancing white adipogenic commitment, and inhibited mitochondriogenesis partially through enhancing miR-204-5p expression.  相似文献   

13.
Several animal models have been developed to study fetal programming of hypertension. One model involves feeding high-salt (HS) diet to rats before and during pregnancy, during lactation, and after weaning for 10 days. In the present investigation, we limited HS diet to the prenatal period in an attempt to find a narrower critical window for fetal programming. The HS diet did not result in low-birth weight offspring. In the adult offspring, radiotelemetry was used to assess blood pressure and heart rate in the conscious unstressed state. As adults, the HS offspring were not hypertensive compared with normal-salt (NS) control animals. However, the pressor and tachycardic responses to 1-h of restraint were significantly enhanced in HS female offspring, and recovery after restraint was delayed. This was accompanied by an increase in relative expression of corticotropin-releasing hormone (CRH) mRNA in the paraventricular nucleus of the hypothalamus during basal and stressed conditions. There was no augmented stress response or relative increase in CRH mRNA in adult HS male offspring. When challenged with 1 wk of 8% NaCl diet as adults, neither HS male nor female offspring exhibited salt sensitivity compared with NS groups. These data show that a high-salt diet limited to the prenatal period is not sufficient to program hypertension in adult offspring. However, this narrower critical period is sufficient to imprint a lasting hyperresponsiveness to stress, at least in adult female offspring. These data indicate that excessive maternal salt intake during pregnancy can adversely affect the cardiovascular health of adult offspring.  相似文献   

14.
目的对近交系Wistar大鼠进行繁殖性能的测定。方法选取血缘扩大群共18对,90日龄开始按1♀*1♂进行交配,统计其生长繁殖性能。结果第二、三、四胎的平均窝产仔数和断奶窝重比第一和第五胎高。第一胎仔鼠从出生第3天到第7天(增重9.42g)、第14天到第21天(13.98g)快速生长。母鼠怀孕期、哺乳期体重、饲料和水的日消耗量有明显的差异,母鼠哺乳期饲料和水的日消耗量均比怀孕期高,母鼠怀孕期体重明显比哺乳期重,母鼠怀孕期体重后期比初期增加150g左右,曲线呈上升趋势。结论本群Wistar近交系大鼠的生长繁殖符合近交系大鼠的生长繁殖规律。  相似文献   

15.
Maternal obesity is associated with obesity and metabolic disorders in offspring. However, intervention strategies to reverse or ameliorate the effects of maternal obesity on offspring health are limited. Following maternal undernutrition, taurine supplementation can improve outcomes in offspring, possibly via effects on glucose homeostasis and insulin secretion. The effects of taurine in mediating inflammatory processes as a protective mechanism has not been investigated. Further, the efficacy of taurine supplementation in the setting of maternal obesity is not known. Using a model of maternal obesity, we examined the effects of maternal taurine supplementation on outcomes related to inflammation and lipid metabolism in mothers and neonates. Time-mated Wistar rats were randomised to either: 1) control : control diet during pregnancy and lactation (CON); 2) CON supplemented with 1.5% taurine in drinking water (CT); 3) maternal obesogenic diet (high fat, high fructose) during pregnancy and lactation (MO); or 4) MO supplemented with taurine (MOT). Maternal and neonatal weights, plasma cytokines and hepatic gene expression were analysed. A MO diet resulted in maternal hyperinsulinemia and hyperleptinemia and increased plasma glucose, glutamate and TNF-α concentrations. Taurine normalised maternal plasma TNF-α and glutamate concentrations in MOT animals. Both MO and MOT mothers displayed evidence of fatty liver accompanied by alterations in key markers of hepatic lipid metabolism. MO neonates displayed a pro-inflammatory hepatic profile which was partially rescued in MOT offspring. Conversely, a pro-inflammatory phenotype was observed in MOT mothers suggesting a possible maternal trade-off to protect the neonate. Despite protective effects of taurine in MOT offspring, neonatal mortality was increased in CT neonates, indicating possible adverse effects of taurine in the setting of normal pregnancy. These data suggest that maternal taurine supplementation may ameliorate the adverse effects observed in offspring following a maternal obesogenic diet but these effects are dependent upon prior maternal nutritional background.  相似文献   

16.
Impairment of gut epithelial barrier function is a key predisposing factor for inflammatory bowel disease, type 1 diabetes (T1D) and related autoimmune diseases. We hypothesized that maternal obesity induces gut inflammation and impairs epithelial barrier function in the offspring of nonobese diabetic (NOD) mice. Four-week-old female NOD/ShiLtJ mice were fed with a control diet (CON; 10% energy from fat) or a high-fat diet (HFD; 60% energy from fat) for 8 weeks to induce obesity and then mated. During pregnancy and lactation, mice were maintained in their respective diets. After weaning, all offspring were fed the CON diet. At 16 weeks of age, female offspring were subjected to in vivo intestinal permeability test, and then ileum was sampled for biochemical analyses. Inflammasome mediators, activated caspase-1 and mature forms of interleukin (IL)-1β and IL-18 were enhanced in offspring of obese mothers, which was associated with elevated serum tumor necrosis factor α level and inflammatory mediators. Consistently, abundance of oxidative stress markers including catalase, peroxiredoxin-4 and superoxide dismutase 1 was heightened in offspring ileum (P<.05). Furthermore, offspring from obese mothers had a higher intestinal permeability. Morphologically, maternal obesity reduced villi/crypt ratio in the ileum of offspring gut. In conclusion, maternal obesity induced inflammation and impaired gut barrier function in offspring of NOD mice. The enhanced gut permeability in HFD offspring might predispose them to the development of T1D and other gut permeability-associated diseases.  相似文献   

17.
Environmental factors and diet are generally believed to be accelerators of obesity and hypertension, but they are not the underlying cause. Our animal model of obesity and hypertension is based on the observation that impaired fetal growth has long-term clinical consequences that are induced by fetal programming. Using fetal undernutrition throughout pregnancy, we investigated whether the effects of fetal programming on adult obesity and hypertension are mediated by changes in insulin and leptin action and whether increased appetite may be a behavioral trigger of adult disease. Virgin Wistar rats were time mated and randomly assigned to receive food either ad libitum (AD group) or at 30% of ad libitum intake, or undernutrition (UN group). Offspring from UN mothers were significantly smaller at birth than AD offspring. At weaning, offspring were assigned to one of two diets [a control diet or a hypercaloric (30% fat) diet]. Food intake in offspring from UN mothers was significantly elevated at an early postnatal age. It increased further with advancing age and was amplified by hypercaloric nutrition. UN offspring also showed elevated systolic blood pressure and markedly increased fasting plasma insulin and leptin concentrations. This study is the first to demonstrate that profound adult hyperphagia is a consequence of fetal programming and a key contributing factor in adult pathophysiology. We hypothesize that hyperinsulinism and hyperleptinemia play a key role in the etiology of hyperphagia, obesity, and hypertension as a consequence of altered fetal development.  相似文献   

18.
19.
20.
Little is known about the occurrence of individual variation in sexual behavior and how maternal nutrition can affect this variation. We tested the hypothesis that male offspring of female meadow voles, Microtus pennsylvanicus, that were 30% food restricted (FR) during days 1–7 of lactation (FR 1–7), days 8–14 of lactation (FR 8–14), or late days 15–21 of lactation (FR 15–21) lactation show persistent, negative effects on their sexual behavior as adults relative to male offspring of females that were not food restricted. We measured three components of sexual behavior, attractivity, proceptivity, and receptivity, beginning when the males were 98 d of age. Food restriction during middle lactation (FR 8–14) but not during early (FR 1–7) and late lactation (FR 15–21) was sufficient to induce adult male voles to produce anogenital marks that were not as attractive as those produced by control males. Food restriction during lactation did not affect the proceptive behavior of male voles but did affect their receptivity. Only four of 12 FR 8–14 male voles mated compared to nine of 12 FR 1–7 males, eight of 12 FR 15–21 males, and eight of 11 control males. However, no differences existed in their copulatory behavior among the males that did mate. The body weight of FR 1–7 and FR 8–14 males was lower than that of FR 15–21 and control males when they were between 22 d of age (weaning) and 48 d of age (puberty) but was similar when the males were 98 d of age. Food intake was similar for the FR and control males between day 22 and day 98. It remains unclear, however, whether this type of maternal effect represents strategic programing of offspring behavior in response to the environment experienced by mothers or is a product of developmental processes of food restriction prior to weaning (Evolution 58 , 2004, 2574).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号