首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
2.
水稻不育系安农S-1育性转换及相关基因的表达分析   总被引:3,自引:0,他引:3  
通过在自然环境和高温温室内对安农S-1的不同部位进行高温、低温诱导处理,对水稻温敏核不育系安农S-1的温度敏感时期和诱导部位进行了研究。总共进行了8种处理,结果表明:安农S-1的育性转换时期是从花粉母细胞形成到减数分裂的四分体时期之前。在育性转换时期,处于高温的条件下,根部低温处理不能诱导安农S-1可育,穗部低温处理可以使安农S-1保持可育,可见安农S-1的温度敏感部位在幼穗。aprz基因和育性相关,用RT-PCR方法研究了aprt基因在安农S-1不同部位和不同温度环境的表达变化,结果显示,在幼穗中aprt基因的表达在高温环境中被大幅度下调,而在叶中和根中的变化比较小,这说明幼穗对温度最敏感,从侧面验证了引起安农S-1育性转换的温度敏感部位是在幼穗。  相似文献   

3.
长穗颈双低温敏核不育水稻的选育   总被引:22,自引:4,他引:18  
双低温敏核不育水稻 (96- 5- 2 S)干种子通过 350 Gy60 Coγ-射线直接辐射 ,处理后的 M1代在育性转换敏感期让其感受自然低温而自交繁殖 .M2 代单本或双本密插 (1 0× 1 3.33cm) ,从 M2 代 2 5万株群体中 ,筛选出 7株长穗颈双低温敏核不育株 .它的成功选育 ,解决了我国两系杂交水稻的制种中不育系育性易出现反复和九二 Ο施用量大的两大技术难题  相似文献   

4.
Hybrid rice plays an important role in China's aim to improve rice production as it accounts for some 50% of rice planting area but produces about 60% of the total rice grain. However, the existing three-line system used in hybrid rice production has its limitations. The two-line system, which makes use of photoperiod-sensitive genic male-sterile (PGMS) and thermo-sensitive genic male-sterile (TGMS) lines to generate the male-sterile parental line, was developed to overcome some of these limitations. The sterility of the male-sterile line of two-line hybrid rice, however, fluctuates when the temperature-sensitive phase of fertility encounters abnormal low temperatures during hybrid seed production, which induces selfing and decreases the purity of hybrid. We describe here the strategy of utilizing a herbicide resistance gene in two-line hybrid rice to eliminate this fluctuation in the sterility of the P/TGMS lines during hybrid seed production and reports the development of the herbicide resistance restorer line Bar68-1 and its herbicide-resistant early season hybrid rice Xiang125s/Bar68-1. When the restorer line and its derived hybrid are herbicide resistant, the selfed seeds can be removed easily from the hybrid by herbicide spraying. A herbicide resistance gene bar was transferred into a restorer line by particle bombardment. The resulting transgenic restorer line Bar68-1 and its hybrid Xiang125 s/Bar68-1 inherited stable herbicide resistance. The purity of Xiang125s/Bar68-1 was increased by spraying the seed bed with herbicide, which resulted in a significant increase in yield, grain quality, and disease resistance in comparison to the controls in a regional trial.  相似文献   

5.
温度对双低两用核不育水稻96-5-2S与培矮64S育性的影响   总被引:5,自引:0,他引:5  
在自然变温、人工控温及冷水灌溉条件下,比较研究了温度对双低两用核不育水稻96-5-2S与两用核不育水稻培矮64S育性影响的差异。结果表明:(1)当它们在雄性育性转换温敏感期1-12d平均自然日均温23.0-23.8℃的低温时,96-5-2S表现不良,套袋自交结实率为0,而培矮46S可育,套袋自交结实率为0.1%-4.5%;(2)在它们雄性育性转换温敏感期用22℃恒温处理5d,96-5-2S败育彻底,套袋自交结实率为0,而培矮64S可育,套袋自交结实率为10.7%;用17℃恒温处理6d,96-5-2S与培矮64S均可育,但96-5-2S套袋自交结实率(6.8%)显著高于培矮64S(2.5%);(3)在它们雄性育性转换温和不同温度的冷水串灌15d,水深维持在20cm左右,当水温为22-22.5℃时,96-5-2S不育,结实率为0,而培矮64S可育,结实率为18.5%;当水温为19.5-21.5℃时,96-5-2S与培矮64S均可育,但96-5-2S结实率(2.5%-45.1%)显著或极显著低于培矮64S(50.4%-56.9%)以上结果说明:导致双低两用核不育水稻96-5-2S雄性不育的起点温度与导致其生理不育的下限温度均低,其不育性比培矮64S更稳定,耐寒性比培矮64S更强,即可确保制种安全,又可确保自身繁殖,对加快两系法杂交水稻的发展步伐将起到重要的促进作用。  相似文献   

6.
7.
光温敏核雄性不育系在不同的生态环境条件下可以实现一系两用,简化制种程序,是农作物杂交种子生产的一种重要资源。简要介绍了主要作物杂交种子生产方式,综述了水稻、小麦、玉米、谷子等作物光温敏核雄性不育系的研究进展以及在两系杂交种子生产上的应用,并探讨了光温敏核雄性不育系的应用前景。  相似文献   

8.
Thermosensitive genic male sterility (TGMS) has been widely used in two-line hybrid rice breeding. Due to hybrid seed production being highly affected by changeable environments, its application scope is limited to some extent. Thus, it is of great importance to identify potential TGMS genes in specific rice varieties. Here, Diannong S-1 xuan (DNS-1X), a reverse TGMS (RTGMS) japonica male sterile line, was identified from Diannong S-1. Genetic analysis showed that male sterility was tightly controlled by a single recessive gene, which was supported by the phenotype of the F1 and F2:3 populations derived from the cross between DNS-1X and Yunjing 26 (YJ26). Combining simple sequence repeat (SSR) markers and bulked segregation analysis (BSA), we identified a 215 kb region on chromosome 10 as a candidate reverse TGMS region, which was designated as rtms1-D. It was narrower than the previously reported RTGMS genes rtms1 and tms6(t). The fertility conversion detected in the natural environment showed that DNS-1X was sterile below 28–30 °C; otherwise, it was fertile. Histological analysis further indicated that the pollen abortion was occurred in the young microspore stage. This study will provide new resources for two-line hybrid rice and pave the way for molecular breeding of RTGMS lines.  相似文献   

9.
Thermosensitive genic male sterility (TGMS) in rice is a widely adopted technique for successful hybrid rice production in Asia. TGMS lines remain male sterile when daily mean temperature is above the critical sterility temperature and are therefore used as female parents. The same line will remain fertile when mean temperature is below the critical sterility temperature. Achievement of 100% male sterility in TGMS lines is important for the successful utilization of TGMS lines as female parents in hybrid rice production. This study examined the external application of some growth regulators and chemicals and their effect on pollen sterility. Among the various treatments, ethrel (800 ppm), salicylic acid (600 ppm) and maleic hydrazide (0.2%) induced a significantly higher percentage of male sterility in the TGMS lines. The sprayed plants also showed higher total phenol accumulation in their flag leaves. The results suggest that it is possible to achieve 100% male sterility in TGMS lines with the external application of growth regulators and chemicals.  相似文献   

10.
在拟南芥中腺嘌呤磷酸核糖转移酶基因(APRT)突变导致植株雄性不育.本文首次报道从水稻(Oryza sativa subsp.indica)中克隆了基因APRT(GenBank登录号AY238894),并将其定位于水稻第4染色体的一个BAC克隆(AL606604)的58 000 bp至63 000 bp区域.该基因长4 220 bp(起始密码子至终止密码子),含7个外显子、6个内含子,编码的APRT蛋白长212个氨基酸残基,与其他物种来源的APRT序列存在很高的同源性.与大麦、小麦、拟南芥1型及其2型的该蛋白同源性分别为54.9%、54.9%、49.6%和59.5%.经保守结构域搜索发现该蛋白中存在APRT催化结构域.从DNA、mRNA两个水平分析了该基因与水稻温敏核雄性不育(TGMS)的关系,结果表明:受温度诱导,水稻"安农S-1"APRT基因的表达变化可能与温敏核雄性不育表现型具相关性.  相似文献   

11.
The thermo-sensitive genic male sterility (TGMS) lines play a crucial role in two-line hybrid rice production. For a practical TGMS line, the stability of male sterility is one of the most important technical indicators. In this study, XianS, a spontaneous mutant with stable male sterility from an indica rice cultivar Xianhuangzhan, was classified as a non-pollen type TGMS line. The critical non-pollen sterility point temperature of XianS was determined as 27°C. Genetic analysis demonstrated that the non-pollen sterility in XianS was controlled by a single recessive gene. Using SSR markers and bulked segregant analysis, the TGMS gene in XianS was fine mapped to a 183 kb interval between RMAN81 and RMX21 on chromosome 2. Two markers, 4039-1 and RMX14 completely cosegregated with this gene. Allelism test indicated that the non-pollen phenotype in seven non-pollen type TGMS lines from different sources, XianS, AnnongS-1, Q523S, Q524S, N28S, G421S, and Q527S is caused by the same TGMS gene. Although the location of TGMS gene in XianS is close to the gene OsNAC6, a previously identified candidate gene of tms5 in AnnongS-1, the sequence of OsNAC6 and its promoter region was identical in TGMS line XianS, AnnongS-1, and wild-type Xianhuangzhan. These results suggest that the non-pollen type TGMS trait probably be controlled by the same TGMS gene in different TGMS rice lines, but its real candidate gene still need to be further studied and identified.  相似文献   

12.
By using a genomic fragment that carries the rice (Oryza sativa L.) fertility restorer gene, Rf-1, rice restorer lines harbouring multiple Rf-1 genes on different chromosomes were developed by genetic engineering and crossing. Hybrid lines that were obtained by crossing the restorer lines having two and three Rf-1 genes with a cytoplasmic male sterile (CMS) line had nearly 75 and 87.5% pollen fertility rates under a normal condition, respectively, whereas a conventional hybrid line showed a 50% pollen fertility rate. Furthermore, the seed set percentage under low temperature conditions was much higher in the hybrid lines with multiple Rf-1 genes than the conventional hybrid line. These results indicate that multiplication of the Rf-1 gene conferred cold tolerance at the booting stage to hybrid rice through increasing the potentially fertile pollen grains. This strategy to improve fertility at low temperature of hybrids could be applied to any grain crops that are developed based on CMS and its gametophytic restorer gene, let alone rice.  相似文献   

13.
Photoperiod- and thermo-sensitive genic male sterility (PGMS and TGMS) are the core components for hybrid breeding in crops. Hybrid rice based on the two-line system using PGMS and TGMS lines has been successfully developed and applied widely in agriculture. However, the molecular mechanism underlying the control of PGMS and TGMS remains obscure. In this study, we mapped and cloned a major locus, p/tms12-1 (photo- or thermo-sensitive genic male sterility locus on chromosome 12), which confers PGMS in the japonica rice line Nongken 58S (NK58S) and TGMS in the indica rice line Peiai 64S (PA64S, derived from NK58S). A 2.4-kb DNA fragment containing the wild-type allele P/TMS12-1 was able to restore the pollen fertility of NK58S and PA64S plants in genetic complementation. P/TMS12-1 encodes a unique noncoding RNA, which produces a 21-nucleotide small RNA that we named osa-smR5864w. A substitution of C-to-G in p/tms12-1, the only polymorphism relative to P/TMS12-1, is present in the mutant small RNA, namely osa-smR5864m. Furthermore, overexpression of a 375-bp sequence of P/TMS12-1 in transgenic NK58S and PA64S plants also produced osa-smR5864w and restored pollen fertility. The small RNA was expressed preferentially in young panicles, but its expression was not markedly affected by different day lengths or temperatures. Our results reveal that the point mutation in p/tms12-1, which probably leads to a loss-of-function for osa-smR5864m, constitutes a common cause for PGMS and TGMS in the japonica and indica lines, respectively. Our findings thus suggest that this noncoding small RNA gene is an important regulator of male development controlled by cross-talk between the genetic networks and environmental conditions.  相似文献   

14.
水稻细胞质型雄性不育系IR69700A的幼穗经离体培养,获得一个体细胞克隆突变体0A15-1。经短日照和低温处理表明,0A15-1具有在高温下不育和低温下转为可育的特性,是一例温敏不育突变体。花粉染色显示0A15-l属于典败型不育。通过与明恢63、优B和广陆矮等多个父本的杂交,其F2和BC1群体的育性分离比都揭示0A15-1的不育性状受一对隐性核基因控制,并且为孢子体型雄性不育。该新种质可以用于对相关温敏核不育基因进行分子标记及用于两系法生产杂交水稻。  相似文献   

15.
In rice breeding, thermosensitive genic male sterility (TGMS) lines based on the tms5 locus have been extensively employed. Here, we reported a novel rice TGMS line ostms15 (Oryza sativa ssp. japonica ZH11) which show male sterility under high temperature and fertility under low temperature. Field evaluation from 2018 to 2021 revealed that its sterility under high temperature is more stable than that of tms5 (ZH11), even with occasional low temperature periods, indicating its considerable value for rice breeding. OsTMS15 encodes an LRR-RLK protein MULTIPLE SPOROCYTE1 (MSP1) which was reported to interact with its ligand to initiate tapetum development for pollen formation. In ostms15, a point mutation from GTA (Val) to GAA (Glu) in its TIR motif of the LRR region led to the TGMS phenotype. Cellular observation and gene expression analysis showed that the tapetum is still present in ostms15, while its function was substantially impaired under high temperature. However, its tapetum function was restored under low temperature. The interaction between mOsTMS15 and its ligand was reduced while this interaction was partially restored under low temperature. Slow development was reported to be a general mechanism of P/TGMS fertility restoration. We propose that the recovered protein interaction together with slow development under low temperature compensates for the defective tapetum initiation, which further restores ostms15 fertility. We used base editing to create a number of TGMS lines with different base substitutions based on the OsTMS15 locus. This work may also facilitate the mechanistic investigation and breeding of other crops.  相似文献   

16.
利用HPLC和GC分别测定了水稻细胞质雄性不育系及其保持系幼穗多胺( 腐胺,亚精胺和精胺) 含量和乙烯释放速率,并研究了外施多胺合成抑制剂MGBG 和乙烯前体ACC生成抑制剂AVG 对两系幼穗多胺含量和乙烯释放速率以及花粉育性的影响。结果表明, 不育系幼穗乙烯释放速率显著高于其保持系幼穗, 外施AVG 引起两系幼穗乙烯释放速率下降,并使不育系花粉育性得以部分恢复; 不育系幼穗多胺含量显著低于保持系幼穗, 外施MGBG 使两系幼穗Spd 和Spm 含量下降, 并使保持系花粉育性降低。外施AVG 抑制乙烯释放,促进多胺合成;而外施MGBG 抑制Spd和Spm 合成, 却促进乙烯的释放; 而且,乙烯释放速率与多胺(精胺和亚精胺) 含量呈显著负相关。提示在水稻CMS 系及其保持系幼穗发育过程中乙烯与多胺( 精胺和亚精胺) 的生物合成竞争SAM。  相似文献   

17.
The adoption of hybrid rice caused the second leap in rice yield after the ‘green revolution’ and contributes substantially to food security of China and the world. However, almost all cytoplasmic male sterile lines (A lines) as females of hybrid rice have a natural deficiency of ‘panicle enclosure’, which blocks pollination between the A line and the fertility restorer line as the male (R line) of hybrid rice and decreases seed yield. In hybrid rice seed production, exogenous ‘920’ (the active ingredient is gibberellin A3) must be applied to eliminate or alleviate panicle enclosure of the A line; however, this not only increases production cost and pollutes the environment, it also decreases seed quality. In this study, we designed a transgenic approach to improve plant height and panicle exsertion of the A line to facilitate hybrid rice production and maintain the semi‐dwarf plant type of the hybrid. This approach comprising two components—artificial microRNA (amiRNA) and artificial target mimicry—can manipulate the differential expression of the endogenous Eui1 gene that is associated with rice internode elongation in the A line and the hybrid. amiRNA is a recently developed gene silencing method with high specificity, while target mimicry is a natural mechanism inhibiting the miRNA function that was also recently characterized. This approach provides a paradigm to tune the expression of endogenous genes to achieve the desired phenotype by combining amiRNA and artificial target mimicry technologies.  相似文献   

18.
The use of a thermosensitive genic male sterility (TGMS) system in two-line hybrid rice breeding is affected greatly by the sterility instability of TGMS lines caused by temperature fluctuation beyond their critical temperatures for fertility reversion. To prevent seed production from self contamination, we have developed a system to secure seed purity using a herbicide-sensitive TGMS mutant, M8077S, obtained by radiation. Genetic analysis, using the F1, F2 and F3 populations derived from this mutant and other normal varieties, revealed that bentazon lethality/sensitivity was controlled by a single recessive gene, which was named bel. The mutant can be killed at the seedling stage by bentazon at 300 mg/l or higher, a dosage that is safe for its F1 hybrids and all other normal varieties. This mutant is also sensitive to all the tested sulfonylurea herbicides. Response of segregating plants to these two types of herbicide indicated that sulfonylurea sensitivity was also controlled by bel. By crossing this mutant with Pei-Ai 64S, an F2 population was developed for genetic mapping. Surveying the two DNA pools from sensitive and non-sensitive F2 plants identified four markers that were polymorphic between the pools. The putative linked markers were then confirmed with the F2 population. The bel locus was located on chromosome 3, 7.1 cM from the closest microsatellite marker RM168. Phenotypic analysis indicated that the bel gene had no negative effect on agronomic traits in either a homozygous or heterozygous status. The mutant M8077S is valuable in the development of a TGMS breeding system for preventing impurity resulting from temperature fluctuation of the TGMS. Several two-line hybrid rice crosses using this system are under development.  相似文献   

19.
Rice is one of the most important food crops. The temperature-sensitive genic male sterility (TGMS) system provides a great potential for improving food production by hybrids. The use of TGMS system is simple, inexpensive, effective, and eliminates the limitations of the conventional three-line system. A rice gene, tms2, generated by irradiation of a japonica variety has been reported to control TGMS in several rice lines. Previous studies reported genetic markers linked to this gene, and the gene was transferred to an aromatic Thai cultivar. Using information obtained from published databases, we located positions of the reported genetic markers flanking the gene in rice genomic sequences, and developed gene-based markers located inside the flanking markers for polymorphism detection. We found that inbred indica tms2 mutant plants contain about 1 Mb of japonica DNA, in which at least 70 kb was deleted. Using RT-PCR for expression analysis, four genes out of seven genes annotated as expressed proteins located inside the deletion showed expression in panicles. These genes could be responsible for TGMS phenotypes of tms2. In addition, we developed gene-based markers flanking and inside the deletion for selecting the tms2 gene in breeding populations. By genotyping 102 diverse rice lines including 38 Thai rice lines, 5 species of wild rice, and 59 exotic rice lines including TGMS lines and cultivars with desirable traits, a gene-based marker located inside the deletion and one flanking marker were shown to be highly specific for the tms2 mutant.  相似文献   

20.
Genetic analysis of temperature-sensitive male sterilty in rice   总被引:1,自引:0,他引:1  
The present study of genetic analysis is an attempt to precisely characterize diverse temperature-sensitive genic male-sterile (TGMS) lines so as to explore the possibilities of utilizing the most promising in large-scale hybrid seed production. Genetical studies revealed that the TGMS segregants derived from crosses involving TGMS lines ID24 and SA2 expressed differential fertility levels at low-temperature conditions. A majority of these progenies expressed transgressive segregation towards either sterility of fertility, causing instability of sterility and low reversibilty of fertility which may be due to large numbers of single-locus QTLs and their epistatic interactions. We identified two putative genes imparting temperature-sensitive male sterility after observing crosses involving diverse TGMS sources. To identify suitable molecular markers closely linked to the trait we used RAPD, AFLP and microsatellites which generated polymorphism through bulked segregant analysis. AFLP analysis using a smaller genome kit resulted in enormous polymorphism, out of which the combination EAA/MCAG amplified a 330-bp fragment, which closely segregated with the gene at a distance of 5.3 cM. This fragment was eluted for cloning and from the sequence a STS primer (TS200) was developed which produced a dominant polymorphism specific to TGMS. The microsatellite RM257, located earlier on chromosome 9, was linked with the TGMS trait in SA2 at a distance of 6.2 cM. RM257 produced a codominant polymorphism with 145-bp (sterile) and 132-bp (fertile) products. Both individually and collectively, the markers TS200 and RM257 located on either side of the TGMS locus are very useful for marker-assisted selection. Received: 10 April 1999 / Accepted: 29 July 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号