首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A major challenge in the field of proteomics is obtaining high‐quality peptides for comprehensive proteome profiling by LC–MS. Here, evaluation and modification of a range of sample preparation methods using photosynthetically active Arabidopsis leaf tissue are done. It was found that inclusion of filter‐aided sample preparation (FASP) based on filter digestion improves all protein extraction methods tested. Ultimately, a detergent‐free urea‐FASP approach that enables deep and robust quantification of leaf and root proteomes is shown. For example, from 4‐day‐old leaf tissue, up to 11 690 proteins were profiled from a single sample replicate. This method should be broadly applicable to researchers working with difficult to process plant samples.  相似文献   

2.
Serum protein profiling by MS is a promising method for early detection of disease. Important characteristics for serum protein profiling are preanalytical factors, analytical reproducibility and high throughput. Problems related to preanalytical factors can be overcome by using standardized and rigorous sample collection and sample handling protocols. The sensitivity of the MS analysis relies on the quality of the sample; consequently, the blood sample preparation step is crucial to obtain pure and concentrated samples and enrichment of the proteins and peptides of interest. This review focuses on the serum sample preparation step prior to protein profiling by MALDI MS analysis, with particular focus on various SPE methods. The application of SPE techniques with different chromatographic properties such as RP, ion exchange, or affinity binding to isolate specific subsets of molecules (subproteomes) is advantageous for increasing resolution and sensitivity in the subsequent MS analysis. In addition, several of the SPE sample preparation methods are simple and scalable and have proven easy to automate for higher reproducibility and throughput, which is important in a clinical proteomics setting.  相似文献   

3.
Garaguso I  Borlak J 《Proteomics》2008,8(13):2583-2595
The analytical performance of MALDI-MS is highly influenced by sample preparation and the choice of matrix. Here we present an improved MALDI-MS sample preparation method for peptide mass mapping and peptide analysis, based on the use of the 2,5-dihydroxybenzoic acid matrix and prestructured sample supports, termed: matrix layer (ML). This sample preparation is easy to use and results in a rapid automated MALDI-MS and MS/MS with high quality spectra acquisition. The between-spot variation was investigated using standard peptides and statistical treatment of data confirmed the improvement gained with the ML method. Furthermore, the sample preparation method proved to be highly sensitive, in the lower-attomole range for peptides, and we improved the performance of MALDI-MS/MS for characterization of phosphopeptides as well. The method is versatile for the routine analysis of in-gel tryptic digests thereby allowing for an improved protein sequence coverage. Furthermore, reliable protein identification can be achieved without the need of desalting sample preparation. We demonstrate the performance and the robustness of our method using commercially available reference proteins and automated MS and MS/MS analyses of in-gel digests from lung tissue lysate proteins separated by 2-DE.  相似文献   

4.
Efficient and high resolution separation of the protein mixture prior to trypsin digestion and mass spectrometry (MS) analysis is generally used to reduce the complexity of samples, an approach that highly increases the probability of detecting low‐copy‐number proteins. Our laboratory has constructed an affinity ligand library composed of thousands of ligands with different protein absorbance effects. Structural differences between these ligands result in different non‐bonded protein–ligand interactions, thus each ligand exhibits a specific affinity to some protein groups. In this work, we first selected out several synthetic affinity ligands showing large band distribution differences in proteins absorbance profiles, and a tandem composition of these affinity ligands was used to distribute complex rat liver cytosol into simple subgroups. Ultimately, all the fractions collected from tandem affinity pre‐fractionation were digested and then analyzed by LC‐MS/MS, which resulted in high confidence identification of 665 unique rat protein groups, 1.8 times as many proteins as were detected in the un‐fractionated sample (371 protein groups). Of these, 375 new proteins were identified in tandem fractions, and most of the proteins identified in un‐fractionated sample (290, 80%) also emerged in tandem fractions. Most importantly, 430 unique proteins (64.7%) only characterized in specific fractions, indicating that the crude tissue extract was well distributed by tandem affinity fractionation. All detected proteins were bioinformatically annotated according to their physicochemical characteristics (such as MW, pI, GRAVY value, TM Helices). This approach highlighted the sensitivity of this method to a wide variety of protein classes. Combined usage of tandem affinity pre‐fractionation with MS‐based proteomic analysis is simple, low‐cost, and effective, providing the prospect of broad application in proteomics. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
To study the soybean plasma membrane proteome under osmotic stress, two methods were used: a gel‐based and a LC MS/MS‐based proteomics method. Two‐day‐old seedlings were subjected to 10% PEG for 2 days. Plasma membranes were purified from seedlings using a two‐phase partitioning method and their purity was verified by measuring ATPase activity. Using the gel‐based proteomics, four and eight protein spots were identified as up‐ and downregulated, respectively, whereas in the nanoLC MS/MS approach, 11 and 75 proteins were identified as up‐ and downregulated, respectively, under PEG treatment. Out of osmotic stress responsive proteins, most of the transporter proteins and all proteins with high number of transmembrane helices as well as low‐abundance proteins could be identified by the LC MS/MS‐based method. Three homologues of plasma membrane H+‐ATPase, which are transporter proteins involved in ion efflux, were upregulated under osmotic stress. Gene expression of this protein was increased after 12 h of stress exposure. Among the identified proteins, seven proteins were mutual in two proteomics techniques, in which calnexin was the highly upregulated protein. Accumulation of calnexin in plasma membrane was confirmed by immunoblot analysis. These results suggest that under hyperosmotic conditions, calnexin accumulates in the plasma membrane and ion efflux accelerates by upregulation of plasma membrane H+‐ATPase protein.  相似文献   

6.
Introduction – A variety of sample preparation protocols for plant proteomic analysis using two‐dimensional gel electrophoresis (2‐DE) have been reported. However, they usually have to be adapted and further optimised for the analysis of plant species not previously studied. Objective – This work aimed to evaluate different sample preparation protocols for analysing Carica papaya L. leaf proteins through 2‐DE. Methodology – Four sample preparation methods were tested: (1) phenol extraction and methanol–ammonium acetate precipitation; (2) no precipitation fractionation; and the traditional trichloroacetic acid–acetone precipitation either (3) with or (4) without protein fractionation. The samples were analysed for their compatibility with SDS–PAGE (1‐DE) and 2‐DE. Fifteen selected protein spots were trypsinised and analysed by matrix‐assisted laser desorption/ionisation time‐of‐flight tandem mass spectrometry (MALDI‐TOF‐MS/MS), followed by a protein search using the NCBInr database to accurately identify all proteins. Results – Methods number 3 and 4 resulted in large quantities of protein with good 1‐DE separation and were chosen for 2‐DE analysis. However, only the TCA method without fractionation (no. 4) proved to be useful. Spot number and resolution advances were achieved, which included having an additional solubilisation step in the conventional TCA method. Moreover, most of the theoretical and experimental protein molecular weight and pI data had similar values, suggesting good focusing and, most importantly, limited protein degradation. Conclusion – The described sample preparation method allows the proteomic analysis of papaya leaves by 2‐DE and mass spectrometry (MALDI‐TOF‐MS/MS). The methods presented can be a starting point for the optimisation of sample preparation protocols for other plant species. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
SDS interferes with both bottom‐up and top‐down MS analysis, requiring removal prior to detection. Filter‐aided sample preparation (FASP) is favored for bottom‐up proteomics (BUP) while acetone precipitation is popular for top‐down proteomics (TDP). We recently demonstrated acetone precipitation in a membrane filter cartridge. Alternatively, our automated electrophoretic device, termed transmembrane electrophoresis (TME), depletes SDS for both TDP and BUP studies. Here TME is compared to these two alternative methods of SDS depletion in both BUP and TDP workflows. To do so, a modified FASP method is described applicable to the SDS purification and recovery of intact proteins, suitable for LC/MS. All three methods reliably deplete >99.8% SDS. TME provide higher sample yields (average 90%) than FASP (55%) or acetone precipitation (57%), translating into higher total protein identifications (973 vs 877 FASP or 890 acetone) and higher spectral matches (2.5 times) per protein. In a top down workflow, each SDS‐depletion method yields high‐quality MS spectra for intact proteins. These results show each of these membrane‐based strategies is capable of depleting SDS with high sample recovery and high spectra quality for both BUP and TDP studies.  相似文献   

8.
Zhang X  Shi L  Shu S  Wang Y  Zhao K  Xu N  Liu S  Roepstorff P 《Proteomics》2007,7(14):2340-2349
An improved method for sample preparation for MALDI-MS and MS/MS using AnchorChip targets is presented. The method, termed the SMW method (sample, matrix wash), results in better sensitivity for peptide mass fingerprinting as well as for sequencing by MS/MS than previously published methods. The method allows up-concentration and desalting directly on the mass spectrometric target and should be amenable for automation. A draw back caused by extensive oxidation of methionine and tryptophan in the SMW method can be alleviated by the addition of n-octyl glucopyranoside and DTT to the sample solution. The method was validated for protein identification from a 2-DE based liver proteome study. The SMW method resulted in identification of many more proteins and in most cases with a better score than the previously published methods.  相似文献   

9.
Differential protein profiling by 2‐D PAGE is generally useful in biomarker discovery, proteome analysis and routine sample preparation prior to analysis by MS. The goal of this study was to compare 2‐D PAGE‐resolved protein profile of lymphatic endothelial cells to those of venous, and arterial endothelial cells isolated from lymphatic and blood vessels of bovine mesentery (bm). Three 2‐D PAGE electrophoretograms were produced for each of the three cell types and quantitatively analyzed. Protein identification by LC‐MS/MS was performed to identify 39 proteins found to be present at statistically significantly different levels in the three cell types (p<0.05). Most of the 39 proteins have not been previously reported in EC proteomic studies of 2‐D PAGE electrophoretograms. Three proteins, HSPA1B (HSP70 family member), HSPB1 (HSP27 family member), and UBE2D3 (a member of E2 ubiquitin‐conjugating enzymes) found to be at highest levels in bm arterial endothelial cells, bm venous endothelial cells, and bm lymphatic endothelial cells, respectively, were validated by immunoblotting with appropriate antibodies. The lack of substantial overlap between our results and those of other groups' comparative studies are discussed. Functional implications of differences in levels of various proteins identified in the three cell types are also discussed.  相似文献   

10.
This work presents a comparative evaluation of several detergent‐based sample preparation workflows for the MS‐based analysis of bacterial proteomes, performed using the model organism Escherichia coli. Initially, RapiGest‐ and SDS‐based buffers were compared for their protein extraction efficiency and quality of the MS data generated. As a result, SDS performed best in terms of total protein yields and overall number of MS identifications, mainly due to a higher efficiency in extracting high molecular weight (MW) and membrane proteins, while RapiGest led to an enrichment in periplasmic and fimbrial proteins. Then, SDS extracts underwent five different MS sample preparation workflows, including: detergent removal by spin columns followed by in‐solution digestion (SC), protein precipitation followed by in‐solution digestion in ammonium bicarbonate or urea buffer, filter‐aided sample preparation (FASP), and 1DE separation followed by in‐gel digestion. On the whole, about 1000 proteins were identified upon LC‐MS/MS analysis of all preparations (>1100 with the SC workflow), with FASP producing more identified peptides and a higher mean sequence coverage. Each protocol exhibited specific behaviors in terms of MW, hydrophobicity, and subcellular localization distribution of the identified proteins; a comparative assessment of the different outputs is presented.  相似文献   

11.
Proteomic approaches are extremely valuable in many fields of research, where mass spectrometry methods have gained an increasing interest, especially because of the ability to perform quantitative analysis. Nonetheless, sample preparation prior to mass spectrometry analysis is of the utmost importance. In this work, two protein precipitation approaches, widely used for cleaning and concentrating protein samples, were tested and compared in very diluted samples solubilized in a strong buffer (containing SDS). The amount of protein recovered after acetone and TCA/acetone precipitation was assessed, as well as the protein identification and relative quantification by SWATH‐MS yields were compared with the results from the same sample without precipitation. From this study, it was possible to conclude that in the case of diluted samples in denaturing buffers, the use of cold acetone as precipitation protocol is more favourable than the use of TCA/acetone in terms of reproducibility in protein recovery and number of identified and quantified proteins. Furthermore, the reproducibility in relative quantification of the proteins is even higher in samples precipitated with acetone compared with the original sample.  相似文献   

12.
The field of proteomics is rapidly turning towards targeted mass spectrometry (MS) methods to quantify putative markers or known proteins of biological interest. Historically, the enzyme-linked immunosorbent assay (ELISA) has been used for targeted protein analysis, but, unfortunately, it is limited by the excessive time required for antibody preparation, as well as concerns over selectivity. Despite the ability of proteomics to deliver increasingly quantitative measurements, owing to limited sensitivity, the leads generated are in the microgram per milliliter range. This stands in stark contrast to ELISA, which is capable of quantifying proteins at low picogram per milliliter levels. To bridge this gap, targeted liquid chromatography (LC) tandem MS (MS/MS) analysis of tryptic peptide surrogates using selected reaction monitoring detection has emerged as a viable option for rapid quantification of target proteins. The precision of this approach has been enhanced by the use of stable isotope-labeled peptide internal standards to compensate for variation in recovery and the influence of differential matrix effects. Unfortunately, the complexity of proteinaceous matrices, such as plasma, limits the usefulness of this approach to quantification in the mid-nanogram per milliliter range (medium-abundance proteins). This article reviews the current status of LC/MS/MS using selected reaction monitoring for protein quantification, and specifically considers the use of a single antibody to achieve superior enrichment of either the protein target or the released tryptic peptide. Examples of immunoaffinity-assisted LC/MS/MS are reviewed that demonstrate quantitative analysis of low-abundance proteins (subnanogram per milliliter range). A strategy based on this technology is proposed for the expedited evaluation of novel protein biomarkers, which relies on the synergy created from the complementary nature of MS and ELISA.  相似文献   

13.
14.
Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole‐cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte–neuron communication. To build a reference proteome, we established a C8‐D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two‐step digestion, filter‐aided sample preparation, StageTip‐based high pH fractionation, and high‐resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High‐confidence whole‐cell proteomes and secretomes are valuable resources in studying astrocyte function by label‐free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 ( http://proteomecentral.proteomexchange.org/dataset/PXD000501 ).  相似文献   

15.
There is a great interest in reliable ways to obtain absolute protein abundances at a proteome‐wide scale. To this end, label‐free LC‐MS/MS quantification methods have been proposed where all identified proteins are assigned an estimated abundance. Several variants of this quantification approach have been presented, based on either the number of spectral counts per protein or MS1 peak intensities. Equipped with several datasets representing real biological environments, containing a high number of accurately quantified reference proteins, we evaluate five popular low‐cost and easily implemented quantification methods (Absolute Protein Expression, Exponentially Modified Protein Abundance Index, Intensity‐Based Absolute Quantification Index, Top3, and MeanInt). Our results demonstrate considerably improved abundance estimates upon implementing accurately quantified reference proteins; that is, using spiked in stable isotope labeled standard peptides or a standard protein mix, to generate a properly calibrated quantification model. We show that only the Top3 method is directly proportional to protein abundance over the full quantification range and is the preferred method in the absence of reference protein measurements. Additionally, we demonstrate that spectral count based quantification methods are associated with higher errors than MS1 peak intensity based methods. Furthermore, we investigate the impact of miscleaved, modified, and shared peptides as well as protein size and the number of employed reference proteins on quantification accuracy.  相似文献   

16.
The study of changes in protein levels between samples derived from cells representing different biological conditions is a key to the understanding of cellular function. There are two main methods available that allow both for global scanning for significantly varying proteins and targeted profiling of proteins of interest. One method is based on 2-D gel electrophoresis and image analysis of labelled proteins. The other method is based on LC-MS/MS analysis of either unlabelled peptides or peptides derived from isotopically labelled proteins or peptides. In this study, the non-labelling approach was used involving a new software, DeCyder MS Differential Analysis Software (DeCyder MS) intended for automated detection and relative quantitation of unlabelled peptides in LC-MS/MS data.Total protein extracts of E. coli strains expressing varying levels of dihydrofolate reductase and integron integrase were digested with trypsin and analyzed using a nanoscale liquid chromatography system, Ettan MDLC, online connected to an LTQTM linear ion-trap mass spectrometer fitted with a nanospray interface. Acquired MS data were subjected to DeCyder MS analysis where 2-D representations of the peptide patterns from individual LC-MS/MS analyses were matched and compared.This approach to unlabelled quantitative analysis of the E. coli proteome resulted in relative protein abundances that were in good agreement with results obtained from traditional methods for measuring protein levels.  相似文献   

17.
Chinese hamster ovary (CHO) cells are the major mammalian host for producing various therapeutic proteins. Among CHO cells, the dihydrofolate reductase‐deficient CHO DG44 cell line has been used as a popular mammalian host because of the availability of a well‐characterized genetic selection and amplification system. However, this cell line has not been studied at the proteome level. Here, the first detailed proteome analysis of the CHO DG44 cell line is described. A protein reference map of the CHO DG44 cell line was established by analyzing whole cellular proteins using 2‐DE with various immobilized pH gradients (pHs 3–10, 5–8, and 3–6) in the first dimension and a 12% acrylamide gel in the second dimension. The map is composed of over 1400 silver‐stained protein spots. Among them, 179 protein spots, which represent proteins associated with various biological processes and cellular compartments, were identified based on MALDI‐TOF‐MS and MS/MS. This proteome database should be valuable for better understanding of CHO cell physiology and protein expression patterns which may lead to efficient therapeutic protein production.  相似文献   

18.
Immobilized trypsin (IM) has been recognized as an alternative to free trypsin (FT) for accelerating protein digestion 30 years ago. However, some questions of IM still need to be answered. How does the solid matrix of IM influence its preference for protein cleavage and how well can IM perform for deep bottom‐up proteomics compared to FT? By analyzing Escherichia coli proteome samples digested with amine or carboxyl functionalized magnetic bead–based IM (IM‐N or IM‐C) or FT, it is observed that IM‐N with the nearly neutral solid matrix, IM‐C with the negatively charged solid matrix, and FT have similar cleavage preference considering the microenvironment surrounding the cleavage sites. IM‐N (15 min) and FT (12 h) both approach 9000 protein identifications (IDs) from a mouse brain proteome. Compared to FT, IM‐N has no bias in the digestion of proteins that are involved in various biological processes, are located in different components of cells, have diverse functions, and are expressed in varying abundance. A high‐throughput bottom‐up proteomics workflow comprising IM‐N‐based rapid protein cleavage and fast CZE‐MS/MS enables the completion of protein sample preparation, CZE‐MS/MS analysis, and data analysis in only 3 h, resulting in 1000 protein IDs from the mouse brain proteome.  相似文献   

19.
Total protein approach (TPA) is a proteomic method that allows calculation of concentrations of individual proteins and groups of functionally related proteins in any protein mixture without spike‐in standards. Using the two‐step digestion–filter‐aided sample preparation method and LC‐MS/MS analysis, we generated comprehensive quantitative datasets of mouse intestinal mucosa, liver, red muscle fibers, brain, and of human plasma, erythrocytes, and tumor cells lines. We show that the TPA‐based quantitative data reflect well‐defined and specific physiological functions of different organs and cells, for example nutrient absorption and transport in intestine, amino acid catabolism and bile secretion in liver, and contraction of muscle fibers. Focusing on key metabolic processes, we compared metabolic capacities in different tissues and cells. In addition, we demonstrate quantitative differences in the mitochondrial proteomes. Providing insight into the abundances of mitochondrial metabolite transporters, we demonstrate that their titers are well tuned to cell‐specific metabolic requirements. This study provides for the first time a comprehensive overview of the protein hardware mediating metabolism in different mammalian organs and cells. The presented approach can be applied to any other system to study biological processes. All MS data have been deposited in the ProteomeXchange with identifier PXD001352 ( http://proteomecentral.proteomexchange.org/dataset/PXD001352 ).  相似文献   

20.
HepG‐2 cells are widely used as a cell model to investigate hepatocellular carcinomas and the effect of anticancer drugs such as doxorubicin, an effective antineoplastic agent, which has broad antitumoral activity against many solid and hematological malignancies. To investigate the effect of doxorubicin on the protein pattern, we used complementary proteomic workflows including 2‐D gel‐based and gel‐free methods. The analysis of crude HepG2 cell extracts by 2‐D DIGE provided data on 1835 protein spots which was then complemented by MS‐centered analysis of stable isotope labeling by amino acids in cell culture‐labeled cells. The monitoring of more than 1300 distinct proteins, including proteins of the membrane fraction provides the most comprehensive overview on the proteome of the widely used model cell line HepG2. Of the proteins monitored in total, 155 displayed doxorubicin‐induced changes in abundance. Functional analysis revealed major influences of doxorubicin on proteins involved in protein synthesis, DNA damage control, electron transport/mitochondrial function, and tumor growth. The strongest decrease in level was found for proteins involved in DNA replication and protein synthesis, whereas proteins with a function in DNA damage control and oxidative stress management displayed increased levels following treatment with doxorubicin compared with control cells. Furthermore, the doxorubicin‐associated increase in levels of multiple forms of keratins 8, 18, and 19 and other structural proteins revealed an influence on the cytoskeleton network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号