首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A heat-stable polypeptide has been detected in Saccharomyces carlsbergensis which inhibits specifically proteinase B from yeast. This proteinase B inhibitor IB3 differs substantially in chemical, physical and antigenic properties from the earlier described proteinase B inhibitors IB1 and IB2 from yeast. The inhibitor IB3 has been purified from S. carlsbergensis and appears to be homogeneous by disc gel electrophoresis and sodium dodecyl sulfate gel electrophoresis. The molecular weight has been estimated at 11 500, with no evidence for the existence of subunits. The amino acid analysis shows the absence of tryptophan. No compounds other than amino acids could be detected. The isoelectric point is 4.6. The inhibitor is not affected by incubation with proteinase B but is inactivated by proteinase A and carboxypeptidase Y from yeast and by trypsin from bovine pancreas. The proteinase B inhibitor association constant was calculated to be 3.3 x 10(9) M-1 and the enzyme inhibitor complex is stable at 25 degrees C in the pH range 5--10. The inhibitor does not exhibit immunological cross-reactivity with IB1 and IB2. After centrifugal fractionation at 40 000 x g of a metabolic lysate from spheroplasts the inhibitor was found to be localized in the supernatant, i.e. the extravacuolar soluble fraction.  相似文献   

2.
Data on the proteinase inhibitors IA, IB and IC from yeast and their possible intracellular interaction with the proteinases A and B and carboxypeptidase Y are presented. A role of proteolysis in "catabolite inactivation" is discussed.  相似文献   

3.
Changes in the activities of 15 different enzymes during incubation of a crude yeast extract with the purified yeast proteinases A and B, and carboxypeptidase Y, respectively, have been measured. The spectrum of action of the three proteinases on the enzymes measured differs significantly, increasing or decreasing their activities or having no effect. Incubation of purified cytoplasmic malate dehydrogenase or purified mitochondrial malate dehydrogenase with proteinases A and B results in selective inactivation of the cytoplasmic enzyme, whereas the mitochondrial activity is not affected. Carboxypeptidase Y has no effect on the activity of either dehydrogenase. The results support the idea of selective proteolysis as the mechanism of the earlier observed inactivation of cytoplasmic malate dehydrogenase, initiated by the addition of glucose to intact yeast cells grown on acetate as carbon source ("glucose effect").  相似文献   

4.
Lysosomal carboxypeptidase B (peptidyl-L-amino-acid hydrolase, EC 3.4.18.1) from bovine spleen purified to apparent homogeneity was found to have a molecular weight of 52 000 in the absence and of 25 000 in the presence of urea, determined by gel filtration, indicating the existence of two subunits of identical size. The amount of approx. 15% carbohydrate estimated after cleavage by endoglycosidase H was shown to be insignificant for enzymatic activity. The isoelectric focusing separated lysosomal carboxypeptidase B into several protein bands - each enzymatically active - with a range of isoelectric points between 4.6 and 5.2. The titration of the sulphydryl group in the active site of the enzyme with the proteinase inhibitor E-64 yielded one thiol group per molecule. A maximum of activation was achieved by the addition of selenocystamine together with dithioerythritol and EDTA in the incubation solution. Under these conditions the carboxypeptidase hydrolyzed benzoylglycylarginine (80 kat/mol enzyme), benzoylarginine amide (38 kat/mol enzyme) and carbobenzoxyglutaryltyrosine (110 kat/mol enzyme). Slight enzymatic activities towards benzoylarginine 2-naphthylamide and benzoylarginine p-nitroanilide could be measured. With the oxidized insulin B chain, lysosomal carboxypeptidase B exhibited only carboxypeptidase activity.  相似文献   

5.
A rapid purification procedure for large scale preparations of yeast proteinase B inhibitors 1 and 2 (IB1 and IB2) is described. By disc gel electrophoresis, amino acid analysis, and end-group determinations, each of the inhibitors is homogeneous. Both inhibitors are polypeptides with molecular weights of 8,500, containing 74 residues. No components other than amino acids could be detected. There is no significant difference in the amino acid compositions of the two inhibitors as analyzed after acid hydrolysis. Both polypeptides are characterized by the total absence of arginine, tryptophan, and sulfur-containing amino acid residues. The proteinase B inhibitors of yeast, therefore, differ fundamentally from proteinase inhibitors of many other organisms, which generally contain a large number of disulfide bridges. Both proteinase B inhibitors have threonine as the NH2-terminal residue and -Val-His-Thr-Asn-COO- as the COOH-terminal sequence. Comparison of peptide maps after tryptic digestion reveals that the two inhibitors differ definitely in only a few tryptic peptides. The inhibitors are rapidly inactivated by digestion with carboxypeptidase A from bovine pancreas at pH 8.5. Inactivation occurs stoichiometrically with the release of threonine, the penultimate residue at the COOH-terminal end of both inhibitors.  相似文献   

6.
The activation of yeast proteinase B at pH 5 has been suggested to be due to the degradation of a specific inhibitor for the enzyme, IB, by proteinase A. However, we found that when pepstatin, which completely inhibits proteinase A, was included in the pH 5 activation mixture, the same time-dependent activation of proteinase B was observed. Furthermore, proteinase B preparations that were void of proteinase A activity were still activated by incubation at pH 5. We found that the activation of proteinase B at pH 5 was due primarily to the irreversible loss of inhibitory effect of IB, which can be resolved by isoelectrofocusing into four distinct bands with isoelectric points of 4.6, 6.1, 6.8 and 7.6. These four forms of IB showed varying degrees of stability at pH 5, which may explain some of the differing observations reported in the past.  相似文献   

7.
Sodium dodecyl sulfate was shown to promote both the inactivation and proteolytic degradation of the yeast glycoprotein, carboxypeptidase Y, with the former effect occurring six times faster than the latter. Although the proteolysis, as judged by polyacrylamide gel electrophoresis, was inhibited by pepstatin, which implicates the presence of proteinase A, the possibility of autodigestion could not be ruled out. A contributing role of the enzyme's carbohydrate moiety to these two processes was revealed by treating carboxypeptidase Y with endo-β-N-acetylglucosaminidase H. This treatment removes all four of the enzyme's Oligosaccharide chains in sodium dodecyl sulfate and as a consequence increases the rate of inactivation of the resulting carboxypeptidase Y by twofold and its proteolytic degradation by threefold relative to that of untreated enzyme. It thus appears that carboxypeptidase Y is a glycoprotein whose structural integrity and functional activity are influenced by its associated carbohydrate component.  相似文献   

8.
An alkaline proteinase, previously identified in rat liver and heart, has been purified from the soluble fraction of human erythrocytes. The proteinase has an apparent molecular weight of 600 000 and is composed of eight subunits with molecular weights ranging from 32 000 to 21 000. The proteinase degrades both protein and synthetic peptide substrates with a broad pH optimum of 7.5-11.0. Among the synthetic peptides tested, tripeptides with arginine at the P1 position (e.g. Z-Val-Leu-Arg-4-methoxy-2-napthylamine and Boc-Leu-Gly-Arg-4-methylcoumarin-7-amide) are particularly good substrates. The proteinase appears to be sulfhydryl-dependent and is inhibited completely by mersalyl acid and by hemin; inhibitors of serine and metallo-type proteinases have no effect on proteinase activity. Interestingly, a variety of other proteinase inhibitors such as leupeptin, chymostatin and N-ethylmaleimide failed to completely inhibit protein-hydrolyzing activities of the enzyme. These results indicate that these activities may be accounted for by at least two different catalytic sites. Proteinase activity is stable in the presence of 1 M urea, 0.5% Triton X-100 or 0.03% SDS and is not affected by ATP. Based on the high molecular weight and sulfhydryl-dependence, we have named this proteinase macropain.  相似文献   

9.
Plasma membranes were purified from flagella of porcine cauda epididymal sperm and proteolytic regulation of bicarbonate-sensitive adenylate cyclase was studied. It was found that the epididymal sperm plasma membrane contained a trypsin-like proteinase which inactivated adenylate cyclase. Bicarbonate activates adenylate cyclase as reported previously, but, at the same time, the anions enhance the inactivation of the enzyme by the membrane-bound trypsin-like proteinase. This phenomenon is not due to the direct activation of the proteinase, but closely related to the activation of adenylate cyclase by bicarbonate. It was also found that seminal proteinase inhibitors blocked the inactivation of adenylate cyclase and maintained the bicarbonate activation of the enzyme at high level. Actually, bicarbonate keeps adenylate cyclase fully active in ejaculated sperm, because membrane-bound proteinase is completely inhibited by the seminal proteinase inhibitors. These results suggest that the interactions between membrane-bound proteinase and seminal proteinase inhibitor are involved in the regulation of the bicarbonate-sensitive adenylate cyclase system.  相似文献   

10.
We report in vitro studies on the interaction of several substrates with the carboxypeptidase Y-inhibitor complex of yeast. Inhibition of carboxypeptidase Y cleavage of two peptides by carboxypeptidase Y-inhibitor is shown to be competitive. The experiments show a wide variation in the degree of cleavage of a variety of peptide substrates by carboxypeptidase Y, despite the presence of the inhibitor protein. The most likely explanation for this behaviour is a different capacity for the peptides to dissociate the inhibitor protein from the substrate-binding site of carboxypeptidase Y. While the carboxypeptidase Y-inhibitor is insensitive to proteolytic inactivation when complexed with carboxypeptidase Y, it is sensitive when in the free state. Addition of the substrate, N-Cbz-Phe-Leu, to the carboxypeptidase Y-inhibitor complex, however, allows proteolytic inactivation of the inhibitor protein. We suggest that the proteinase-inhibitor may play a crucial role in the regulation of proteinase activity. The inhibitor protein generally protects proteins from unwanted proteinase action. However, it will allow cleavage of proteins which, by some signal triggered metabolically, become substrates due to the exposure of amino acid sequences normally buried, and exhibiting a high affinity for the proteinase.  相似文献   

11.
A carboxypeptidase B-like enzyme which catalyses the hydrolysis of synthetic esters of lysine and arginine has been isolated from the starfish Dermasterias imbricata. This carboxypeptidase B-like enzyme has a molecular weight of approximately 34 000 and shares this and other properties with bovine pancreatic carboxypeptidase B. The existence of zymogen for this activity in the pyloric caeca of the starfish is demonstrated. This zymogen has a molecular weight near 40 000 and appears to be analogous to other monomeric procarboxypeptidases B. The zymogen possesses an intrinsic low-level activity toward synthetic substrates of carboxypeptidase B and is activated by trypsin.  相似文献   

12.
Yeast mutants lacking three proteolytic enzymes—proteinase B, carboxypeptidase Y, and carboxypeptidase S—have been constructed. Search for new proteolytic activities in these mutants with the aid of chromogenic peptide substrates developed for serum proteinases led to the detection of new proteolytic activities, active in the neutral pH range. Sephadex chromatography of a 100,000g supernate of mutant extracts, tests against four different substrates, and partial characterization of their sensitivity to various inhibitors indicate multiple activities. Two activities, called proteinase M and proteinase P, were found in the sedimentable membranous fraction of mutant extracts.  相似文献   

13.
Lysosomal carboxypeptidase B has been purified from rabbit lung acetone powder by acid precipitation and ammonium sulfate fractionation followed by further purification on Sephadex G-100, DEAE-Sephadex, Organomercurial-Sepharose, preparative isoelectric focusing, Sephadex G-75, and carboxymethyl-Sephadex. This procedure resulted in a homogeneous preparation as determined by polyacrylamide gel electrophoresis at pH 4.5, 8.3 and with sodium dodecyl sulfate. This enzyme has a molecular weight of 52,000, is composed of two subunits of approximately equivalent molecular weight, and is a glycoprotein with a carbohydrate content estimated to be 10% by weight. The amino acid composition is also reported. The enzyme is active on two synthetic substrates, α-N-benyoyl-l-arginineamide and hippuryl-l-arginine. With these two substrates, respectively, lysosomal carboxypeptidase B has pH optima of 5.7 and 5.0, temperature optima of 40 and 50 °C, and Km values of 10 and 16 mm. With each substrate, the enzyme requires the presence of a reducing agent for maximal activity and is inhibited to the same extent with several inhibitors. The most potent inhibitors were leupeptin and antipain at low concentrations (1 μm). Iodoacetate and Ac-(Ala)3-Ala-chloro-methyl ketone also inhibited at higher concentrations (10 μm). However, compounds such as leucyl-chloromethyl ketone, bestatin, pepstatin, phenylmethylsulfonyl fluoride, soybean trypsin inhibitor, and α-1-antitrypsin did not inhibit. When tested with peptides as substrates, this proteinase exhibited strong carboxypeptidase activity on the tetrapeptide, ThrProArgLys, and on angiotensin I, AspArgValTyrIle HisProPheHisLeu, liberating Lys, and Leu, respectively. Substance P (containing 11 amino acids plus a C-terminal amide group) was virtually inactive as a substrate for this enzyme. However, with oxidized insulin B chain as substrate, lysosomal carboxypeptidase B exhibited significant carboxypeptidase and endopeptidase activities.  相似文献   

14.
An elastinolytic proteinase secreted by tissue-invasive larvae of Schistosoma mansoni has been purified to homogeneity. Size-exclusion chromatography and chromatofocusing were used to purify the enzyme 18-fold from crude larval secretions. The native enzyme has a molecular weight of 30,000, a pI of 8, a pH optimum of 9, and a calcium dependence of 2 mM. A second Mr 17,000 form of the enzyme was present in crude secretions and appears to be an autoproteolysis product. The enzyme is a serine proteinase that preferentially binds tetrapeptide inhibitors or substrates with an aromatic or hydrophobic residue at the P-1 site. In addition to being active against elastin, the enzyme degrades Azocoll, gelatin, laminin, fibronectin, keratin, and type IV collagen.  相似文献   

15.
After centrifugal fractionation at 40,000 × g of a metabolic lysate from yeast spheroplasts proteinases A and B, and carboxypeptidase Y were found exclusively in the sediment, whereas inhibitors of these proteinases were present only in the supernatant. Immunoprecipitation with an antiserum prepared against the pure heat-stable proteinase B-inhibitor occured in the supernatant but not in the extract of the particulate fraction.  相似文献   

16.
Studies on a proteinase B mutant of yeast.   总被引:1,自引:0,他引:1  
Yeast mutant lacking proteinase B activity have been isolated [Wolf, D. H. and Ehmann, C. (1978) FEBS Lett. 92, 121--124]. One of these mutants (HP232) is characterized in detail. Absence of the vacuolar localized enzyme is confirmed by checking for proteinase B activity in isolated mutant vacuoles. Defective proteinase B activity segregates 2:2 in meiotic tetrads. The mutation is shown to be recessive. Mutant proteinase B activity is not only absent against the synthetic substrate. Azocoll, but also against the physiological substrate pre-chitin synthetase, cytoplasmic malate dehydrogenase and fructose-1,6-bisphosphatase. The mutant shows normal vegetative growth, a phenomenon not consistent with the idea that proteinase B might be the activating principle of chitin synthetase zymogen in vivo. Fluorescence microscopy shows normal chitin insertion. Enzymes underlying carbon-catabolite inactivation in wild-type cells (a mechanism proposed to be possibly triggered by proteinase B) such as cytoplasmic malate dehydrogenase, fructose-1,6-bisphosphatase, phosphoenolpyruvate carboxykinase and isocitrate lyase, are inactivated also in the mutant. NADP-dependent glutamate dehydrogenase, which is found to be inactivated in glucose-starved wild-type cells, proceeds normally in the mutant. Mutant cells show more than 40% reduced protein degradation under starvation conditions. Sporulating diploids, homozygous for proteinase B absence, also exhibit an approximately 40% reduced protein degradation as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene. The time of the appearance of the first ascospores of diploid cells, homozygous for proteinase B deficiency, is delayed about 50% and sporulation frequency is reduced to about the same extent as compared to homozygous wild-type diploids or diploids heterozygous for the mutant gene.  相似文献   

17.
1. A new serine proteinase, tryase, was isolated from the membrane fraction of a post-nuclear supernatant of rat liver homogenate. The enzyme was solubilized with 1 M-MgCl2 and purified to homogeneity by DEAE-cellulose chromatography and affinity chromatography with soya-bean trypsin inhibitor linked to Sepharose 4B. 2. The enzyme was identified on sodium dodecyl sulphate/polyacrylamide gels by reaction with radiolabelled di-isopropyl phosphorofluoridate. Unreduced its molecular weight was 32 500, reduced it was 28 000. 3. The enzyme readily hydrolysed azocasein and tripeptide nitroanilide substrates with an arginine or lysine residue adjacent to the leaving group. D-Pro-Phe-Arg-NPhNO2 was used routinely (Km = 0.25 mM). Tryase showed little activity on blocked arginine esters or amides. 4. It was inhibited by di-isopropyl phosphorofluoridate, benzamidine, aprotinin, soya-bean and lima-bean trypsin inhibitors, Ile-Leu-Arg-CH2Cl and Phe-Ala-Arg-CH2Cl. It was not inhibited by Tos-Lys-CH2Cl. 5. Subcellular-fractionation studies showed that tryase was associated with particles similar in their sedimentation properties to lysosomes, but, since it was not present in tritosomes, it was not in the classical lysosome. 6. Rat liver contained other neutral proteinases; one of these was a serine proteinase with an apparent molecular weight of 90 000 on gel chromatography.  相似文献   

18.
The maize root has two main proteinase and carboxypeptidase components. Proteinase I and carboxypeptidase I, which predominate in older plants, appear to have a serine group at their active sites and have been estimated to have molecular weights of approximately 54000 and 77000 respectively. Proteinase I, which has been purified up to 500-fold, degrades haemoglobin and azocasein with maximum activity at pH 4 and 9--10 respectively, while on maize root protein it gives most hydrolysis in the neutral pH range. The main portion of the nitrate-reductase-inactivating activity in the maize root extract is due to proteinase I. Carboxypeptidase I, like several other plant carboxypeptidases such as carboxypeptidase C which have now (IUB Recommendations 1978) been classified as serine carboxypeptidases (EC 3.4.16.1), has maximum activity around pH 5 and has esterase activity. A second group of proteases, proteinase II and carboxypeptidase II, separated from the above on carboxymethyl-cellulose, were shown to have different molecular weight properties and be equally sensitive to serine and thiol group inhibitors. Proteinase II degrades haemoglobin, but not azocasein and does not mediate nitrate reductase inactivation. Associated with this second group of proteases was a macromolecular component which inactivated nitrate reductase but, unlike the action of proteinase I, was not inhibited by phenylmethylsulphonyl fluoride or casein. It was inhibited by metal chelating agents which were without effect on nitrate reductase inactivation due to proteinase I.  相似文献   

19.
It has been previously demonstrated in our laboratory that uridine nucleosidase (EC 3.2.2.3) is subjected in yeast to inactivation. An inactivating fraction has been isolated and purified to homogeneity with a procedure which includes gel filtration, adsorption chromatography, and electrofocusing techniques. The molecular weight of the enzyme, estimated either by sodium dodecyl sulfate disc gel electrophoresis or by gel filtration is approximately 44,000. No quaternary structure was evidenced. The inactivating activity possesses proteolytic activity against casein and hemoglobin with pH optima of 2.5 and 3.2, respectively. The optimal pH for uridine nucleosidase inactivation is around 4.7. The inactivating activity as well as the proteolytic activity of the preparation can be inhibited by IA but not by IB2 and IC, yeast macromolecular inhibitors for proteinase A (EC 3.4.23.8), B (EC 3.4.22.9), and C (EC 3.4.12.8), respectively. The apparent isoelectric point is pH 4.03. The carbohydrate content is 8.5%. A comparison of the properties of the inactivating protein with those of known yeast proteinases leads to the conclusion that it is identical with the enzyme previously designated as proteinase A, which for the first time has been obtained homogeneous and characterized. It has been shown that proteinase A could play a physiological role in the uridine nucleosidase inactivation process when it is associated, as a complex, with proteinase B.  相似文献   

20.
An extracellular proteinase secreted by the thermophilic bacteria Thermomonospora fusca YX (YX-proteinase) is a serine proteinase as shown by its inactivation by the site specific reagents, phenylmethanesulfonyl fluoride, dansyl fluoride, and carbobenzoxy-L-phenylalanine chloromethyl ketone. This conclusion is further supported by the effect of various proteinase inhibitors on its activity. The activity of the proteinase toward small synthetic ester substrates shows that the enzyme has a primary specificity for the aromatic and hydrophobic amino acids. The amino acid composition and NH2-terminal sequence, as well as its size, suggest that the enzyme is related to the chymotrypsin-like microbial proteinase, alpha-lytic protease from Myxobacter 495 and protease A and B from Streptomyces griseus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号